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Abstract
Path loss prediction is a crucial task for the planning of networks in modern mobile communication

systems. Learning machine-based models seem to be a valid alternative to empirical and deterministic
methods for predicting the propagation path loss. As learning machine performance depends on the
number of input features, a good way to get a more reliable model can be to use techniques for reducing
the dimensionality of the data. In this paper we propose a new approach combining learning machines
and dimensionality reduction techniques. We report results on a real dataset showing the efficiency of
the learning machine-based methodology and the usefulness of dimensionality reduction techniques in
improving the prediction accuracy.
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1 Introduction

The problem of predicting the propagation path loss frequently occurs in the design and plan-
ning of networks for communication systems (e.g. mobile systems, wireless-access systems). A
prediction based on theoretical models is really important since it allows to determine optimum
base locations without the need of any measurement. In order to plan a cellular system, several
propagation methods have recently been developed. Prediction models can be divided into three
classes: empirical, deterministic and semi-deterministic. Empirical models [14, 19] describe from
a statistical point of view the relationship between the path loss and the environment. Results are
usually obtained by means of measurement campaigns. In deterministic models [16, 24] the field
strength is calculated using the Geometrical Theory of Diffraction (GTD). It is obtained as the
superposition of direct, reflected and diffracted rays at the point of interest. Semi-deterministic
models are half-way between deterministic and empirical models [8, 10]. Empirical models are
easier to implement and usually require less computational effort but are less sensitive to the
environment. Deterministic ones, on the other hand, are more accurate but require detailed
information about the environment and more computational effort.
The prediction of propagation path loss can be basically viewed as a regression problem. In
fact, information about transmitter, receiver, buildings, frequency, etc. represents the inputs
and the propagation loss represents the output to be calculated (see Fig. 2). The goal is finding
a suitable input vector x and an estimate f(x) that best approximates the propagation loss.
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Figure 1: Path Loss Prediction as a Regression Problem.

Learning Machines, which are useful tools for solving regression problems, can be efficiently
applied for obtaining a reliable prediction of wave propagation [1, 6, 7, 13, 20].
In regression, nothing is known about the function we want to represent. The only information
available is in the inputs, or features, of the vectors x. As relevant inputs are unknown a priori,
many candidate features are usually included in order to better describe the domain. Unfortu-
nately, many of these features are irrelevant or redundant and their presence does not provide
more discrimination ability. Furthermore, data sets with a large number of inputs and a limited
number of training examples lead to the “curse of dimensionality”: the data are very sparse
and provide a poor representation of the mapping [5]. Then the only way to construct a good
estimator f is to transform input data into a reduced representation set of features by using
Dimensionality reduction techniques [5, 18]. Dimensionality reduction techniques are usually
divided into two classes: linear methods (e.g. Independent component analysis (ICA), Principal
Component Analysis (PCA), Singular value decomposition (SVD)) and nonlinear methods (e.g.
Nonlinear PCA, Kernel PCA).
In this work we propose a two-step approach, which combines learning machines and dimen-
sional reduction techniques, for predicting the propagation path loss in an urban environment.
Once the input vector is built, a dimension reduction strategy is applied to obtain a new vector
in a smaller space. Then a suitably trained learning machine is fed with reduced data in order

2



to obtain the path loss prediction (see Fig. 2).
We briefly describe the contents of the paper. In section 2 and 3 a brief overview of Artificial
Neural Networks and Support Vector Machines is given. In section 4 we describe two dimen-
sionality reduction techniques, namely PCA and nonlinear PCA. A new method for generating
input data in path loss prediction is introduced in section 5. Finally, in section 6 we report the
numerical results on a real test problem showing the usefulness of the new method in predicting
wave propagation.

I N P U T P A T H  L O S SR E D U C E D  I N P U T
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M A C H I N E

Figure 2: A Two-step Strategy for Path Loss Prediction.

2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are adaptive statistical tools that model the way biological
nervous systems, such as the brain, process information. Similarly to people, ANN can learn by
example, namely they can learn how to represent a given process just by using some examples
related to it. As a result of their simplicity and flexibility, they have been successfully applied
to tough problems (e.g. regression, pattern recognition) in a variety of different fields, such as
engineering, econometrics, statistics, physics and medicine.
Generally, ANNs consist of several elementary processing units called neurons, which are located
in different layers and interconnected by set of weighted edges (see figure 3). Each neuron
transforms its input information into an output response by a nonlinear function g, called transfer
function. Two well-known transfer functions are reported in Table 1. Overall, the inputs of the
process are combined, propagated and processed through all layers and so converted as the
output of the process.
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Figure 3: Neural Network Architecture.
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One of the most popular architectures in neural networks is the multi-layer perceptron (see
[5, 15]). A multilayer network typically consists of an input layer, which is basically a set of
source nodes, one or more hidden layers, composed by various computational nodes, and an
output layer of computational nodes. Once the architecture is chosen, the output of the network
depends only on the weight vector w.
We consider a certain phenomenon described by a nonlinear regressive model of the following
form:

ỹ = f(x) + ν

where f is an unknown function to be approximated and ν is an additive noise term statistically
independent of the vector x.
The problem we deal with is a supervised learning problem. Formally, given a training set,
namely a set of examples

TS = {(xi, yi), xi ∈ Rn, yi ∈ Rk, i = 1, . . . , N},

we want to build an estimate of the dependence describing the phenomenon. This is equivalent
to solve the following optimization problem

min
w∈ℜm

E(w) =
P

∑

i=1

Ei(w),

where each Ei measures the distance between the target output yi and the network response for
xi, that is y(w;xi). A well-known function is the quadratic loss function, that is

Ei(w) =
1

2
‖yi − y(w;xi)‖2,

although other types of structure for the error can be used.
We can construct (train) the desired network in a supervised manner by using a popular al-
gorithm known as the backpropagation algorithm [21, 15]. Methods for large unconstrained
optimization, such as Quasi Newton, Conjugate gradient and non monotone Barzilai-Borwein
gradient methods [2, 12] represent another widely-used class of methods for solving the problem
described above.
The hope is that the neural network obtained after the training process will generalize. A neural
network is said to generalize well when it is able to compute correctly the input-output mapping
for test data not included in the training set. The generalization ability of a learning machine,
in general, is strictly connected with its complexity. In fact, a complex network usually approx-
imates the process poorly on points not in the training set. Such a phenomenon is referred to
as overfitting or overtraining. A model which is too simple, however, is also not preferred as
it gives too poor a fit to the training data. In order to find the optimal complexity for our
learning machine, we can utilize the Occam’s Razor [4]. This model selection criteria favors the
simplest model possible that still grants good performance on the training data. Finally, in
order to evaluate the generalization ability of a learning machine, we can use a cross-validation

procedure (see [22] for further details).
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Type of T. Function g(t)

Logistic 1

1+e−ct

Hyperbolic Tangent 1−e−t

1+e−t

Table 1: Transfer Functions used in ANN.

3 Support Vector Machines for Nonlinear Regression: A Brief

Review

Support Vector Machines (SVMs) were first introduced by Vapnik [23]. Like multilayer percep-
trons and radial basis functions, SVMs represent an efficient tool for pattern recognition and
nonlinear regression.
In the SVMs case, the estimate usually assumes the following form:

ỹ =
m

∑

j=1

wjφj(x)

where {φj(x)}m
j=1 is a set of nonlinear basis functions. The loss function [15, 23] used for

determining the estimate is

Lǫ(ỹ, y) =

{

|ỹ − y| − ǫ |ỹ − y| > ǫ

0 otherwise
(1)

with ǫ a small value. The problem can be formally stated as follows:

min
1

N

N
∑

i=1

Lǫ(ỹ
i, yi)

s.t. ‖w‖ ≤ α

(2)

where w ∈ Rm, and α ∈ R+ is an arbitrarily chosen constant. It is possible, by introducing
some slack variables, to reformulate problem (2) as follows:

min
ξi,ξ̄i,w

C

N
∑

i=1

{ξi + ξ̄i} +
1

2
‖w‖2

s.t. yi − wT φ(xi) ≤ ǫ + ξi i = 1, . . . , N
wT φ(xi) − yi ≤ ǫ + ξ̄i i = 1, . . . , N
ξi, ξ̄i ≥ 0 i = 1, . . . , N

(3)
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Type of SVM K(x, xi) Parameters

Polynomial (xT xi + 1)p p

Radial Basis exp(− 1

2σ2 ‖x − xi‖2) σ

Two Layer Perceptron tanh(βxT xi + γ) β, γ

Table 2: Kernels used in SVM. Sigmoid function does not satisfy Mercer’s condition on all β and γ.

Then we consider the dual problem of (3):

max
αi,ᾱi

Q(αi, ᾱi) =
N

∑

i=1

yi(αi − ᾱi) − ǫ

N
∑

i=1

(αi + ᾱi) −
1

2

N
∑

i=1

N
∑

j=1

(αi − ᾱi)(αj − ᾱj)K(xi, xj)

s.t.
∑N

i=1 yi(αi − ᾱi) = 0
0 ≤ αi ≤ C i = 1, . . . , N
0 ≤ ᾱi ≤ C i = 1, . . . , N

(4)
where ǫ and C are arbitrarily chosen constants, and K(xi, xj) is the inner-product kernel

K(xi, xj) = φ(xi)T φ(xj)

defined in accordance with the Mercer’s condition [23]. In Table 2 we report three widely-used
types of kernel functions. Once we solve problem (4), we use optimal values αi, ᾱi to determine
the approximating function:

f(x,w) =
N

∑

i=1

(αi − ᾱi)K(x, xi).

We define support vectors as those data points for which we have αi − ᾱi 6= 0. Parameters ǫ

and C control in some way the machine complexity. Anyway, complexity control in nonlinear
regression is a very tough task and still represents an open research area.

4 Dimensionality Reduction Techniques

Learning Machine performance can be highly improved if some kind of preprocessing is applied
to the raw data. In fact, a reduction in the input dimensionality can offset the effects of the
curse of dimensionality : a learning machine with fewer inputs has fewer weight parameters to
be estimated and owns better generalization properties.
Dimensionality Reduction is justified from the fact that the actual dimension may be larger than
the intrinsic dimension (i.e. the minimum dimension that explains more the non-random varia-
tion in the population data). Then, the goal of Dimensionality Reduction is to transform input
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data into a reduced representation set of features, while keeping as much relevant information
as possible.
In this section, we describe two different dimensionality reduction techniques: Principal Com-

ponent Analysis and Nonlinear Principal Component Analysis.

4.1 Principal Component Analysis

The principal component analysis, also known as Karhunen Loève Transformation, is a dimen-
sionality reduction technique, which acts as a linear transformation of the original space into a
new space of smaller dimension, while accounting for as much of the variability in the data as
possible.
PCA in practice makes a projection along the directions where the data varies the most. These
directions are determined by the eigenvectors of the covariance matrix corresponding to largest
eigenvalues (see e.g.[5]). Moreover, eigenvalues are important because their magnitude can be
used to estimate the intrinsic dimension of the data. Indeed, if r eigenvalues have a magnitude
much larger than the remaining ones, it can be assumed r as the true dimension of the data.
Obviously, a linear technique is only able to catch linear correlations between variables. This is
the reason why, when complex relations arise, this method usually overestimates the intrinsic
dimension and fails to provide a compact representation of the data.

4.2 Nonlinear Principal Component Analysis using Autoassociative Neural

Networks

When the phenomenon to be represented is highly complex, a general nonlinear mapping be-
tween the original variables and the new ones is considered, and Nonlinear Principal Component

Analysis [17] is used.
NPCA ca be implemented using a cascade of two artificial neural networks: the first one to ap-
proximate a function G(x), which maps the original space in the reduced space, and the second
one to approximate its inverse mapping F (y).
As G(x) and F (y) are unknown, the outputs of the training set for the first network are not
available as well as the inputs for the second network. Then, a supervised learning of such net-
works is not possible. The idea is to use the outputs of the first net as the inputs for the second
one. So, we obtain a new net given by the concatenation of the two networks. This network
is usually called autoassociative network (see figure 4). Once the autoassociative network is
trained, we use the first subnet to project the original space into a smaller space.
However, NPCA presents some drawbacks. First of all, autoassociative network has at least 4
layers, so that the learning phase becomes very difficult as the dimension of the space gets large.
Secondly, despite an efficient trial and error, there is no way to decide the number of principal
components. Moreover, the method does not explicitly provide a parameter (like eigenvalues in
conventional PCA) to measure the contribution of each principal component to the data repre-
sentation.
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Figure 4: Autoassociative Neural Network.

5 A New Model for Path Loss Prediction

Learning machines, which represent a very powerful tool for solving regression problems, can be
efficiently applied for obtaining a reliable prediction of wave propagation. As highlighted in [1],
the key aspect when dealing with learning machines is the choice of the inputs.
In macrocellular models [16, 24], propagation loss is calculated as the sum of the free space
path loss (L0) and an attenuation term (αbuildings) which takes into account the effect of the
buildings:

L(db) = L0 + αbuildings = 32.4 + 20 · log(d) + 20 · log(f) + αbuildings, (5)

where d is the radio-path length (in km) and f is the radio frequency (in MHz). The attenuation
term depends on several parameters, such as height of base station and receiver, distance between
consecutive buildings, height of buildings, etc.
When designing our model, we need to use these parameters as inputs of our learning machine.
In our approach the path from transmitter to receiver is divided into n intervals (n is set by
user). For each interval the highest building is selected as the main obstacle and its features are
included into the input vector (see Fig. 5). Inputs are divided into two groups:

1. global inputs: inputs related to the global path (i.e. distance between transmitter and
receiver TrxRx, portion through the buildings ptb);

2. interval inputs: inputs related to each interval i of the path (i.e. height hi, thickness li,
distance from transmitter di).

Then the total number of inputs used (Itot) is directly related to the number n of intervals:

Itot = 2 + 3 · n.

The portion through the buildings is defined as the portion of the straight line drawn between
transmitter and receiver extending through the buildings (see Fig. 6).
However, when calculating the propagation loss, we do not consider the absolute height of the
buildings, but their height relative to transmitter and receiver. Hence, the heights relative to
the straight line linking transmitter and receiver are selected as inputs. In other words, if there
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is no building exceeding this straight line, then there will be no obstacle to take into account.
After the input vector is generated, a dimensionality reduction technique (i.e. PCA, nonlinear
PCA) is used for extracting a new vector of smaller dimension (that carries as much as the
information possible). The new vector is given to a suitably trained learning machine (i.e ANN,
SVM) that determines the propagation path loss.

T r x R x

1 2 3 4

d 1 d 2
d 3

d 4

l 1

h 1 h 2

h 3
h 4

l 2 l 3 l 4

n = 4

Figure 5: Interval Inputs. height hi, thickness li, distance from transmitter di.

T r x R x

l 1 l 2 l 3 l 4

p t b = ( l 1 + l 2 + l 3 + l 4 + l 5 ) / T r x R x

l 5

T r x R x

Figure 6: Global Inputs. Distance Trx-Rx (TrxRx ); portion through the buildings (ptb).

6 Computational Experiments

In order to test the performance of our model, we used measurements from a campaign carried
out in Munich (Germany). All measurements correspond to a frequency of 947 MHz. The
transmitter ground altitude is 515m, the transmitter and receiver heights above ground are re-
spectively 13m and 1.5m (see [9] for further details).
The dataset, composed of 2356 points, was split into two parts. 2000 points were used for train-
ing the selected learning machine; the remaining 356 points were used to evaluate the model.
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Implementation details

1. Algorithms for dimensionality reduction techniques were implemented using Fortran 90 ;

2. SVMs were trained using LIBSVM A Library for Support Vector Machines, developed by
the Machine Learning Group at National Taiwan University (see [11] for the details). The
kernel selected for training SVMs was the radial basis one. The parameters C and σ have
been determined by a standard cross-validation procedure;

3. A Multilayer Perceptron with 2 layers (a hidden layer with hyperbolic tangent transfer
functions and a linear ouput layer) was chosen as architecture of the network for predict-
ing the path loss. A standard cross-validation procedure was used for determining the
architecture of the network (i.e. number of neurons in the hidden layer). A Fortran 90

implementation of L-BFGS, a Quasi-Newton method with limited memory [3, 25], was
used for training the networks.

All the experiments were carried out on Intel Pentium 4 3.2 GHz 512 MB RAM.

Results

In Table 3 we report the results obtained for both SVM and ANN, in terms of the mean squared
error (MSE), using no dimensionality reduction. We indicate with i the number of intervals
chosen for the model, and with n the number of related inputs. These preliminary results show
the effectiveness of the learning-based approach. Furthermore, as we can easily notice analyzing
the table, ANNs has slightly better performance than SVMs.
In Table 4-6 we report the results obtained for both SVM and ANN, in terms of the mean
squared error, using PCA and nonlinear PCA over 5, 10 and 20 intervals dataset respectively.
We indicate with n the number of features extracted from the original input vector. The
results highlight the ability of the model that combines dimensionality reduction techniques and
learning machines in reducing the original mean squared error. Moreover, learning machines
trained over PCA-compressed data generally grant better performance than those ones trained
over NPCA-compressed data. The best result is obtained with ANNs trained using 20 intervals
PCA-compressed data with 50 extracted features (see Fig. 7).

i n SVM ANN

5 17 60,36 60,25

10 32 63,04 62,16

20 62 69,92 66,81

Table 3: Results obtained for SVM and ANN using no dimensionality reduction.
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5 Int SVM ANN

n PCA NPCA PCA NPCA

5 58,11 71,33 52,66 79,7

10 57,62 67,36 61,15 54,34

15 61,03 64,29 62,30 65,14

Table 4: Results obtained over 5 intervals for SVM and ANN using dimensionality reduction techniques.

10 Int SVM ANN

n PCA NPCA PCA NPCA

5 65,26 109,95 61,70 103,77

10 56,88 56,88 59,98 53,25

20 60,80 63,68 54,34 68,99

30 62,13 62,18 77,84 78,15

Table 5: Results obtained over 10 intervals for SVM and ANN using dimensionality reduction techniques.

7 Conclusions

In this work we have developed a new approach for the prediction of the path loss in an ur-
ban environment based on dimensionality reduction techniques and learning machines. Tests
were designed in order to evaluate the effectiveness of dimensionality reduction in improving the
path loss prediction accuracy as well as to compare performances of SVMs and ANNs on the
regression problem. The ANN classifiers yielded slightly better results than the SVM classifiers.
Furthermore, using dimensionality reduction before the prediction step led to a significant im-
provement of the learning machine accuracy. PCA-based prediction models generally granted
better performance than NPCA-based ones.
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