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In this work we define a block decomposition Jacobi-type method for nonlinear
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1 Introduction

Let us consider the problem
min f(x)

x ∈ F (1)

where
F = {x ∈ IRn : aT x = b, l ≤ x ≤ u}

and a, l, u ∈ IRn, with −∞ ≤ l < u ≤ +∞, b ∈ IR. We allow the possibility that some
of the variables are unbounded by permitting both li = −∞ and ui = ∞ for some
i ∈ {1, . . . n}.
There are many problems that can be formulated as special cases of problem (1).
In particular, training a Support Vector Machine (SVM) (see e.g. [19]) leads to a
problem of type (1) where f(x) is a convex quadratic function, b = 0 and ai ∈ {−1, 1},
0 = li < ui = C with C > 0 for i = 1, . . . , n.
Another problem of type (1) is the so called Standard Quadratic Programming problem
(StQP) where f(x) is an indefinite quadratic form, b = 1 and ai = 1, li = 0, ui = ∞
for all i = 1, . . . , n. StQP problems arises, for example, as formulations of maximum
clique problems (see e.g.[16, 2]).
In this paper, for the solution of Problem (1), we are interested in decomposition
methods, which involve the solution of subproblems of smaller dimensions in place of
the original one. In literature, decomposition methods for unconstrained problems can
be roughly classified into two main classes: Gauss-Seidel methods (see e.g. [1, 6, 7, 3])
and Jacobi methods (see e.g. [6, 1, 5]). Gauss-Seidel methods define the new iterate
xk+1 by sequentially updating the variables. On the other hand, Jacobi methods define
the new iterate xk+1 by simultaneously updating all the variables.
Convergence results for these two classes of methods have been proved for unconstrained
problems in e.g. [6, 1, 5]. For constrained problems, the block Gauss-Seidel method has
been proved to be convergent when the feasible set is the Cartesian product of closed
convex sets [7]. The presence of the linear constraint in problem (1) does not allow to
use such results for defining decomposition methods. However, in the context of SVM
training, much effort has been devoted to the definition of convergent decomposition
schemes that fit in the class of block Gauss-Seidel-type methods. In this decomposition
framework, starting from a feasible point, at each iteration k a subset W k ⊂ {1, . . . , n}
of indices of variables is chosen and the new iterate xk+1 is defined by updating only
the variables with indices belonging to W k. The choice of set W k at each iteration
plays a crucial role in proving convergence of the sequence {xk}. In particular, in most
decomposition methods for SVM problem, the indices in W k are selected on the basis
of the violation of the optimality conditions at xk (see e.g. [8, 9, 10, 11, 12, 13, 15, 17]).
In [14] a decomposition algorithm for Problem (1) has been defined that differs from
the other ones in that the selection rule does not require neither to apply any specific
ordering procedure nor to exploit information about the current iterate xk. Convergence
of the scheme has been proved under either the convexity assumption of the objective
function or by using a proximal point modification.
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In this paper, we define a block Jacobi-type convergent decomposition method for
problem (1) which makes use of a cyclic selection rule for W that falls in the rule
proposed in [14]. Up to our knowledge, this is the first attempt to extend a block
Jacobi-type iteration to the solution of constrained problems of type (1).

The paper is organized as follows. In Section 2, we introduce some notations and
definitions. In Section 3 we define the block Jacobi-type decomposition method for
Problem (1) which we call CoJac. The convergence properties of Algorithm CoJac
are studied in Section 4 under some general conditions on the search directions used.
Section 5 is devoted to the choice of directions that fulfill the conditions used in the
convergence analysis.

2 Notation and definitions

In this section we introduce some useful definitions and the basic notation that will be
used throughout the paper.
Given an index set W ⊂ {1, . . . , n}, we denote by W its complement with respect to
{1, . . . , n}, that is, W = {1, . . . , n} \W . Given a vector v ∈ IRn and an index set W ,
we denote by vW ∈ IR|W | the subvector of v made up of the component vi with i ∈ W .
Further, for the sake of simplicity we use the notation ∇W f for (∇f)W .
We denote by W = {W 1, . . . , WM} ⊆ 2{1,...,n} a family of index sets of cardinality
q1, . . . , qM .
The set of feasible directions at a point x ∈ F is the cone

D(x) = {d ∈ Rn | aT d = 0, di ≥ 0, ∀ i : xi = li, and di ≤ 0, ∀ i : xi = ui}.
Next we define a stationary point for Problem (1).

Definition 2.1 (Stationary point) A point x∗ ∈ F , is stationary for Problem (1) if

∇f(x∗)T d ≥ 0 for all d ∈ D(x∗).

Given a feasible point x̃, and a subset W ⊂ {1, . . . , n}, let us define the subproblem
PW (x̃) as

min f(xW , x̃W )
xW ∈ FW (x̃)

(2)

where
FW (x̃) = {xW ∈ IR|W | : aT

W xW = b− aT
W

x̃W , lW ≤ xW ≤ uW }
At any feasible point x ∈ F , let us denote with DW (xW ) the set of feasible directions
at xW with respect to FW (x), that is

DW (xW ) = {d ∈ R|W | : aT
W d = 0, di ≥ 0, ∀ i ∈ W : xi = li, and di ≤ 0, ∀ i ∈ W : xi = ui}.

We introduce the definition of stationary points for Problem (2).

Definition 2.2 (Stationary point of PW (x)) Given x ∈ F and the corresponding
problem PW (x), a point x∗W ∈ FW (x) is stationary for PW (x) if

∇W f(x∗W , xW )T d ≥ 0 for all d ∈ DW (x∗W ).
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3 A constrained Jacobi-type algorithm

In this section we introduce a block Jacobi-type decomposition algorithm for Problem
(1). The iterate xk+1 is generated by using information on the simultaneous (approxi-
mated) minimizations with respect to the components of the vector. To be more precise,
let W = {W 1, . . . , WM} be a family of index sets which does not define necessarily a
partition of {1, . . . , n}, so that, differently from the block Jacobi-type method defined
in [6], W i ∩W j , with i 6= j, may be nonempty.
We require that the sequence be generated in such a way to satisfy

f(xk+1) ≤ min
W i

fk
refWi

where fk
refWi

are reference values for subproblems PW i(xk), i = 1, . . . , M . The reference
values could be obtained by performing exact minimizations with respect to each xW i ,
namely setting

fk
refWi

= min
xWi∈FWi

(xk)
f(xW i , xk

W i
),

but this could be a strict requirement, particularly when |W i| > 2 or the objective
function is not convex. Hence, following the idea in [14, 13] we relax this requirement
by asking only for a “sufficient reduction”, and the values fk

refWi
are obtained by means

of an Armijo-type LineSearch (LS) procedure along a feasible direction dW i at xk
W i for

i = 1, . . . ,M .
Now, we describe the Armijo-type linesearch scheme.
Given a feasible point x ∈ F , a set W ∈ W, and a direction dW ∈ DW (xW ), let
βF be the maximum feasible steplength along direction dW with respect to the bound
constraints. Namely, βF is such that

lW ≤ xW + βdW ≤ uW for all β ∈ [0, βF ],

and (since −∞ ≤ l < u ≤ ∞) we have that either βF = +∞ or at least an index i ∈ W
exists such that

xi + βFdi = li or xi + βFdi = ui.

Further, let βu > 0 be a positive scalar.
We report below the Armijo-type procedure Step length that returns the stepsize αW

along the direction dW .
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Procedure Step length(x,W, dW )

Parameter. γ ∈ (0, 1/2), δ ∈ (0, 1).

Data. x ∈ F , W ∈ W, dW ∈ DW (xW ) and β = min{βF , βu}.

Inizialization. If dW satisfies ∇W f(x)T dW ≥ 0, Return αW = 0;

otherwise set α = β.

While
(
f(xW + αdW , xW ) > f(x) + γα∇W f(x)T dW

)

Set α = δα

End While

Return αW = α.

The stepsize αW is zero if and only if dW does not satisfy the descent condition
∇W f(x)T dW < 0 at x.
The following proposition shows that Procedure Step length is well-defined.

Proposition 3.1 Let W ∈ W. Assume x ∈ F and dW ∈ DW (xW ). Then Procedure
Step length determines, in a finite number of iterations, a scalar αW such that

f(x + αW d) ≤ f(x) + γαW∇W f(x)T dW . (3)

Proof. The proof is quite standard and can be found e.g. in [1]. For the sake of
completeness, we report it in the appendix.

Now we are ready to define the decomposition algorithm CoJac.
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Constrained Jacobi-type (CoJac) Algorithm

Data. A point x0 ∈ F , and W = {W 1, . . . , WM}.

For k = 0, 1, 2, . . .

1. For i = 1, . . . ,M

choose dk
W i ∈ DW i(xk);

compute αk
W i by means of procedure Step length(xk,W i, dk

W i);
set yk

W i = xk
W i + αk

W id
k
W i .

2. End For

3. Choose xk+1 such that

f(xk+1) ≤ min
1≤i≤M

f(yk
W i , x

k
W i

).

End For

We point out the degree of freedom on the choice for the next iterate xk+1 in Algorithm
CoJac.
Convergence properties of the algorithm CoJac will be analyzed in the next section,
under quite standard assumptions on the feasible directions used in the procedure
Step length and on the rule for the selection of the family of index sets W.

4 Convergence results

In order to simplify the exposition, we first introduce an assumption on the behavior in
the limit of the directions used by the algorithm. This is a basic assumption that can
be satisfied by employing suitable methods for the computation of the search directions
dk

W .

Assumption 1 For a given working set W ∈ W, let {xk} be a sequence of feasible
points such that, for K ⊆ {0, 1, 2, . . .},

lim
k→∞,k∈K

xk = x̂.

Given a sequence {dk
W } such that dk

W ∈ DW (xk
W ) we have:

(i) a constant M > 0 exists such that ‖dk
W ‖ ≤ M for all k ∈ K;

(ii) if x̂ is not a stationary point for PW (x̂), then

lim sup
k→∞,k∈K

∇W f(xk)T dk
W < 0.
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Possible choices of directions satisfying Assumption 1 are reported and discussed in
Section 5.
From the definition of procedure Step length, when the set W ∈ W is held fixed, we
can state the following preliminary convergence result.

Proposition 4.1 Let {xk} ⊂ F be a sequence of feasible points converging to a given
point x̂. For a fixed W ∈ W, and every k, let dk

W ∈ DW (xk
W ) satisfy Assumption (1)

and
yk

W = xk
W + αk

W dk
W , (4)

where αk
W is computed by means of the Step length Procedure. Then the sequence

{yk
W }, is such that:

(i) f(yk
W , xk

W
) ≤ f(xk), for all k = 0, 1, 2, . . .

(ii) if
lim

k→∞

(
f(xk)− f(yk

W , xk
W

)
)

= 0 (5)

then x̂ is a stationary point for PW (x̂).

Proof. The proof is quite technical and is therefore reported in the appendix.

We stress the fact that {xk} is a given sequence that may not depend on Procedure
Step length in the sense that xk+1 is not necessarily defined on the basis of yk

W .
Now we report the main result regarding convergence of the CoJac Algorithm. As
standard in decomposition algorithms, we must require that the family of index sets
W satisfies a suitable rule. In particular we require that the family W satisfies the
following condition:

Pairwise Inclusion Property (PIP)1

For each pair {i, j} ⊂ {1, . . . , n}, there exists at least an ` ∈ {1, . . . , M} such that,
{i, j} ⊆ W `.

We observe that the definition of a family of index sets W satisfying Condition PIP
does not require any information about the current iterate and can thus be defined a
priori.

Proposition 4.2 Let the family of index sets W = {W 1, . . . , WM} satisfy condition
PIP. Let {xk} and {dk

W i} for each i = 1, . . . , M be the sequences defined by Algorithm
CoJac. Assume that, for each i = 1, . . . , M , sequences {dk

W i} satisfy Assumption 1.
Then, every limit point of {xk} is a stationary point for Problem (1).

Proof. The proof of the proposition depends on a number of technical results and is
therefore reported in the appendix.

1As an example, for n = 6 a possible family of index sets W with qi = 4 for all i satisfying condition
(PIP) is W = {W 1, . . . , W 3} with W 1 = {1, 2, 3, 4}, W 2 = {1, 2, 5, 6}, W 3 = {3, 4, 5, 6}.
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5 Search directions

In this section, for any fixed W h, h = 1, . . . , M , we report two well-known methods
for calculating a feasible direction dk

W h over a convex set satisfying Assumption 1. In
particular, we consider the Frank-Wolfe direction and the Projected Gradient direction.
First we report a useful theoretical result (whose proof can be found in, e.g., [14]) that
will be used in the section.

Proposition 5.1 Let {xk} ⊂ F be a sequence of feasible points converging to a point
x̃ ∈ F . Then, for sufficiently large values of k,

D(x̃) ⊆ D(xk).

5.1 Frank-Wolfe direction.

For a given W ∈ W and a feasible point xk, the Frank-Wolfe (F-W) direction is

dk
W = x̄k

W − xk
W ,

where x̄k
W is the optimal solution of the following linear programming problem

min
xW∈FW (xk)

∇W f(xk)T (xW − xk
W ) (6)

In the next proposition we show that the F-W direction is well defined and that the
desired properties stated in Assumption 1 hold.

Proposition 5.2 Assume that the feasible set F is compact. Let W ∈ W, {xk} be
a sequence of feasible points and {dk

W } be the associated sequence of F-W directions.
Then, sequence {dk

W } is well defined and the following conditions hold:

(i) for any k, dk
W ∈ DW (xk

W ) so that xk
W + dk

W ∈ FW (xk);

(ii) for any k, ∇W f(xk)T dk
W < 0 if and only if xk is not a stationary point for PW (xk);

(iii) for any k, ‖dk
W ‖ ≤ U for a given constant U > 0;

(iv) assume that
lim

k→∞,k∈K
xk = x̃,

where K ⊆ {0, 1, 2, . . .} and x̃ is not a stationary point of PW (x̃), then

lim sup
k→∞,k∈K

∇W f(xk)T dk
W < 0.

Proof. For any k, compactness of F implies that problem (6) admits a solution x̄k
W so

that dk
W is well defined. Point (i) follows by definition of dk

W .
By definition of dk

W , it holds that

∇W f(xk)T dk
W = ∇W f(xk)T (x̄k

W − xk
W ) ≤ ∇W f(xk)T d, ∀ d ∈ DW (xk

W ). (7)
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Hence, if xk is not a stationary point of PW (xk) we have that ∇W f(xk)T dk
W < 0 and

vice versa, so that point (ii) holds. Further, we observe that ‖dk
W ‖ = ‖x̄k

W − xk
W ‖ ≤

‖x̄k
W ‖+ ‖xk

W ‖ so that by compactness of F we have point (iii).
Now, let us relabel as {xk} the subsequence converging to a feasible point x̃ which is
not a stationary point of PW (x̃). Let d̃W ∈ DW (x̃W ) be a feasible direction such that

∇W f(x̃)T d̃W < 0.

For sufficiently large values of k, by Proposition (5.1), we have

d̃W ∈ DW (xk
W ),

and by continuity of the gradient

∇W f(xk)T d̃W < 0.

So that, using (7), we also get that for sufficiently large values of k

∇W f(xk)T dk
W ≤ ∇W f(xk)T d̃W < 0.

By taking the limit, we obtain

limsup
k→∞

∇W f(xk)T dk
W ≤ ∇W f(x̃)d̃W < 0, (8)

which finally proves point (iv).

5.2 Projected Gradient direction.

We recall that the projection PS(x) of a point x over a non-empty closed convex set S
is the solution of the following problem

min
y∈S

‖x− y‖.

The projection operator enjoys the following properties.

Proposition 5.3 The projection operator is continuous and not expansive. Further,
PS(x) is the projection of x over S if and only if

(x− PS(x))T (y − PS(x)) ≤ 0, ∀ y ∈ S. (9)

For a fixed W ∈ W and a feasible point xk, let us define P k
FW

as the projection operator
over FW (xk). We consider the following Projected Gradient (PG) direction

dk
W = x̄k

W − xk
W

where
x̄k

W = P k
FW

(xk
W − s∇W f(xk)) (10)

and s is a positive scalar.
In the next proposition we show that the PG direction is well defined and that As-
sumption 1 holds.
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Proposition 5.4 Assume that F is compact. Let W ∈ W, {xk} be a sequence of
feasible points and {dk

W } be the associated sequence of PG directions. Then, sequence
{dk

W } is well defined and the following conditions hold.

(i) for any k, dk
W ∈ DW (xk

W ) so that xk
W + dk

W ∈ FW (xk);

(ii) for any k, ∇W f(xk)T dk
W < 0 if and only if xk is not a stationary point for PW (xk);

(iii) for any k, ‖dk
W ‖ ≤ U for a given constant U > 0;

(iv) assume that
lim

k→∞,k∈K
xk = x̃,

where K ⊆ {0, 1, 2, . . .} and x̃ is not a stationary point of PW (x̃), then

lim sup
k→∞,k∈K

∇W f(xk)T dk
W < 0.

Proof. For any k, the point x̄k
W as in (10) is always defined and hence also dk

W .
Furthermore, by definition xk

W + dk
W = x̄k

W ∈ FW (xk) so that we get point (i).
By (9), x̄k

W satisfies

(xk
W − s∇W f(xk)− x̄k

W )T (y − x̄k
W ) ≤ 0, ∀ y ∈ FW (xk), (11)

so that, choosing y = xk
W , we obtain by simple manipulations

∇W f(xk)T dk
W ≤ −1

s
‖dk

W ‖2 ≤ 0. (12)

Recalling that xk is a stationary point of Problem PW (xk) if and only if

xk
W = P k

FW
(xk

W − s∇W f(xk
W )),

for any scalar s > 0, we have that dk
W = 0 if and only if xk

W is a stationary point of
Problem PW (xk). Hence point (ii) follows by (12).
Reasoning as in the proof of Proposition 5.2, we have also point(iii).
Assume now that {xk}K is a subsequence converging to a non-stationary point x̃ of
PW (x̃) and relabel it as {xk}. Let d̃W ∈ DW (x̃W ) be a feasible direction such that

∇W f(x̃)T d̃W < 0.

Using proposition (5.1) and the continuity of the gradient, we have, for sufficiently large
values of k, that

d̃W ∈ DW (xk
W ), (13)

and
∇W f(xk)T d̃W < 0. (14)
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Reasoning by contradiction, we suppose that point (iv) does not hold, namely

limsup
k→∞

∇W f(xk)T dk
W ≥ 0,

so that as result of (12)
limsup

k→∞
‖dk

W ‖2 = 0. (15)

By (13), for k sufficiently large, a value tk > 0 exists such that xk
W + td̃W ∈ FW (xk)

for all t ∈ [0, tk] and limk→∞ tk > 0. Hence a value t̄ > 0 exists such that the point
y = xk

W + t̄d̃W ∈ FW (xk), for all k sufficiently large. Substituting in (11) , we have
that

0 ≥ (xk
W − s∇W f(xk)− x̄k

W )T (xk
W + td̃W − x̄k

W ) = (−dk
W − s∇W f(xk))T (−dk

W + t̄d̃W ).

Rearranging the above inequality

∇W f(xk)T dk
W ≤ −1

s
‖dk

W ‖2 +
t̄

s
d̃T

W dk
W + t̄∇W f(xk)T d̃W

≤ −1
s
‖dk

W ‖2 +
t̄

s
‖d̃W ‖‖dk

W ‖+ t̄∇W f(xk)T d̃W

Taking the limit of the above inequality, using (15) and (14), we get the contradiction

limsup
k→∞

∇W f(xk)T dk
W ≤ t̄ limsup

k→∞
∇W f(xk)T d̃W < 0.

In [4] and [18] methods to obtain the projected gradient direction have been proposed.

Appendix

A Proofs of the convergence results

Proof of Proposition 3.1. If dW does not satisfy∇f(x)T dW < 0, the stepsize αW = 0
and the condition is obviously satisfied.
Assume now that dW satisfies ∇f(x)T dW < 0 and by contradiction that the algorithm
does not terminate. Hence, let d = (dW , dW ) with dW = 0, we can write

f(x + βδjd) > f(x) + γβδj∇f(x)T d for all j.

By applying the Mean Value theorem we have

∇f(x + θjβδjd)T d > γ∇f(x)T d for all j, (16)

with θj ∈ (0, 1). Taking limits in (16) for j →∞ we obtain

(1− γ)∇f(x)T d ≥ 0,
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which implies, together with the fact that γ ∈ (0, 1), that ∇f(x)T d ≥ 0, and this
contradicts the descent assumption on d.

Proof of Proposition 4.1. Point (i) easily follows from the definition of the Armijo-
type scheme and of yk

W in (4).
Now, let us consider point (ii). As a result of closedness of the feasible set F , the limit
point x̂ is feasible. By definition of Armijo-type rule, we have

f(xk)− f(yk
W , xk

W
) ≥ |αk

W∇W f(xk)T dk
W |,

which, by (5), yields
lim

k→∞
αk

W∇W f(xk)T dk
W = 0. (17)

Reasoning by contradiction, let us suppose that x̂ is not a stationary point. Then, by
Assumption 1, we have that

lim sup
k→∞

∇W f(xk)T dk
W < 0.

Let K ⊆ {0, 1, 2 . . .} be a subset of the iteration set such that

lim
k→∞,k∈K

∇W f(xk)T dk
W < 0, (18)

so that, for k ∈ K and sufficiently large, dk
W satisfies ∇W f(xk)T dk

W < 0. This implies
that, in the Armijo-type scheme, we have αk

W > 0 (for k ∈ K and sufficiently large).
Then, it follows from (17) that

lim
k→∞,k∈K

αk
W = 0.

Hence, by definition of Armijo-type rule, the initial stepsize will be reduced at least
once, so that, for k ∈ K and sufficiently large,

f(xk)− f(xk
W +

αk
W

δ
dk

W , xk
W

) < −γ
αk

W

δ
∇W f(xk)T dk

W .

By using the mean value theorem, we obtain from the above relation

−∇W f(xk + ηk αk
W

δ
dk

W , xk
W

)T dk
W < −γ

αk
W

δ
∇W f(xk)T dk

W , (19)

where ηk ∈ (0, 1).
Since {dk

W } is bounded by Assumption 1, we can find a further set of indices, that we
relabel again K, such that

lim
k→∞,k∈K

dk
W = d̂W and lim

k→∞,k∈K
xk = x̂

Hence, taking the limit in (19) for k →∞ and k ∈ K, it follows that

0 ≤ (1− γ)∇W f(x̂)T d̂W ,
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which, recalling that γ ∈ (0, 1/2), yields

0 ≤ ∇W f(x̂)T d̂W .

The proof follows by noting that the above inequality contradicts (18), that is,

lim
k→∞,k∈K

∇W f(xk)T dk
W = ∇W f(x̂)T d̂W < 0.

To prove the main convergence results of the paper we need to introduce some more
technical notation and preliminary results concerning problem (1).
Given a point x ∈ F let us define the following index sets

R(x) = {i : (xi < ui and ai > 0) or (xi > li and ai < 0)},
S(x) = {i : (xi < ui and ai < 0) or (xi > li and ai > 0)}.

Then, we denote by DRS(x) the set of directions di,j with i ∈ R(x) and j ∈ S(x),
namely

DRS(x) =
⋃

i ∈ R(x)
j ∈ S(x)

i 6= j

di,j .

Further, given indices i, j ∈ {1, . . . , n}, with i 6= j, we denote by di,j a vector belonging
to IRn such that

di,j
h =





1/ai, if h = i
−1/aj , if h = j
0, otherwise

In [13] it has been proved that for any feasible point x the set DRS(x) is a subset of
the set of feasible directions at x and that it contains the generators of D(x). The
following proposition (that also has been proved in [13]) gives a characterization of the
stationary points of Problem (1) using only the directions in DRS(x).

Proposition A.1 A feasible point x∗ ∈ F is stationary for Problem (1) if and only if

∇f(x∗)T di,j ≥ 0 ∀di,j ∈ DRS(x∗).

Now, given a subset of indices W and a feasible point x ∈ F , let us consider subproblem
PW (x). We denote by DW∩RS(x) the subset of feasible directions of DW (xW ) with
exactly two nonzero components, namely

DW∩RS(x) =
⋃

i ∈ R(x) ∩W
j ∈ S(x) ∩W

i 6= j

di,j
W . (20)

Now we are ready to prove Proposition 4.2.

13



Proof of Proposition 4.2. Let x̄ be any limit point of a subsequence of {xk}, i.e.,
there exists an infinite subset K ⊆ {0, 1, . . .} such that

lim
k→∞,k∈K

xk = x̄.

By contradiction, let us assume that x̄ is not a stationary point for Problem (1). By
Proposition A.1 there exists at least a pair (i, j) ∈ R(x̄)× S(x̄), and a direction di,j ∈
DRS(x̄) such that:

∇f(x̄)T di,j < 0. (21)

By Condition PIP on the family of working sets, we know that W h ∈ W, with
h ∈ {1, . . . , M}, exists such that (i, j) ∈ W h. Let us consider the subvector di,j

W h ∈
DW h∩RS(x̄), so that we have

∇W hf(x̄)T di,j
W h < 0, (22)

that is to say that x̄ is not a stationary point of problem PW h(x̄) as well. By construc-
tion, we have

f(xk+1) ≤ f(yk
W h , xk

W h
) ≤ f(xk)

so that the sequence {f(xk)}K is not increasing and thus converges to f(x̄). Hence, we
get that

lim
k→∞,k∈K

(
f(xk)− f(yk

W h , xk

W h
)
)

= 0. (23)

Then, using Proposition 4.1, we have that

∇W hf(x̄)T dr,s ≥ 0, ∀ dr,s ∈ DW h∩RS(x̄)

which, for di,j
W h , contradicts (22) and hence also (21), thus concluding the proof.
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