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Abstract

This report describes a preliminary study on modeling and control of parafoil and payload systems with the twofold
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ers able to accomplish long-range delivery or monitoring tasks. Three different models of decreasing complexity are
derived and their accuracy compared by simulation.
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1 Introduction

This report describes the ongoing research on modeling and control of paragliders at the DIS Robotics Laboratory. The
objective of this research is twofold: to develop the hardware and software tools necessary to perform automatic test
for paragliders certification and to devise a robotized paraglider able to accomplish long-range delivery or monitoring
tasks. The systems considered here are composed by a parafoil and a payload and they can be controlled by means of
flap located at the tail of the canopy. Several approaches can be used to describe the dynamics and the aerodynamics
of the parafoil. In many works the system is described as a 6 degrees of freedom (DoF) rigid system, including three
inertial position components of the system mass center as well as the three Euler orientation angles of the parafoil
and payload system [1]. Redelinghuys used a 8 DoF model: six for the air vehicle and two relative rotations for the
parafoil, obtained by developing a quasi-Hamiltonian formulation of the equations of motion [2]. The aerodynamic
forces and moments acting on the system can be computed using proper coefficients which depend on the canopy
(dimension, shape of the profile, etc.). Schroeder Iacomini and Cerimele developed a database for longitudinal and
lateral directional aerodynamic, analyzing data collected during several large parafoil drop tests conducted by NASA
[3, 4]. The NASA Johnson Space Center built a 4200 ft? parafoil for the U.S. Army Natick Soldier Center to
demonstrate autonomous flight using a guided parafoil system to deliver 10,000 Ibs of useable payload. The parafoil
system, simulation results, and the results of the drop tests are described in Stein et al. [5].

The models proposed here are: a 9 DoF model based on Newton-Euler approach, useful for parafoil certification
tests, and a 6 DoF model used for planning and control design.

2 A 9 DoF model of a parafoil and payload system

In the model developed in this section, 3 DoF are used to describe the inertial position of the joint point, and three
Euler angles for the parafoil and the payload describe their attitude motion. The system is treated as a multibody and
reaction forces are exerted at the joint. Reactions are dynamical unknown and have to be determined. Aerodynamic
drag and weight act on the payload, while on the parafoil aerodynamic forces (lift, drag, sideslip force) and moments
(rolling, pitching, yawing), apparent forces and moments are considered. Moreover a spring damper mechanism at the
joint is assumed to model the resistance to twisting of the coupling joint.

In the following the common shorthand notation for trigonometric function is employed, where sin o« = s, cosa =
Co,tana = t,.

2.1 System kinematics

The variables used are the three inertial coordinates of the joint X, plus three Euler angles for the canopy and the
payload. The kinematic equations can be easily written by integrating the velocity to obtain the position and by
determining the derivatives of the Euler angles from the angular velocity w:
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The angular velocity w;, and w,, are expressed in the payload and parafoil body fixed reference frame, respectively.
Position, velocity and acceleration of parafoil and payload are kinematically derived from the data of the joint and the
information related to the attitude and the angular velocity of the bodies, as detailed in the following.



Figure 1: Frames of reference.

2.1.1 Kinematics of the payload

The position of the CG in the body fixed reference frame can be obtained as the sum of the joint’s position, properly
projected onto the body fixed reference frame, and the relative position between the CG and the joint (which is a
constant vector since the body is assumed to be rigid):

Xy =Ty Xc+ X

where X is the vector from C to the CG of the payload in the body fixed reference frame and 7}, is the rotation matrix
from inertial to body fixed reference frame
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The velocity is the sum of the traslational and rotational velocity:

Vo =T Ve +wp A Xy = TpVe + Qe X

being
0 —wp(3)  wp(2)
Q= | w(3) 0 —wp(1)
—Wp (2) wb(l) 0

Deriving again the acceleration is obtained:

ap = TyVe + Q0% Xep + B Xep = Ty Ve + Q0% Xep — Repp

being
0 —Xu(3)  Xau(2)
Ry =1 Xe(3) 0 —Xop(1)
—Xw(2)  Xep(1) 0



2.1.2 Kinematics of the parafoil

Analogously to what said for the payload, position, velocity and acceleration of the CG of the parafoil are written in
the parafoil body fixed reference frame:

Xp =T, X+ Xep
where X, is the vector from C to the CG of the parafoil in the body fixed reference frame and 7T}, is the rotation matrix

from inertial to body fixed reference frame
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The velocity of the parafoil is:
Vp =TpVe+ QpXep

and deriving again with respect to the time the acceleration is obtained

ap = TPVC + Q0 Xep — Repwp

being
0 —wp(3)  wp(2) 0 —Xep(3)  Xep(2)
Q, = wp(3) 0 —wp(1) Rep = Xep(3) 0 —Xep(1)
—wp(2)  wp(1) 0 —Xep(2)  Xep(1) 0

The acceleration expressed as function of the joint acceleration, the angular acceleration and the angular velocity is
used to write the dynamics of the system using a multibody approach.

2.2 System dynamics
2.2.1 Dynamics of the payload
The equation of motion for the payload can be written:
Myay, = F4 + W° — T, Fr

where F§ is the aerodynamic force, W is the weight force and FF, is the reaction exerted at the joint, expressed in
the inertial reference frame, which are projected onto the body fixed reference frame by means of 7},.
The only aerodynamic force acting on the payload is the drag, which can be computed as

1
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CbD =Cp, + CDQCY(%-
The weight forces has to be projected onto the body fixed reference frame
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Finally, bringing all the known terms to the right, the equation of motion can be rewritten as:

MyTyV, — MyRepin, + ToFr = F§ + W° — MyQu Q% X op.-



The balance of moments is

Lywp +wp ANpwy = M.,— Xpe NTpFr
Iywy + Qplpwy, = M.+ RpTpFR

where M, is the resistance to twisting of the coupling joint and R.;7} is the moment generated on the CG due to the
reaction forces.
The resistance to twisting of the coupling joint can be modeled as a spring damper mechanism [6].

0
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The angles 1/31, and v, are the modified Euler yaw angles of the parafoil and payload that come from a modified

sequence of rotations where the Euler yaw angle is the final rotation. 1, and v, and their derivatives can be related to
the original Euler angles:
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Taking all the known terms to the right, the rotational equation of motion becomes:

Iywy — Ry Ty Fr = Me — QpLpwy.

2.2.2 Dynamics of the parafoil

The equation of motion for the parafoil can be written as:
Mya, = F§ + Fopp + WP =T, Fg

where F'} is the aerodynamic force, W? is the weight force, F,,, is the vector of apparent forces and —7T, F' is the
projection of the reaction forces, with opposite sign with respect to the reactions acting on the payload, onto the body
fixed reference frame.

The aerodynamic force contains lift and drag:

1 e ] v,(1)
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The lift and drag coefficient C, and C%, depend on the angle of attack av, = tan=*(V,,(3), V,,(1)).
Cr = CLO + CLQOép
Ch =Cp, + C’D(,Oé?,

The weight forces has to be projected onto the body fixed reference frame
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Fopp is the vector of apparent force exerted by the fluid on the body: when a body moves in a fluid it sets that fluid in
motion thus creating an additional field of fluid momentum and energy surrounding the body.

Fopp = —Mpa, —wy A MpX, = —MpT, Ve — MpQpQp X ep + Mp Repiop — QMp(TyVe 4+ Q,X.)

The apparent mass M can be computed using the formulas given by Lissaman and Brown [7]:

A 0 0
Mrp=|0 B 0|. 3)
0o 0 C
The terms A, B, C are computed as follows
T 2 8 3
ka = 0.8481 A = kaptb 1+§a
kp o= 03397 B=kpp[t+20%(1—1)]c
AR m 9
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b
being AR = - the aspect ratio and a the high of the arc in the mid point (when the canopy is arching the effective
c

length from the span b to the arc length of the canopy increases).
Finally, bringing all the known terms to the right, the equation of motion is obtained as:

(Mp + MF)Tch - (Mp + MF>R0pwp - TpFR = Fﬁ + WP — (Mp + MF)QPQPXCP - QPMF(TPXC + QPXCP)'
The balance of moments is
Ly + Qplyw, = MY + My, — T,T) My — Xep AT, Fr

where MY is the aerodynamic moment, M, is the moment generated by the apparent forces, R.,T, F is the moment
generated on the CG due to the reaction forces.
The aerodynamics generates rolling, pitching and yawing moments:

0
b2wp( b
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1 2
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The vector of apparent moments can be computed as
Mapp = _Ipr — QpIpr - Vp ANMpV, = —IFd}p - QpIpr - EpMFVp (5)
being
0 =%B) V2
Sp= Vp(3) 0 V(1)

—Vu(2) V(1) 0

As for the apparent masses, the apparent moment of inertia are computed using the formulas given by Lissaman and
Brown [7]:

I 0 O
Ir = 0 Ip O
0 0 I¢c



For a planar canopy the terms I 4, I, Ic are defined as follows

* _ AR A 213
kA = 0055% IA = kApC b

T A _ gk A m 2,2
Ky = 00308 L= kppelh 1+ =(1+ AR)ARa%
ki, = 0.0555 Ic = kzpt?b® (1+8a?).

As done previously, it follows that

(Ip + Ip)wp + Rep T, Fr = MY — TpTf M, — Q,(I, + Ip)w, — E,MEV,,.

2.2.3 Effect of flaps deflection on the aerodynamics

Beside the angle of attack, the aerodynamics coefficients also depend on the flap deflection. The two flaps located at
the tail of the parafoil, on the sides, can be deflected only in one direction: if they are both deflected of the same angle,
then an increase of lift and drag occur, while the efficiency decreases. If the deflection of the flaps is asymmetric,
then there is a variation of the rolling and yawing moments, which make the system turn. Such behavior can be
model by introducing the terms symmetrical flaps deflection 65 = min(dzcf+, drign:) and differential flaps deflection
611 = (SLeft - 6Right-

0, and &, influences both longitudinal and lateral aerodynamics coefficients. The variation of C';, and C'p is always
positive, while the moment is positive when the left flap is more deflected than the right and vice versa.

Therefore the variation of the flap determines a variation of aerodynamic forces and moments:

[CLéuv;D(g) - CDaa V;D(l)] Sign((sa) CLss VP(S) - OD(SS Vp(l) [ 5

1 ~ ¢ 9
AFY = 508, V| ~C,, Vy(2)sign(da) —Cp,, Vo(2) 3 ] =5k { Js } '
[—ClLs, Vo(1) = Oy, Vp(3)] sign(da)  —C,, V(1) = Cy, Vi (3)

(6)
Only the asymmetric flap deflection acts on the moments, producing a rolling and yawing moment variation:
Ci. b / t 0
1 %a
AMP = 5ps,,|vp|2 0 0 {ga } = Syr { g“ } (7)
Cns, b/t 0 5 8

2.2.4 Dynamic equations of motion

The dynamics equations derived for the payload and the parafoil can be written in a matrix form as follows:

(Mp + MF)TP _(Mp + MF)RCP 0 _Tp Ve
0 Ip + I 0 RCpr Wy B
MyTy, 0 —MyR.p Ty Wy a
0 0 I —R, Ty Fr
FY+W, — (M, + Mp)Q,Q,Xcp — QMp(T,Ve + Q,X.,) Spr
MY — TprTMC — QI + Ip)wp — E,MFV, Snp 0
FY 4 W, — My X oo 5,
]\4'c — QbIbwb 0
which can be rewritten as .
Ve 5
Al a | =B+S [ 5‘1 ] .
Wy 8

Finally, inverting the matrix A, it follows that

V. 5
W :A—lB+A—1S[ 5“ ] =D + Gu.
(,(.)p S



2.3 Simulation results

A Matlab code has been developed to simulate the 9 DoF model here described. In Tab. 1 the characteristics of
payload and parafoil are reported, while the parafoil and payload aerodynamic coefficients are reported in Tab. 2.

’ \ Payload \ Parafoil ‘
Mass [kg] 135 13
Geometry [m] 05x05%x05|7%x3x03

[b x ¢ xt]
Surface [m?] 0.5 21
Distance from joint [m] 0.5 7.5

Table 1: Physical characteristics of the multibody system

C, | 04 [ CL 2

Cp, | 015 | Cp, | 1
C, | 01 | G, |-005
Cug | 2 || Coy | 0018

Cpn. | 007 || Cr. | 02
Cr,, | 00001 | Cr, | 021
Cp,, | 00001 || Cp, | 03

Ci,. | 0.0021 | C,,. | 0.004

NS,

Table 2: Parafoil and payload aerodynamic coefficients

The moment of inertia of the payload and parafoil are given by the diagonal matrices:

v + 2} 0 0 b + 2 0 0
I, =5 0 xi + 27 0 I, =752 0 2+ 2 0
0 0 zl+y? 0 0 b+

The maneuver simulated is characterized by initial altitude of 5000 m, starting at rest. Initial angular velocities are
equal to zero both for payload and parafoil, as well as the Euler angles.

If the system is left in free flight, it glides with a constant glide angle which depends on the geometry and aero-
dynamic characteristics of the sail. The efficiency, that is the ratio between lift and drag, remains constant. If the
flaps are deflected, the glide angle increases since the efficiency of the canopy decrease. Fig. 2(a) shows a comparison
between two cases: (i) the flap are never deflected; (ii) the flaps are both deflected of 20° after 50 s. As the flaps are
deflected, there is a decrease of the efficiency which goes under a transient and then stabilizes. An increase of the glide
angle, which means a higher rate of descent, as flaps deflection is increased is shown in Fig. 2(b), and a variation of
the angle of attack with flaps deflection in Fig. 2(c), while the sideslip angle remains equal to zero if the flap variation
is symmetric (i.e., 5, = 0) as shown in Fig. 2(d).

The effect of asymmetric flap deflection is to induce a rolling and, consequently, a yawing moment on the system.
If a constant d,, is commanded the center of mass performs a spiral motion. If together with §, a symmetric deflection
ds is commanded, the system goes down faster while turning. As a consequence the radius of the spiral is smaller.
Fig. 3 shows a comparison between the trajectories obtained with §; = 0 and §5 = 20° ans d, = +20° (the left flap is
deflected of 20° while the right flap is in the nominal configuration) after 50 s in both cases.

Fig. 4 shows the influence of the payload motion on the path of the center of mass when only §, = +20° is
commanded after 50 s. Figure 4(a) reports the XY trajectory of the system when the complete model is considered,
while Fig. 4(b) reports the evolution in the XY plane when the torsion exerted at the joint and the drag acting on
the payload are neglected. The disturbance induced by the payload on the center of mass motion appears as a drift
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on the XY plane. The influence of the payload twisting on the overall trajectory cannot be determined if a 6 DoF is
considered instead.

The motion in the tridimensional space is shown in Fig. 5. The system performs a spiral motion starting at t=50 s.
The radius of the spiral depends on the asymmetric flap deflection: as J, increases, the radius decreases.

The attitude behavior relative to the spiral motion is shown in Fig. 6. The roll angle has a step variation as the flap
are deflected (see Fig. 6(a)), then its value oscillates about an average value. The pitch angle has small oscillations
that persist if the complete model is considered (see Fig. 6(b)) when the yaw angle varies with flaps deflection.

3 A 6 DoF model of a parafoil and payload system

3.1 Kinematics

The state vector includes in this case the inertial position of the global center of mass (CM) X,,, the velocity of CM
in the body fixed reference frame V.’ , the Euler angles and the angular velocities.

cm?

Figure 7: Frames of reference.

The kinematic equations can be easily written by projecting into the inertial reference frame and integrating the
velocity to obtain the position and by determining the derivatives of the Euler angles from the angular velocity w:

Xem = TaVen

¢ 1 sety  coly

0 = 0 ¢ -S54 | w.
1/) 0 $¢/CQ C¢/CQ

The angular velocity w is expressed in the body fixed reference frame.
The velocity of the payload’s center of mass V}, and canopy’s center of mass V), have to be determined in order to
compute the aerodynamic forces acting on the system:

‘/b = V;bm + Qng
Vo = Vcbm +QXgp
where
—w(3) w2
Q=1 w3 0 —w(1)



and X, and X, are the vectors from the global to the payload’s and canopy’s center of mass, repsectively. The
acceleration of the center of mass is

Ao, = Vcbm +wA Vcl;n = Vclin + QVCbm.

3.2 Dynamics
3.2.1 Equilibrium of forces

The equation of motion for the center of mass can be written as:
Maem = WP+ F% + F4 + Fopp

where M is the total mass, W is the weight force, F; and F} are the aerodynamic forces acting on the canopy and
the payload, respectively, Iy, is the vector of apparent forces.
The weight forces has to be projected onto the body fixed reference frame

—sp
Wb = (mb + mp)g S¢Co
CypCo

The aerodynamic forces ng and F} acting on the payload and on the canopy can be computed respectively as
in (1) and (2).
Fopp is the vector of apparent force exerted by the fluid on the body:

Fapp = —MFCL—W/\MF‘/;, = —MFG—QMFVP.

The apparent mass M can be computed as in (3).
Rearranging, the equation of motion becomes

(M + Mp)VE, =W+ F2 + FY — QMpV, — (M + Mp)QV?, .

3.2.2 Balance of moments

The balance of moments about the center of mass is
I+ Qlw = M5 + Mapp + Xgp A F 4+ Xgp A Fapp + Xgp A G

where MY is the aerodynamic moment, M, is the moment generated by the apparent forces, X, A F4, X, A Fyp)
and Xy, A FY are the moments generated on the center of mass due to the aerodynamics and apparent forces. It is
worth noting that
P _ p
Xgp NFy = RgpFy

being
0 —Xgp(3)  Xgp(2)
Ryp = Xgp(3) 0 —Xgp(1)
_Xgp(2) Xgp(l) 0

Analogously for X4, A Fyyp, = ngpMFVCbm — RgpQAIMFpV, and Xgp A F}Z‘ = Rngf;-

The aerodynamics generates rolling, pitching and yawing moments M’ given by (4). The vector of apparent
moments My, is computed as in (5).

Finally, it follows that

RypMpV2 + (I + Ip)o = M% — E,MpV, + RypF% — RypQMpV, + Ry Fh — QI + Ip)w.
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3.2.3 Dynamic equations of motion

The dynamics equations derived for the payload and the parafoil can be written in a matrix form as follows:

M+Mr 0 van] {Wb+F£+F2—QMFVp—(M+MF)QV?

RpMp I+1p || o M — Z,MpV, + RypF”, — RypyQMpV, + Ry Fl — QI + Ip)w |

+ SFf 5(1
Syp + RygpSpr s
where Sp» and Sy» are given respectively by eq. (6) and eq. (7).
The above equation can also be written as

b
a| V| =mes| 3]
w s
and, by inverting the matrix A, it follows
b
[ ng ] =D+ Gu
w
being
D A7'B
G = A7'[ Spp Swur+RepSer ]

4 9 DoF vs 6 DoF model

In this section we analyze the different behavior of the two models developed in the previous sections by comparing
the trajectories obtained both on steady state trajectories and in performing agile maneuvers (e.g. the maneuvers
prescribed for certification tests). This analysis will be used in deriving the simplified model of the next section.

4.1 Free dynamics

When none of the two flaps is deflected, the 3D system cartesian path is a straight line for both the 9 DoF and 6 DoF
model if no resistance to twisting is induced between the parafoil and the payload. Figure 8 shows a comparison
between the cartesian path of a complete 9 DoF model with an initial relative yaw between the parafoil and payload
equal to 10° and a 6 DoF model with initial yaw angle equal to 10°. The “drift” from the straight line occurring for the
9 DoF case is due to the resistance to twisting at the joint between parafoil and payload induced by the initial relative
yaw (see also Fig. 9(c)). The effect of the resistance force at the joint can also be appreciated by looking at Fig. 9(a)
and Fig. 9(b): the convergence of roll and pitch angles to the steady state values is much more noisy for the 9 DoF
model.

4.2 Spiral

A spiral motion is obtained by applying a constant J,. Figure 10 shows the path of the system starting at rest with no
deflection of the flaps for 50 s after which a §, = 20° is applied. The projection on the XY plane shows how the two
models have a different transient behavior. The 6 DoF model presents a delay in turning and converging to the spiral
motion. The behavior is very different at steady state as well, since the 6 DoF model does not present any payload
influence resulting in a periodic cartesian motion. The influence of the twisting couple at the joint on the 9 DoF model
produces a drift on the XY plane projection.

4.3 Roll perturbation

The response of the system to an impulsive command of ¢, is an important parameter in sail certification tests. As in
the previous cases, Fig. 12 and Fig. 13 show how the disturbance due to the payload motion induces a drift in the yaw
angle (see Fig. 13(c)) resulting in a cartesian path different from that of the 6 DoF case.

14
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Figure 11: 9 DoF vs 6 DoF: Attitude variation for spiral motion.
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Figure 12: 9 DoF vs 6 DoF: 3D cartesian path when an impulse of §, is commanded.
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Figure 13: 9 DoF vs 6 DoF: Attitude variation when an impulse of §, is commanded.
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S A simplified 6 DoF model

For the pourpose of control design we have simplified the dynamics of the 6 DoF model by assuming that: (i) apparent
mass and inertia effects are negligible; (i7) moments of aerodynamic forces on the center of mass are negligible.
The resulting dynamics is

MV3, = W'+ Fj+Fi— MOV,
o = M5 —Qlo.

Figures 14—17 report a comparison with the 6 DoF complete model in the case of free dynamics and of spiral
motion.
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Figure 14: 6 DoF vs 6 DoF simplified: 3D cartesian path in the absence of flap deflection.
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Figure 15: 6 DoF vs 6 DoF simplified: Attitude variation in the absence of flap deflection.
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Figure 16: 6 DoF vs 6 DoF simplified: 3D cartesian path for spiral motion.
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Figure 17: 6 DoF vs 6 DoF simplified: Attitude variation for spiral motion.

6 Conclusion

In this report we have derived three models of a parafoil and payload system developed with the objective of devising
tool useful for sail certification and for the development of autonomous paragliders able to perform long-distance
missions. In view of the different problems to be faced in future work, we gradually reduced the complexity of the
models while keeping the main motion characteristics of the complete model. This preliminary study led to the design
and analysis of the line tracking controller developed in [8].
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