
New concave penalty functions for improving the
Feasibility Pump

Marianna De Santis
Stefano Lucidi
Francesco Rinaldi

Technical Report n. 10, 2010

New concave penalty functions for improving the
Feasibility Pump

M. De Santis, S. Lucidi, F. Rinaldi

Dipartimento di Informatica e Sistemistica
Sapienza Università di Roma

Via Ariosto, 25 - 00185 Roma - Italy

e-mail: mdesantis@dis.uniroma1.it
e-mail: stefano.lucidi@dis.uniroma1.it

e-mail: rinaldi@dis.uniroma1.it

Abstract
Mixed-Integer optimization represents a powerful tool for modeling many optimization problems arising
from real-world applications. The Feasibility pump is a heuristic for finding feasible solutions to mixed
integer linear problems. In this work, we propose a new feasibility pump approach using concave non-
differentiable penalty functions for measuring solution integrality. We present computational results on
binary MILP problems from the MIPLIB library showing the effectiveness of our approach.

Keywords. Mixed integer programming, Concave penalty functions, Frank-Wolfe algorithm,
Feasibility Pump.

MSC. 90C06, 90C10, 90C11, 90C30, 90C59

1 Introduction

Many real-world problems can be modeled as Mixed Integer Programming (MIP) problems,
namely as minimization problems where some (or all) of the variables only assume integer val-
ues. Finding a first feasible solution quickly is crucial for solving this class of problems. In fact,
many local-search approaches for MIP problems such as Local Branching [13], guide dives and
RINS [10] can be used only if a feasible solution is available.
In the literature, several heuristics methods for finding a first feasible solution for a MIP problem
have been proposed (see e.g. [3]-[5], [7], [15]-[18], [20], [22]). Recently, Fischetti, Glover and
Lodi [12] proposed a new heuristic, the well-known Feasibility Pump, that turned out to be very
useful in finding a first feasible solution even when dealing with hard MIP instances. The FP
heuristic is implemented in various MIP solvers such as BONMIN [8].
The basic idea of the FP is that of generating two sequences of points {�̄�} and {�̃�} such
that �̄� is LP-feasible, but may not be integer feasible, and �̃� is integer, but not necessarily
LP-feasible. To be more specific the algorithm starts with a solution of the LP relaxation �̄0

and sets �̃0 equal to the rounding of �̄0. Then, at each iteration �̄�+1 is chosen as the nearest
LP-feasible point in ℓ1-norm to �̃�, and �̃�+1 is obtained as the rounding of �̄�+1. The aim of the
algorithm is to reduce at each iteration the distance between the points of the two sequences,
until the two points are the same and an integer feasible solution is found. Unfortunately, it
can happen that the distance between �̄�+1 and �̃� is greater than zero and �̃�+1 = �̃�, and
the strategy can stall. In order to overcome this drawback, random perturbations and restart
procedures are performed.
As the algorithm has proved to be effective in practice, various papers devoted to its further im-
provements have been developed. Fischetti, Bertacco and Lodi [6] extended the ideas on which
the FP is based in two different directions: handling MIP problems with both 0-1 and integer
variables, and exploiting the FP information to drive a subsequent enumeration phase. In [1], in
order to improve the quality of the feasible solution found, Achterberg and Berthold consider an
alternative distance function which takes into account the original objective function. In [14],
Fischetti and Salvagnin proposed a new rounding heuristic based on a diving-like procedure and
constraint propagation.
An interesting interpretation of the FP has been given by J.Eckstein and M.Nediak in [7]. In
this work they noticed that the FP heuristic may be seen as a form of Frank-Wolfe procedure
applied to a nonsmooth merit function which penalizes the violation of the 0-1 constraints.
In this paper, taking inspiration from [23], we propose new merit functions and we include them
in the basic FP scheme [12]. A reported extended computational experience seems to indicate
that the use of these new merit functions improves the FP efficiency.
The paper is organized as follows. In Section 2, we give a brief review of the Feasibility Pump
heuristic. In Section 3, we show the equivalence between the FP heuristic and the Frank-Wolfe
algorithm applied to a nonsmooth merit function. In Section 4, we introduce new nonsmooth
merit functions and we discuss their properties. We present our algorithm in Section 5. Com-
putational results are shown in Section 6, where we give a detailed performance comparison of
our algorithm with the FP. Some conclusions are drawn in Section 7.

In the following, given a concave function � : �� → �, we denote by ∂�(�) the set of supergra-
dients of � at the point �, namely

∂�(�) = {� ∈ �� : �(�)− �(�) ≤ �� (� − �), ∀ � ∈ ��}.

2

2 The Feasibility Pump Heuristic

We consider a MIP problems of the form:

min
��

s.t.�� ≥ � (MIP)

�� ∈ {0, 1} ∀
 ∈ �,

where � ∈ R�×� and � ⊂ {1, 2, . . . , �} is the set of indices of zero-one variables. Let � = {� :
�� ≥ �} denote the polyhedron of the LP-relaxation of (MIP). The Feasibility Pump starts
from the solution of the LP relaxation problem �̄0 := argmin{
�� : � ∈ �} and generates two
sequences of points �̄� and �̃�: �̄� is LP-feasible, but may be integer infeasible; �̃� is integer,
but not necessarily LP-feasible. At each iteration �̄�+1 ∈ � is the nearest point in ℓ1-norm to
�̃�:

�̄�+1 := argminΔ(�, �̃�)

s.t.�� ≥ � (1)

where
Δ(�, �̃�) =

∑
�∈�

∣�� − �̃�� ∣.

The point �̃�+1 is obtained as the rounding of �̄�+1. The procedure stops if at some index �, �̄�

is integer or, in case of failing, if it reaches a time or iteration limit. In order to avoid stalling
issues and loops, the Feasibility Pump performs a perturbation step. Here we report a brief
outline of the basic scheme:

The Feasibility Pump (FP) - basic version

Initialization: Set � = 0, let �̄0 := argmin{
�� : �� ≥ �}
If (�̄0 is integer) return �̄0

Compute �̃0 = �����(�̄0)

While (not stopping condition) do

Step 1 Compute �̄�+1 := argmin{Δ(�, �̃�) : �� ≥ �}
Step 2 If (�̄�+1 is integer) return �̄�+1

Step 3 Compute �̃�+1 = �����(�̄�+1)

Step 4 If (cycle detected) �̃�+1 = �������(�̃�)

Step 5 Update � = � + 1

End While

Now we give a better description of the rounding and the perturbing procedures used respectively
at Step 3 and at Step 4:

3

Round: This function transforms a given point �̄� into an integer one, �̃�. The easiest
choice is that of rounding each component �̄�� with
 ∈ � to the nearest integer, while
leaving the continuous components of the solution unchanged. Formally,

�̃�� =

⎧⎨
⎩

[�̄��] if
 ∈ �

�̄�� otherwise
(2)

where [⋅] represents scalar rounding to the nearest integer.

Perturb: The aim of the perturbation procedure is to avoid cycling and it consists in two
heuristics. To be more specific:

– if �̃�� = �̃
�+1
� for all
 ∈ � a weak perturbation is performed, namely, a random number

of integer constrained components, chosen as to minimize the increase in the distance
Δ(�̄�+1, �̃�+1), is flipped.

– If a cycle is detected by comparing the solutions obtained in the last 3 iterations, or
in any case after � iterations, a strong random perturbation is performed. For each

 ∈ � a uniformly random value is generated, �� ∈ [−0.3, 0.7] and if

∣�̄�+1
� − �̃�+1

� ∣+max{�� , 0} > 0.5

the component �̃�+1
� is flipped.

Remark 1 The objective function Δ(�, �̃�) discourages the optimal solution of the relaxation
from being “too far” from �̃�. In practice, the method tries to force a large number of variables
of �̄�+1 to have the same (integer) value as �̃� (see [12]).

3 The FP heuristic as a Frank-Wolfe algorithm for minimizing
a nonsmooth merit function

In a recent work J.Eckstein and M.Nediak [7] noted that the feasibility pump heuristic may be
seen as a nonsmooth Frank-Wolfe merit function procedure. In order to better understand this
equivalence we recall the unitary stepsize Frank-Wolfe method for concave non-differentiable
functions. Let us consider the problem

min �(�)
� ∈ � (3)

where � ⊂ �� is a non empty polyhedral set that does not contain lines going to infinity in
both directions, � : �� → � is a concave, non-differentiable function, bounded below on � .
The Frank-Wolfe algorithm with unitary stepsize can be described as follows.

4

Frank-Wolfe - Unitary Stepsize (FW1) Algorithm

Initialization: Set � = 0, let �0 ∈ �� be the starting point, compute �0 ∈ ∂�(�0)

While �� /∈ argmin
�∈	

(��)��

Step 1 Compute a vertex solution ��+1 of

min
�∈	

(��)��

Step 2 Compute ��+1 ∈ ∂�(��+1), update � = � + 1

End While

The algorithm involves only the solution of linear programming problems, and the following
result, proved in [24], shows that the algorithm generates a finite sequence and that it terminates
at a stationary point �★, namely a point satisfying the following condition:

(�★)� (�− �★) ≥ 0, ∀� ∈ � (4)

with �★ ∈ ∂�(�★).
Proposition 1 The Frank-Wolfe algorithm with unitary stepsize converges to a vertex statio-
nary point of problem (3) in a finite number of iterations.

Now we consider the basic FP heuristic without any perturbation (i.e. without Step 4) and we
show that it can be interpreted as the Frank-Wolfe algorithm with unitary stepsize applied to a
concave, nondifferentiable merit function.
First of all, we can easily see that

Δ(�, �̃�) =
∑

�∈�:�̃�
� =0

�� −
∑

�∈�:�̃�
� =1

�� .

At each iteration, the Feasibility Pump for mixed 0-1 problems computes, at Step 1, the solution
of the LP problem

�̄�+1 ∈ argminΔ(�, �̃�)

s.t. �� ≥ � (5)

0 ≤ �� ≤ 1 ∀
 ∈ �.

Then, at Step 3, it rounds the solution �̄�, thus giving �̃�+1.
These two operations can be included in the unique step of calculating the solution of the
following LP problem:

min
∑

�∈�:�̄�
�<

1
2

�� −
∑

�∈�:�̄�
�≥ 1

2

��

s.t. �� ≥ � (6)

0 ≤ �� ≤ 1 ∀
 ∈ �,

5

which can be seen as the iteration of the Frank Wolfe method with unitary stepsize applied to
the following minimization problem

min
∑
�∈�

min{��, 1− ��}

s.t. �� ≥ � (7)

0 ≤ �� ≤ 1 ∀
 ∈ �.

4 New nonsmooth merit functions for the FP approach

As we have seen in the previous section, the basic Feasibility Pump is equivalent to minimizing
a separable nonsmooth function which penalizes the 0-1 infeasibility, namely

�(�) =
∑
�∈�
�(��) (8)

where � : �→ � is a concave nonsmooth function given by

�(�) = min{�, 1− �}. (9)

Taking into account the Remark 1, we propose new functions � that should improve the ability
of the algorithm to force the new LP-feasible solution to have the same (integer) value as the
integer feasible solution obtained at the previous iteration. Our idea is to replace the linear
terms in � with suitable nonlinear terms that lead to a merit function � whose feature is that
of encouraging the change of a bunch of variables rather than distributing this change over all
the variables.
We start by giving an example in �2.

Example 1 Suppose we are given an integer point �� = (0, 0)� and a value 0 < ! < 0.5.
Suppose to distribute the ! value between the variables in two different ways, namely �
 = (0, !)�

and �� = (�2 ,
�
2)

� . Consider now a suitable concave function such as

�(�) = min
{
ln(�+ "), ln[(1− �) + "]}.

As we can see in Fig.1, we have

�(�
)− �(��) = �(0) + �(!)− 2�(0) < 2�(!/2)− 2�(0) = �(��)− �(��),
or equivalently

�(�
) < �(��).

More in general, given a point �� = (��0, . . . , �
�
�) ∈ {0, 1}�, a value 0 < ! < 0.5 and two points

�
 = (��0, . . . , �
�
� + !̄, . . . , �

�
�) and �

� = (��0 +
�̄
� , . . . , �

�
� +

�̄
�) with

!̄ =

{
! if ��� = 0,
−! if ��� = 1,

choosing the concave function used in the Example 1

�(�) = min
{
ln(�+ "), ln[(1− �) + "]},

6

δ/2 δ/2

10.50

φ(δ/2)

φ(δ)

φ(0)

Figure 1: Behavior of the penalty term �(�) = min
{
ln(�+ "), ln[(1− �) + "]}.

we obtain
�(�
) < �(��).

On the other hand, since the terms inside the � function of the Feasibility Pump are linear we
have

�(�
) =
∑
�∈�

min{�
� , 1− �
� } =
∑
�∈�

min{��� , 1− ��� } = �(��).

The following theoretical result gives us a guideline for choosing the nonlinear terms for the �
function:

Proposition 2 Let � : R→ R be a lower bounded concave function and let

�̂ = inf
�∈R

�(�)

be its lower bound. Then, given �� ∈ R, # = 1, . . . , �

�∑
�=1

(�(��)− �̂) ≥ �
(

�∑
�=1

��

)
− �̂ . (10)

Proof. See Appendix A. □

In this work, starting from Proposition 2 and the ideas developed in [23, 25], we replace the
term (9) by the following concave nonsmooth terms:

Logarithmic function
�(�) = min

{
ln(�+ "), ln[(1− �) + "]} (11)

Hyperbolic function
�(�) = min

{− (�+ ")−�,−[(1− �) + "]−�
}

(12)

7

Concave function
�(�) = min

{
1− exp(−$�), 1− exp(−$(1− �))} (13)

Logistic function

�(�) = min
{
[1 + exp(−$�)]−1, [1 + exp(−$(1− �))]−1

}
(14)

where ", $, � > 0. In Fig. 2, we compare the � term related to the FP heuristic with those given
by (11)-(14).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logistic function with α = 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−8

−6

−4

−2

0

2

Hyperbolic function with ε = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

Logarithmic function with ε = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Concave function with α = 5

Figure 2: Comparison between the original FP term (dashed line) and the new terms (solid
line).

For the merit functions described above it is possible to prove the following equivalence result:

Proposition 3 Let � be a Lipschitz continuous function bounded on P. For every penalty term
(11)-(14) a value "̄ > 0 exists such that, for any " ∈]0, "̄], problem

min �(�), s.t. � ∈ �, �� ∈ {0, 1}, ∀# ∈ � (15)

and problem
min �(�) + �̃(�, "), s.t. � ∈ �, 0 ≤ �� ≤ 1, ∀# ∈ � (16)

where

�̃(�, ") =

⎧⎨
⎩
�(�) if � is given by (8) and � by (11)-(12)

1

"
�(�) if � is given by (8) and � by (13)-(14)

have the same minimum points.

8

Proof. See Appendix A. □

This theoretical result, although not strictly related to the aim of the present work, highlights
the potentials of the merit functions (11)-(14). In fact, it indicates that the analysis carried out
in this paper can be extended to an exact penalty approach for solving MIP problems.

Remark 2 The penalty functions presented can be divided into two classes:

- Functions which tends to be unbounded from below as an inner penalty parameter goes to
zero, namely those obtained by (11) and (12) terms.

- Functions that are always bounded between zero and one, namely those obtained by (13)
and (14).

The FP merit function belongs to the second class.

5 A reweighted version of the Feasibility Pump heuristic

The use of the merit functions (11)-(14) defined in the previous section leads to a new FP
scheme in which the ℓ1-norm used for calculating the next LP-feasible point is replaced with a
“weighted” ℓ1-norm of the form

Δ� (�, �̃) =
∑
�∈�
%� ∣�� − �̃� ∣ = ∥& (�− �̃)∥1, (17)

where
& = �#'�(%1, . . . , %�)

and %� ,
 = 1, . . . , � are positive weights depending on the merit function � chosen. The main
feature of the method is the use of an infeasibility measure that

- tries to discourage the optimal solution of the relaxation from being far from �̃ (similarly
to the original FP algorithm);

- takes into account, in some way, the information carried by the LP-feasible points obtained
at the previous iterations of the algorithm for speeding up the convergence to 0-1 feasible
points.

Here we report an outline of the algorithm:

9

Reweighted Feasibility Pump (RFP) - basic version

Initialization: Set � = 0, let �̄0 := argmin{
�� : �� ≥ �}
If (�̄0 is integer) return �̄0

Compute �̃0 = �����(�̄0)

While (not stopping condition) do

Step 1 Compute �̄�+1 := argmin{∥& �(�− �̃�)∥1 : �� ≥ �}
Step 2 If (�̄�+1 is integer) return �̄�+1

Step 3 Compute �̃�+1 = �����(�̄�+1)

Step 4 If (cycle detected) �̃�+1 = �������(�̃�)

Step 5 Update � = � + 1

End While

We assume that the round and perturb procedures are the same as those described in Section 2 for
the original version of the FP heuristic. Anyway, different rounding and perturbing procedures
can be suitably developed.
Following the same reasoning of Section 3, we can reinterpret the reweighted FP heuristic without
perturbation as the unitary stepsize Frank-Wolfe algorithm applied to the merit function �. Let
us now consider a generic iteration � of the reweighted FP. At Step 1, the algorithm computes
the solution of the LP problem

�̄�+1 ∈ argminΔ� �(�, �̃�)

s.t. �� ≥ � (18)

0 ≤ �� ≤ 1 ∀
 ∈ �.
Then, at Step 3, it rounds the solution �̄�, thus giving �̃�+1.
Similarly to the FP algorithm, these two operations can be included in the unique step of
calculating the solution of the following LP problem:

min
∑

�∈�:�̄�
�<

1
2

%�
� �� −

∑
�∈�:�̄�

�≥ 1
2

%�
� ��

s.t. �� ≥ � (19)

0 ≤ �� ≤ 1 ∀
 ∈ �.
By setting

%�
� = ∣��� ∣

with �� ∈ ∂�(�̄�), Problem (19) can be seen as the iteration of the Frank Wolfe method with
unitary stepsize applied to the following minimization problem

min�(�)

s.t. �� ≥ � (20)

0 ≤ �� ≤ 1 ∀
 ∈ �.

10

Then the weighted distance can be interpreted as a way of “pumping” the integrality of �̃�

into the new feasible point �̄�+1, while somehow trying to discourage the integer-constrained
components of the LP-feasible point sequence {�̄�} from changing their values once they get
integer. In order to highlight the differences between the ℓ1-norm and the weighted ℓ1-norm we
report the following example:

Example 2 Consider the MILP problem:

min
�� (21)

s.t. � ∈ �
� ∈ {0, 1}3

where � ⊂ [0, 1]3 is the polyhedron in Fig. 3. Let �� =
(

9
20 ,

1
8 ,

1
8

)
be the solution of the linear

relaxation of (21) and �� = (0, 0, 0) be its rounding. The minimization of Δ(�, ��) = ∥�− ��∥1

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xN

xL

xI

xF

Figure 3: Feasible set of Problem 21.

over � leads to �� =
(

1
8 ,

1
8 ,

1
8

)
, since ∥�� − ��∥1 < ∥�− ��∥1, for all � ∈ � .

Consider now the weighted ℓ1-norm obtained using the logarithmic merit function

�(�) =
∑
�∈�

min
{
ln(�� + "), ln[(1− ��) + "]

}
,

where " is a small positive value. By minimizing the weighted distance between � and �� over
� , we obtain the point �� = (1, 0, 0). In fact, we have

Δ� (�� , ��) < Δ� (�, ��),

11

for all � ∈ � . Thus the ℓ1-norm finds a solution which does not satisfy the integrality con-
straints, while the reweighted ℓ1-norm gets an integer feasible solution.

6 Numerical Results

In this section we report computational results to compare our version of the FP with the
Feasibility Pump algorithm described in [12]. The test set used in our numerical experience
consists of 43 instances of 0-1 problems from MIPLIB [2]. All the algorithms were implemented
in C and we have used ILOG Cplex [21] as solver of the linear programming problems. All tests
have been run on an Intel Core2 E8500 system (3.16GHz) with 3.25GB of RAM.
We compare the FP with the reweighted version in three different scenarios:

1 Randomly generated starting points: for the terms (9), (11)-(14), we solved the
corresponding penalty formulation (20) by means of the Frank-Wolfe algorithm using 100
randomly generated starting points. The aim of the experiment was to highlight the ability
of each penalty formulation in finding an integer solution.

2 FP vs RFP: in order to evaluate the effectiveness of the new penalty functions, we
compared the Feasibility Pump algorithm with the reweighted Feasibility Pump, in which
the distance Δ� (�, �̃) is defined using the terms (11)-(14).

3 FP vs Combined RFP: we made a comparison between the Feasibility Pump algorithm
and the reweighted Feasibility Pump with the distance Δ� (�, �̃) obtained combining two
different penalty terms. The aim of the experiment was to show that the combination of
two different functions can somehow improve the RFP algorithm performance.

We performed our experiments using:

- Penalty term (9) denoted by FP;

- Penalty term (11) denoted by Log, with " = 0.1;

- Penalty term (12) denoted by Hyp, with " = 0.1;

- Penalty term (13) denoted by Conc, with $ = 0.5;

- Penalty term (14) denoted by Logis, with $ = 0.1.

6.1 Computational results for randomly generated starting points

The results obtained on the 43 MIPLIB problems when using randomly generated starting points
are shown in Table 1, where we report, for each method,the number of feasible points detected
(♯ f.s.).
We can observe that the results obtained by means of the concave and the logistic functions, in
terms of number of integer feasible solutions found, are comparable with those of the FP penalty
function and slightly better than those obtained using the logarithmic and hyperbolic penalty
functions. Anyway, the logarithmic and hyperbolic functions find, for a consistent number of

12

problems, the highest number of integer feasible solutions, so giving a good tool for finding an
integer feasible solution.
This preliminary computational experience seems to confirm the validity of the new nonsmooth
penalty functions in the search for integer feasible solutions over a polyhedral set and show that
the functions here proposed can be a valid alternative to the FP penalty function. Furthermore,
we remark that a wider availability of efficient penalty functions is important since it can ease
the search of integer feasible solutions for different classes of problems.

6.2 Comparison between FP and RFP

The results of the comparison between the Feasibility Pump algorithm and the reweighted
version obtained using the penalty terms (11)-(14) are shown in Tables 2 and 3. On the vertical
axis of the tables, we have

∙ the number of iterations needed to find a solution (Iter),

∙ the objective function value of the first integer feasible solution found (Obj),

∙ the CPU time (Time).

We stop the algorithms if an integer solution is found or if the limit of 1500 iterations is reached.
In case of failure, we report “-” for both Obj and Time. For four problems (liu, mod011,
modglob, opt1217) the minimum-cost solution of the first LP relaxation is already an integer
feasible solution, then no iterations of FP and RFP algorithms are performed. Since these
problems are not meaningful for the comparison, we do not report the results in the tables.
By taking a look at the tables, we can notice that the RFP algorithm obtained using the
Conc penalty (Conc-RFP algorithm) and the one obtained using the Logis penalty (Logis-
RFP algorithm) are competitive with the FP in terms of both number of iterations and CPU
time. They are also better than the RFP algorithm with the Log penalty (Log-RFP algorithm)
and the one with theHyp penalty (Hyp-RFP algorithm) that, in addition, have a larger number
of failures. Despite these facts, Log-RFP and Hyp-RFP algorithms generally give good results
in terms of objective function value. In particular, the Log-RFP and the Hyp-RFP respectively
find the best objective function value for 15 and 17 instances over 43. The high number of
failures might be due to the strong nonlinearity of the Log and Hyp functions, for which
suitable perturbation heuristics should be developed.

6.3 Comparison between FP and combined RFP

As we have seen in Remark 2 the penalty functions can be divided into two classes:

(1) those generated by Log and Hyp terms;

(2) those generated by FP, Conc and Logis terms.

In this subsection, we show the effects of combining a function belonging to the first class, with
any function of the other class.
Given two penalty functions �1(�) and �2(�), we can combine their effects by defining, at
iteration � of the RFP algorithm, the following terms for the matrix & �:

%�
� =)�∣��� ∣+ (1−)�)∣ℎ�� ∣
 = 1, . . . , �

13

P
r
o
b
le
m

F
P

L
o
g

H
y
p

C
o
n
c

L
o
g
is

1
0
te

a
m

s
1

0
0

3
0

a
1
c1

s1
0

0
0

0
0

a
fl
o
w

3
0
a

0
0

1
0

0

a
fl
o
w

4
0
b

1
0

0
0

0

a
ir

0
4

2
0

1
0

2
5

1
7

a
ir

0
5

4
1

8
0

4
6

4
3

ca
p
6
0
0
0

2
6

1
5

2
3

1
6

2
5

d
a
n
o
in

t
2

0
0

0
0

d
is

k
to

m
8
0

3
9

2
9
2

8
9

d
s

3
0

0
5

7

fa
st

0
5
0
7

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

fi
b
er

0
0

0
0

0

fi
x
n
et

6
1
0

1
0

9
1
0

1
0

g
la

ss
4

0
0

0
0

0

h
a
rp

2
0

0
0

0
0

li
u

0
0

0
0

0

m
a
rk

sh
a
re

1
4
4

6
3

5
9

5
3

4
5

m
a
rk

sh
a
re

2
5
3

5
4

5
6

5
2

5
3

m
a
s7

4
1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

m
a
s7

6
1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

m
is

c0
7

1
4

9
0

2

m
k
c

0
0

0
0

0

P
r
o
b
le
m

F
P

L
o
g

H
y
p

C
o
n
c

L
o
g
is

m
o
d
0
1
1

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

m
o
d
g
lo

b
1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

m
o
m

en
tu

m
1

0
0

0
1

1

n
et

1
2

0
0

0
0

0

n
sr

a
n
d
-i

p
x

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

n
w

0
4

4
2

1
1

3
4
9

4
3

o
p
t1

2
1
7

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

p
2
7
5
6

0
0

0
0

0

p
k
1

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

p
p
0
8
a
C

U
T

S
8
3

8
6

8
6

8
4

8
4

p
p
0
8
a

8
4

8
6

8
6

8
4

8
4

p
ro

tf
o
ld

0
0

0
0

0

q
iu

2
0

2
5

3
0

2
5

2
4

rd
-r

p
lu

sc
-2

1
0

0
0

0
0

se
t1

ch
0

0
0

3
3

se
y
m

o
u
r

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

sp
9
7
a
r

2
2

9
5

9
5

9
5

9
5

sw
a
th

1
6

1
2

0
1
0

1
3

t1
7
1
7

3
7

8
0

2
9

4
4

tr
1
2
-3

0
0

0
0

0
0

v
p
m

2
0

0
0

0
0

T
ab

le
1
:
C
o
m
p
a
ri
so
n
on

M
IP
L
IB

p
ro
b
le
m
s.

R
a
n
d
o
m
ly

g
en
er
a
te
d
st
a
rt
in
g
p
o
in
ts

14

P
r
o
b
le
m

F
P

L
o
g
,

�
=

0
.1

H
y
p

,
�

=
0
.1

C
o
n
c
,

�
=

0
.5

L
o
g
is

,
�

=
0
.1

It
er

O
b

j
T

im
e

It
er

O
b

j
T

im
e

It
er

O
b

j
T

im
e

It
er

O
b

j
T

im
e

It
er

O
b

j
T

im
e

1
0
te

a
m

s
4
5

9
9
2
.0

2
.7

1
5
0
0

-
-

1
5
0
0

-
-

2
6
9

9
9
6
.0

1
5
.6

3
6
9

1
0
4
0
.0

2
2
.5

a
1
c1

s1
2
7

1
9
8
9
7
.7

1
.8

1
9

2
4
6
3
6
.0

1
.4

6
5

2
0
2
4
3
.2

4
.4

6
5

2
4
4
4
0
.5

4
.7

1
1

2
4
1
5
3
.9

1
.3

a
fl
o
w

3
0
a

8
5
0
0
3
.0

0
.0

2
1
8

4
0
7
1
.0

0
.0

2
1
1

2
7
1
2
.0

0
.0

2
1
7

4
4
5
7
.0

0
.0

3
7

4
2
9
1
.0

0
.0

2

a
fl
o
w

4
0
b

8
5
0
1
0
.0

0
.0

5
1
0

3
7
1
4
.0

0
.0

5
1
1

3
0
9
2
.0

0
.0

5
6

4
5
7
3
.0

0
.0

5
7

4
7
0
3
.0

0
.0

3

a
ir

0
4

7
9

7
1
8
9
1
.0

1
8
4
.8

1
1
0
2

7
3
6
7
7
.0

1
5
3
5
.9

1
5
0
0

-
-

7
5
9
5
7
0
.0

1
6
.8

2
9

7
0
0
4
6
.0

7
7
.2

a
ir

0
5

3
3
0
3
4
2
.0

6
.9

7
3
0
5
3
6
.0

6
.3

1
5
0
0

-
-

3
2
9
9
4
8
.0

5
.5

2
2
9
8
8
7
.0

4
.4

ca
p
6
0
0
0

4
1

-1
.0

0
E

6
1
.4

1
1

-9
.8

6
E

5
0
.4

7
-1

.3
0
E

6
0
.3

1
1

-9
.8

6
E

5
0
.4

4
1

-1
.0

0
E

6
1
.4

d
a
n
o
in

t
4

7
7
.0

0
.1

5
0

8
0
.5

0
.8

4
1

7
6
.5

0
.7

2
8

8
0
.5

0
.6

4
7
8
.0

0
.1

d
is

k
to

m
7

-5
0
0
0
.0

3
.4

5
-5
0
0
0
.0

1
.8

1
5
0
0

-
-

3
-5
0
0
0
.0

2
.3

4
-5
0
0
0
.0

3
.2

d
s

4
4
3

1
4
9
7
.1

3
8
4
7
.2

1
5
0
0

-
-

1
5
0
0

-
-

4
6
4

1
2
5
9
.7

3
4
5
2
.1

2
1
4

1
1
3
3
.5

1
8
2
9
.4

fa
st

0
5
0
7

3
1
8
1
.0

9
.6

1
1
9
0
.0

6
.6

1
1
9
2
.0

5
.5

2
1
8
5
.0

6
.1

3
1
8
7
.0

1
1
.1

fi
b
er

5
1
.1

4
E

7
0
.0

2
6

1
.1

4
E

7
0
.0

2
3

1
.3
3
E
6

0
.0

2
5

1
.1

4
E

7
0
.0

2
5

1
.1

4
E

7
0
.0

2

fi
x
n
et

6
3
0
3

4
1
8
9
7
.0

0
.3

2
0
3

3
7
4
2
2
.0

0
.2

2
0
4

3
7
8
2
5
.0

0
.2

2
0
3

3
7
6
7
6
.0

0
.2

2
0
3

3
7
7
7
2
.0

0
.2

g
la

ss
4

3
1

4
.0

0
E

9
0
.0

3
1
3

1
.3

0
E

1
0

0
.0

2
2
5
5

9
.7

3
E

9
0
.4

1
9
5

8
.4

3
E

9
0
.1

1
5
1

3
.5
0
E
9

0
.1

h
a
rp

2
3
1
5

-5
.4

8
E

7
2
.5

6
0
9

-4
.4

6
E

7
4
.9

7
1
1

-5
.0

1
E

7
6
.1

2
3
0

-4
.2

2
E

7
1
.8

1
6

-5
.8
5
E
7

0
.1

m
a
rk

sh
a
re

1
1

2
9
2
.0

0
.0

1
2
9
2
.0

0
.0

1
2
9
2
.0

0
.0

1
2
9
2
.0

0
.0

1
2
9
2
.0

0
.0

m
a
rk

sh
a
re

2
1

1
6
0
.0

0
.0

1
1
6
0
.0

0
.0

1
1
6
0
.0

0
.0

1
1
6
0
.0

0
.0

1
1
6
0
.0

0
.0

m
a
s7

4
2

1
4
3
7
2
.9

0
.0

1
1
9
1
9
7
.5

0
.0

1
1
9
1
9
7
.5

0
.0

1
1
9
1
9
7
.5

0
.0

1
1
9
1
9
7
.5

0
.0

2

m
a
s7

6
2

4
3
7
7
4
.3

0
.0

1
4
4
8
7
7
.4

0
.0

1
4
4
8
7
7
.4

0
.0

1
4
4
8
7
7
.4

0
.0

1
4
4
8
7
7
.4

0
.0

T
ab

le
2:

C
o
m
p
a
ri
so
n
on

M
IP
L
IB

p
ro
b
le
m
s.

F
P
v
s
R
F
P
(P
a
rt

I)

15

P
r
o
b
le
m

F
P

L
o
g
,

�
=

0
.1

H
y
p

,
�

=
0
.1

C
o
n
c
,

�
=

0
.5

L
o
g
is

,
�

=
0
.1

It
er

O
b

j
T

im
e

It
er

O
b

j
T

im
e

It
er

O
b

j
T

im
e

It
er

O
b

j
T

im
e

It
er

O
b

j
T

im
e

m
is

c0
7

3
5

4
7
3
0
.0

0
.0

5
4
3

3
6
6
5
.0

0
.0

5
4
9
4

4
3
0
0
.0

0
.5

5
1

4
1
4
0
.0

0
.0

8
2
7

4
4
8
0
.0

0
.0

5

m
k
c

3
-2

7
1
.7

0
.0

6
3

-2
7
1
.9

0
.0

6
3

-2
7
1
.9

0
.0

8
3

-2
7
1
.9

0
.0

6
3

-2
7
1
.7

0
.0

8

m
o
m

en
tu

m
1

1
0
0
5

4
4
2
8
2
4
.9

1
5
6
.7

6
6
1

4
2
3
6
5
7
.7

1
3
7
.2

1
5
0
0

-
-

3
0
7

4
4
3
0
0
2
.7

1
5
7
.4

2
0
9

4
2
3
6
3
9
.4

1
1
4
.7

n
et

1
2

4
0

3
3
7
.0

1
.9

1
9
3

3
3
7
.0

4
.9

2
5
3

3
3
7
.0

6
.5

1
3
4

3
3
7
.0

3
.5

5
5
9

3
3
7
.0

1
4
.9

n
sr

a
n
d
-i

p
x

4
3
7
7
1
2
0
.0

0
.3

4
3
3
1
3
6
0
.0

0
.3

5
3
0
3
3
6
0
.0

0
.3

4
3
5
3
4
4
0
.0

0
.3

4
3
6
7
8
4
0
.0

0
.3

n
w

0
4

1
1
9
8
8
2
.0

0
.4

1
1
7

3
3
3
4
4
.0

6
0
7
.4

9
3
0

7
2
5
4
8
.0

5
0
4
4
.6

1
1
9
7
8
0
.0

0
.4

1
1
9
8
8
2
.0

0
.4

p
2
7
5
6
(∗

)
1
5
0
0

-
-

1
5
0
0

-
-

1
5
0
0

-
-

1
5
0
0

-
-

1
5
0
0

-
-

p
k
1

1
3
6
.0

0
.0

1
3
6
.0

0
.0

1
3
6
.0

0
.0

1
3
6
.0

0
.0

1
3
6
.0

0
.0

p
p
0
8
a
C

U
T

S
4

1
2
5
9
0
.0

0
.0

2
4

1
2
2
7
0
.0

0
.0

3
1
0
6
7
0
.0

0
.0

4
1
1
7
4
0
.0

0
.0

2
5

1
1
6
7
0
.0

0
.0

p
p
0
8
a

5
1
2
5
7
0
.0

0
.0

3
1
0
8
1
0
.0

0
.0

3
1
2
2
1
0
.0

0
.0

5
1
1
7
2
0
.0

0
.0

2
5

1
2
6
8
0
.0

0
.0

2

p
ro

tf
o
ld

3
6
3

-7
.0

1
8
1
.2

1
5
0
0

-
-

1
5
0
0

-
-

3
7

-7
.0

9
.0

2
1
0

-1
5
.0

6
7
.5

q
iu

8
1
2
7
6
.5

0
.2

5
1
2
0
.9

0
.1

9
1
1
8
6
.4

0
.2

4
1
5
0
4
.6

0
.1

4
1
7
3
2
.6

0
.1

rd
-r

p
lu

sc
-2

1
(∗

)
1
5
0
0

-
-

1
5
0
0

-
-

1
5
0
0

-
-

1
5
0
0

-
-

1
5
0
0

-
-

se
t1

ch
4

8
0
1
4
9
.0

0
.0

4
7
8
6
7
8
.0

0
.0

2
8

8
2
4
0
2
.5

0
.0

2
3

7
7
9
6
4
.5

0
.0

2
4

8
0
2
7
4
.5

0
.0

2

se
y
m

o
u
r

4
4
7
2
.0

1
.3

3
4
8
2
.0

1
.2

2
4
9
5
.0

1
.1

3
4
7
2
.0

1
.3

3
4
7
2
.0

1
.3

sp
9
7
a
r

7
1
.3

6
E

9
1
.8

4
8
.7
9
E
8

1
.4

4
1
.7

5
E

1
0

1
.1

7
1
.3

5
E

9
1
.6

7
1
.2

1
E

9
1
.5

sw
a
th

3
8

2
6
8
0
7
.9

1
.6

2
5

1
9
1
4
8
.8

1
.4

8
6
5

4
5
9
4
7
.9

3
2
.4

7
9

4
7
0
8
5
.9

3
.7

2
5

2
5
8
4
6
.9

1
.3

t1
7
1
7

4
0

2
4
0
6
0
5
.0

2
0
8
.1

4
0
6

9
7
0
3
8
4
.0

2
8
7
3
.7

1
5
0
0

-
-

2
3

2
0
7
5
8
4
.0

8
7
.8

1
9

2
1
0
5
2
9
.0

9
3
.1

tr
1
2
-3

0
2
8

2
8
7
1
2
5
.0

0
.0

5
1
2
7

2
6
1
9
8
7
.0

0
.2

7
0

2
5
9
7
4
3
.0

0
.0

9
5
0

2
6
2
7
2
2
.0

0
.0

8
6
1

2
6
1
5
5
9
.0

0
.0

9

v
p
m

2
3

1
7
.8

0
.0

2
1
7
.0

0
.0

2
2

1
7
.0

0
.0

3
1
7
.8

0
.0

3
1
7
.8

0
.0

T
ab

le
3:

C
o
m
p
a
ri
so
n
on

M
IP
L
IB

p
ro
b
le
m
s.

F
P
v
s
R
F
P
(P
a
rt

II
)

16

with)� ∈ [0, 1], ��� ∈ ∂�1(�̄
�) and ℎ�� ∈ ∂�2(�̄

�). We report the results obtained combining the
following functions:

- Fp term and Log, denoted by FP+Log;

- Conc term and Log term, denoted by Conc+Log;

- Logis term and Log term, denoted by Logis+Log.

We set �1(�) equal to the penalty function obtained using the Log term and �2(�) equal to
the other penalty function. We start with)0 = 1 and we reduce it every time a perturbation
occurs. More precisely, we can have two different cases:

- Weak Perturbation Update:)�+1 = 0.5)�

- Strong Perturbation Update:)�+1 = 0.1)�

When a strong perturbation occurs, it means that the algorithm is stuck in a cycle. Then the
updating rule significantly changes the penalty term, so moving towards the function belonging
to the second class.
The results of the comparison between the Feasibility Pump algorithm and the combined RFP
algorithm are shown in Tables 4 and 5. On the vertical axis of the tables, we have

∙ the number of iterations needed to find a solution (Iter),

∙ the objective function value of the first integer feasible solution found (Obj),

∙ the CPU time (Time).

We stop the algorithms if an integer solution is found or if the limit of 1500 iterations is reached.
When a failure occurs, we report “-” for both Obj and Time. Also in this case, we do not report
the results for problems: liu, mod011, modglob, opt1217.
As we can easily notice from the results reported in the tables, the combined RFP is competitive
with the original version of the FP. Furthermore, the Log function combined with another
penalty function generally gives better results than the Log function by itself.

6.4 Benchmarking Algorithms via Performance Profiles

In order to give a better interpretation of the results generated by the various algorithms we
decided to use performance profiles [11]. We consider a set � of �� algorithms, a set � of ��
problems and a performance measure +�,� (e.g. number of iteration, CPU time). We compare
the performance on problem � by algorithm ' with the best performance by any algorithm on
this problem using the following performance ratio

��,� =
+�,�

min{+�,� : ' ∈ �} .

Then, we obtain an overall assessment of the performance of the algorithm by defining the
following value

��(,) =
1

��
size{� ∈ � : ��,� ≤ ,},

17

-

P
r
o
b
le
m

F
P

F
P

+
L
o
g

C
o
n
c

+
L
o
g

L
o
g
is

+
L
o
g

It
er

O
b

j
T

im
e

It
er

O
b

j
T

im
e

It
er

O
b

j
T

im
e

It
er

O
b

j
T

im
e

1
0
te

a
m

s
4
5

9
9
2
.0

2
.7

2
4

9
2
8
.0

1
.0

3
5

9
5
4
.0

1
.6

4
0

1
0
1
2
.0

1
.4

a
1
c1

s1
2
7

1
9
8
9
7
.7

1
.8

1
9

2
0
1
4
0
.4

1
.5

8
7

3
2
4
5
7
.3

5
.5

1
9

2
5
5
6
0
.4

1
.4

a
fl
o
w

3
0
a

8
5
0
0
3
.0

0
.0

2
8

3
5
0
4
.0

0
.0

2
8

3
0
4
8
.0

0
.0

2
1
1

3
9
2
6
.0

0
.0

2

a
fl
o
w

4
0
b

8
5
0
1
0
.0

0
.0

5
9

4
3
2
0
.0

0
.0

5
1
4

6
8
8
6
.0

0
.0

6
1
0

3
7
3
0
.0

0
.0

5

a
ir

0
4

7
9

7
1
8
9
1
.0

1
8
4
.8

3
3

7
0
6
3
1
.0

7
0
.2

1
6

6
5
2
8
1
.0

3
7
.1

1
9

6
8
8
4
9
.0

4
3
.8

a
ir

0
5

3
3
0
3
4
2
.0

6
.9

7
3
0
5
3
6
.0

6
.5

7
3
0
5
3
6
.0

6
.7

7
3
0
5
3
6
.0

6
.8

ca
p
6
0
0
0

4
1

-1
.0
0
8
E
6

1
.4

4
1

-1
.0
0
8
E
6

1
.5

1
1

-9
.8

6
0
E

5
0
.4

4
1

-1
.0
0
8
E
6

1
.5

d
a
n
o
in

t
4

7
7
.0

0
.1

4
8
4

7
9
.0

1
.6

4
5
7

9
0
.0

1
.1

5
6
1

8
1
.0

1
.2

0

d
is

k
to

m
7

-5
0
0
0
.0

3
.4

5
-5
0
0
0
.0

1
.8

5
-5
0
0
0
.0

1
.9

5
-5
0
0
0
.0

1
.9

d
s

4
4
3

1
4
9
7
.1

3
8
4
7
.2

8
6
1

1
4
3
0
.9

7
2
8
3
.2

5
5
0

1
4
4
9
.8

3
9
7
7
.4

4
6
8

1
4
8
5
.3

2
7
4
0
.2

fa
st

0
5
0
7

3
1
8
1
.0

9
.7

1
1
9
0
.0

7
.9

1
1
9
0
.0

7
.2

1
1
9
0
.0

7
.3

fi
b
er

5
1
.1
4
5
E
7

0
.0

2
6

1
.1

4
6
E

7
0
.0

2
6

1
.1

4
6
E

7
0
.0

2
6

1
.1

4
6
E

7
0
.0

2

fi
x
n
et

6
3
0
3

4
1
8
9
7
.0

0
.3

4
4

2
0
3

3
7
9
9
9
.0

0
.2

1
8

2
0
3

3
7
5
8
0
.0

0
.2

1
9

2
0
3

3
8
0
6
4
.0

0
.2

3
5

g
la

ss
4

3
1

4
.0
0
E
9

0
.0

3
1
2
9

1
.3

6
E

1
0

0
.0

8
4
9

4
.1

5
E

9
0
.0

5
4
6

4
.0
0
E
9

0
.0

3

h
a
rp

2
3
1
5

-5
.4
8
4
E
7

2
.5

4
4

-5
.2

0
6
E

7
0
.3

8
9

-4
.6

3
3
E

7
0
.6

2
6

-5
.0

2
4
E

7
0
.2

m
a
rk

sh
a
re

1
1

2
9
2
.0

0
.0

1
2
9
2
.0

0
.0

1
2
9
2
.0

0
.0

1
2
9
2
.0

0
.0

m
a
rk

sh
a
re

2
1

1
6
0
.0

0
.0

1
1
6
0
.0

0
.0

1
1
6
0
.0

0
.0

1
1
6
0
.0

0
.0

m
a
s7

4
2

1
4
3
7
2
.9

0
.0

1
1
9
1
9
7
.5

0
.0

1
1
9
1
9
7
.5

0
.0

1
1
9
1
9
7
.5

0
.0

m
a
s7

6
2

4
3
7
7
4
.3

0
.0

1
4
4
8
7
7
.4

0
.0

1
4
4
8
7
7
.4

0
.0

1
4
4
8
7
7
.4

0
.0

T
ab

le
4
:
C
o
m
p
a
ri
so
n
on

M
IP
L
IB

p
ro
b
le
m
s.

F
P
v
s
co
m
b
in
ed

R
F
P
(P
a
rt

I)

18

P
r
o
b
le
m

F
P

F
P

+
L
o
g

C
o
n
c

+
L
o
g

L
o
g
is

+
L
o
g

It
er

O
b

j
T

im
e

It
er

O
b

j
T

im
e

It
er

O
b

j
T

im
e

It
er

O
b

j
T

im
e

m
is

c0
7

3
5

4
7
3
0
.0

0
.0

5
4
7

4
0
7
0
.0

0
.0

8
2
2
6

4
0
7
0
.0

0
.2

9
3
6

4
6
0
5
.0

0
.0

5

m
k
c

3
-2

7
1
.7

0
.0

6
3

-2
7
1
.9

0
.0

8
3

-2
7
1
.9

0
.0

8
3

-2
7
1
.9

0
.0

8

m
o
m

en
tu

m
1

1
0
0
5

4
4
2
8
2
4
.9

1
5
6
.7

1
0
4

4
1
0
8
5
8
.5

3
9
.6

1
3
3
1

4
3
6
7
2
7
.5

1
6
1
.9

6
1
3

4
3
0
0
7
0
.4

9
3
.7

n
et

1
2

4
0

3
3
7
.0

1
.9

1
3
1

3
3
7
.0

3
.4

6
1
6

3
3
7
.0

1
6
.2

1
4
8

3
3
7
.0

5
.7

n
sr

a
n
d
-i

p
x

4
3
7
7
1
2
0
.0

0
.3

4
3
3
1
3
6
0
.0

0
.3

4
3
3
1
3
6
0
.0

0
.4

5
3
4
3
2
0
0
.0

0
.4

n
w

0
4

1
1
9
8
8
2
.0

0
.4

1
0

4
0
0
2
6
.0

3
8
.4

1
8

5
2
7
4
6
.0

5
4
.6

7
1
7
8
1
4
.0

4
0
.5

p
2
7
5
6
(∗

)
1
5
0
0

-
-

1
5
0
0

-
-

1
5
0
0

-
-

1
5
0
0

-
-

p
k
1

1
3
6
.0

0
.0

1
3
6
.0

0
.0

1
3
6
.0

0
.0

1
3
6
.0

0
.0

p
p
0
8
a
C

U
T

S
4

1
2
5
9
0
.0

0
.0

2
4

1
1
9
6
0
.0

0
.0

2
4

1
1
9
6
0
.0

0
.0

4
1
2
2
7
0
.0

0
.0

p
p
0
8
a

5
1
2
5
7
0
.0

0
.0

3
1
0
9
3
0
.0

0
.0

3
1
0
9
3
0
.0

0
.0

3
1
0
9
3
0
.0

0
.0

2

p
ro

tf
o
ld

3
6
3

-7
.0

1
8
1
.2

2
1
1

-7
.0

4
6
.2

2
5
4

-1
3
.0

4
5
.2

1
7
6

-7
.0

3
5
.2

q
iu

8
1
2
7
6
.5

0
.1

6
5

1
2
0
.9

0
.1

1
5

1
2
0
.9

0
.1

1
5

1
2
0
.9

0
.1

1

rd
-r

p
lu

sc
-2

1
(∗

)
1
5
0
0

-
-

1
5
0
0

-
-

1
5
0
0

-
-

1
5
0
0

-
-

se
t1

ch
4

8
0
1
4
9
.0

0
.0

4
7
8
6
7
8
.0

0
.0

4
7
8
6
7
8
.0

0
.0

2
4

7
8
6
7
8
.0

0
.0

2

se
y
m

o
u
r

4
4
7
2
.0

1
.3

3
4
8
2
.0

1
.2

3
4
8
2
.0

1
.2

3
4
8
2
.0

1
.6

sp
9
7
a
r

7
1
.3

6
E

9
1
.8

4
8
.7
9
E
8

1
.6

4
8
.7
9
E
8

1
.7

4
8
.7
9
E
8

1
.7

sw
a
th

3
8

2
6
8
0
7
.9

1
.6

1
8
5

4
9
5
8
1
.2

6
.9

1
3
0

4
8
3
9
2
.7

5
.7

2
3

3
9
4
2
7
.1

1
.1

t1
7
1
7

4
0

2
4
0
6
0
5
.0

2
0
8
.1

5
6

2
5
5
0
6
5
.0

2
8
7
.5

3
5

2
1
8
2
2
5
.0

1
0
2
.2

5
3

2
1
6
1
5
0
.0

1
8
5
.1

tr
1
2
-3

0
2
8

2
8
7
1
2
5
.0

0
.0

5
5
2

2
6
2
6
8
9
.0

0
.0

8
1
5
8

2
6
1
3
1
0
.0

0
.2

2
3
9
7

2
5
5
4
3
6
.0

0
.5

6

v
p
m

2
3

1
7
.8

0
.0

2
1
7
.0

0
.0

2
1
7
.0

0
.0

2
1
7
.0

0
.0

T
ab

le
5:

C
o
m
p
a
ri
so
n
on

M
IP
L
IB

p
ro
b
le
m
s.

F
P
v
s
co
m
b
in
ed

R
F
P
(P
a
rt

II
)

19

which represents the probability for algorithm ' ∈ � that the performance ratio ��,� is within
a factor , ∈ � of the best possible ratio. The function �� represents the distribution function
for the performance ratio. Thus ��(1) gives the fraction of problems for which the algorithm '
was the most effective, ��(2) gives the fraction of problems for which the algorithm ' is within
a factor of 2 of the best algorithm, and so on. In Figures 4 and 5, we report the performance
profiles related to the comparison between FP and RFP, in terms of number of iterations and
CPU time, for , ∈ [0, ,̄], with ,̄ = 2 and ,̄ = 5. From Figure 4 it is clear that Conc-RFP,
Logis-RFP and Hyp-RFP functions have a higher number of wins with respect to FP both in
terms of number of iterations and computational time. Furthermore, if we choose to be within
a factor of 2, Conc-RFP and Logis-RFP are the best solvers and have a probability to solve a
problem within a factor 2 greater than 80%. When we consider a factor of 5 (see Fig. 5), FP,
Conc-RFP and Logis-RFP show similar performance.
In Figures 6 and 7, we report the performance profiles related to the comparison between FP
and combined RFP, in terms of number of iterations and CPU time, for , ∈ [0, ,̄], with ,̄ = 2
and ,̄ = 5. From Figure 6 we can notice that all the versions of the combined RFP algorithm
have a higher number of wins with respect to FP both in terms of number of iterations and
computational time. When we choose to be within a factor of 2, we have that

- Logis+Log-RFP show the best performance in terms of number of iterations;

- Logis+Log-RFP, Conc+Log-RFP and FP+Log-RFP are the best solvers in terms of CPU
time (with a probability greater than 90%);

Finally, if we choose to be within a factor of 5 (see Fig. 7), the combined RFP versions are
slightly worse than FP in terms of iterations, but show better CPU time performance.

7 Conclusions

In this paper, we started by interpreting the Feasibility Pump heuristic as a Frank-Wolfe method
applied to a nonsmooth concave merit function. Then, we proposed new concave penalty func-
tions that can be included in the FP scheme. Due to their nonlinear structure, these new
functions should speed up the convergence towards integer feasible points. We reported compu-
tational results on a set of 43 difficult 0-1 MIP problems. The numerical experience we reported
shows that the new version of the Feasibility Pump obtained by means of the proposed func-
tions compares favorably with the original version of the FP. Apart from the improvement in
efficiency, these experiments also highlight that the new merit functions are good alternatives
to the FP function. As a final remark, we point out that a wider availability of efficient penalty
functions is important since it can facilitate the search of integer feasible solutions for different
classes of problems.
Future work will be devoted to the definition of new perturbing procedures suitable to the
proposed functions, to the extension of our approach to MIP problems with general integer vari-
ables and to the development of new FP-like methods that, by taking into account the objective
function values, guarantee the improvement of the solution quality.

20

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Performance Profile, τ = 2 − Iteration

FP

log

hyp

conc

logis

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Performance Profile, τ = 2 − Time

FP

log

hyp

conc

logis

Figure 4: Comparison between FP and the different RFP versions. Performance profiles (, = 2)

21

1 1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Profile, τ = 5 − Iteration

FP

log

hyp

conc

logis

1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Profile, τ = 5 − Time

FP

log

hyp

conc

logis

Figure 5: Comparison between FP and the different RFP versions. Performance profiles (, = 5)

22

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Performance Profile, τ = 2 − Iteration

FP

FP+log

Conc+log

Logis+log

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Profile, τ = 2 − Time

FP

FP+log

Conc+log

Logis+log

Figure 6: Comparison between FP and the different combined RFP versions. Performance
profiles (, = 2)

23

1 1.5 2 2.5 3 3.5 4 4.5 5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Performance Profile, τ = 5 − Iteration

FP

FP+log

Conc+log

Logis+log

1 1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Profile, τ = 5 − Time

FP

FP+log

Conc+log

Logis+log

Figure 7: Comparison between FP and the different combined RFP versions. Performance
profiles (, = 5)

24

8 Appendix A

For convenience of the reader we report the proofs of the theoretical results presented in the
paper.

Here is the proof of Proposition 2.

Proof of Proposition 2. Let
�1 = -�1 + (1− -).1,
�2 = -�2 + (1− -).2

with - ∈ [0, 1] and �1, .1, �2, .2 as the following

�1 =
�∑

�=1

��, .1 =
�1 − -(

∑�
�=1 ��)

1− - ,

�2 =
�2 − (1− -)(∑�

�=1 ��)

-
, .2 =

�∑
�=1

��.

Since � is concave, we can write

�∑
�=1

(�(��)− �̂) = �(�1) + �(�2) +
�∑

�=3

(�(��)− �̂)− 2�̂

= �(-�1 + (1− -).1) + �(-�2 + (1− -).2) +
�∑

�=3

(�(��)− �̂)− 2�̂

≥ -�(�1) + (1− -)�(.2) +
�∑

�=3

(�(��)− �̂) + (1− -)�(.1) + -�(�2)− 2�̂

= �
(�∑

�=1

��

)
+

�∑
�=3

(�(��)− �̂) + (1− -)(�(.1)− �̂) + -(�(�2)− �̂)− �̂

≥ �
(�∑

�=1

��

)
− �̂ . (22)

The last inequality (22) follows since �(�)− �̂ ≥ 0, ∀� ∈ R. □

In order to prove Proposition 3, we recall a general result concerning the equivalence between
an unspecified optimization problem and a parameterized family of problems.

Consider the problems

min �(�) (23)

s.t. � ∈&

min �(�) + �(�, ") (24)

s.t. � ∈ /

We state the following

25

Theorem 1 Let & and / be compact sets. Let ∥ ⋅ ∥ be a suitably chosen norm. We make the
following assumptions.

A1) The function � is bounded on / and there exists an open set � ⊃ & and a real number
0 > 0, such that, ∀ �, � ∈ �, � satisfies the following condition:

∣�(�)− �(�)∣ ≤ 0∥�− �∥. (25)

The function � satisfies the following conditions:

A2) ∀ �, � ∈& and ∀ " ∈ ℝ+,
�(�, ") = �(�, ").

A3) There exist a value "̂ and, ∀ . ∈ & , there exists a neighborhood 1(.) such that, ∀ � ∈
1(.) ∩ (/ ∖&), and " ∈]0, "̂], we have

�(�, ")− �(., ") ≥ 0̂∥�− .∥, (26)

where 0̂ > 0 is chosen as in (25). Furthermore, let 1 =
∪
�∈�

1(.), ∃ �̄ /∈ 1 such that

lim
�→0

[�(�̄, ")− �(., ")] = +∞, ∀ . ∈&, (27)

�(�, ") ≥ �(�̄, "), ∀ � ∈ / ∖ 1, ∀ " > 0. (28)

Then, ∃ "̃ ∈ ℝ such that, ∀ " ∈]0, "̃], Problems (23) and (24) have the same minimum points.

Proof. See [23].

Now we give the proof of the Proposition 3, with

& =
{
� ∈ � : �� ∈ {0, 1}, ∀# ∈ �

}
, / =

{
� ∈ � : 0 ≤ �� ≤ 1, ∀# ∈ �

}
.

Proof of Proposition 3. As we assume that the function � satisfies assumption �1) of Theo-
rem 1, the proof can be derived by showing that every penalty term (11)-(14) satisfies assumption
�2) and �3) of Theorem 1.

Consider the penalty term (11).
Let
 be the cardinality of �, for any � ∈& we have

�(�, ") =
 ⋅ log(")

and �2) is satisfied.
We now study the behavior of the function �(��), # ∈ �, in a neighborhood of a point .� ∈ {0, 1}.
We distinguish three different cases:

1. .� = 0 and 0 < �� < � with � < 1
2 : We have that �(��) = ln(�� + ") which is continuous

and differentiable for 0 < �� < �, so we can use mean value Theorem obtaining that

�(��)− �(.�) =
(

1

�̃� + "

)
∣�� − .�∣, (29)

26

with �̃� ∈ (0, ��). Since �̃� < �, we have

�(��)− �(.�) ≥
(

1

�+ "

)
∣�� − .�∣. (30)

Choosing � and " such that

�+ " ≤ 1

0̂
, (31)

we obtain
�(��)− �(.�) ≥ 0̂∣�� − .�∣. (32)

2. .� = 1 and 1 − � < �� < 1 with � < 1
2 : We have that �(��) = ln(1 − �� + ") which

is continuous and differentiable for 1 − � < �� < 1, so we can use mean value Theorem
obtaining that

�(��)− �(.�) =
(

− 1

1− �̃� + "

)
(�� − .�) =

(1

1− �̃� + "
)
∣�� − .�∣, (33)

with �̃� ∈ (��, 1). Since � <
1
2 and �̃� > 1− � we have 1

1−�̃�
> 1

� then

�(��)− �(.�) ≥
(

1

�+ "

)
∣�� − .�∣. (34)

We have again that (32) holds when � and " satisfy (31).

3. .� = �� = 0 or .� = �� = 1: We have �(��)− �(.�) = 0.

We can conclude that, when � and " satisfy (31),

�(�, ")− �(., ") ≥ 0̂
∑
�∈�

∣�� − .�∣ ≥ 0̂ sup
�∈�

∣�� − .�∣ (35)

for all . ∈& and all � such that sup�∈� ∣�� − .�∣ < �.
Now we define 1(.) = {� ∈ R� : sup�∈� ∣��−.�∣ < �} and 1 =

∪�
�=1 1(.�) where 2 is the number

of points . ∈& .
Let �̄ /∈ 1 be such that ∃
 ∈ � : �̄� = � (�̄� = 1− �) and �̄� ∈ {0, 1} for all # ∕=
, # ∈ �.
Let {"�} be a sequence such that "� → 0 for � → ∞, we can write for each . ∈& :

lim
�→∞

[�(�̄, "�)− �(., "�)] = lim
�→∞

(
[ln(�+ "�) + (
− 1) ln("�)]−
 ln("�)

)
=

lim
�→∞

(
ln(�+ "�)− ln("�)

)
= +∞

and (27) holds.
Then ∀� ∈ /∖1, and ∀" > 0 we have for the monotonicity of the logarithm:

�(�, ")− �(�̄, ") =
∑
� ∕=�

min{ln(�� + "), ln(1− �� + ")} − (
− 1) ln(")

+ min{ln(��̃ + "), ln(1− ��̃ + ")} − ln(�+ ") ≥ 0,

where � ≤ ��̃ ≤ 1− �. Then (28) holds, and Assumption �3) is satisfied.
The proofs of the equivalence between (15) and (16) using the other penalty terms follow by
repeating the same arguments used here. □

27

References

[1] T. Achterberg and T. Berthold. Improving the feasibility pump. Discrete Optimization,
4, pp 77–86, 2007.

[2] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters,
34, pp 361–372, 2006. Problems available at http://miplib.zib.de.

[3] E. Balas, S. Ceria, M. Dawande, F. Margot, G. Pataki. OCTANE: A new heuristic
for pure 0-1 programs. Operations Research, 49(2), pp 207-225, 2001.

[4] E. Balas, C.H. Martin. Pivot-and-complement: A heuristic for 0-1 programming. Man-
agement Science, 26(1), pp 86-96, 1980.

[5] E. Balas, S. Schmieta, C. Wallace.Pivot and shifta mixed integer programming heuris-
tic. Discrete Optimization, 1(1), pp 3-12, 2004.

[6] L. Bertacco, M. Fischetti, and A. Lodi. A feasibility pump heuristic for general mixed-
integer problems. Discrete Optimization, 4, pp 63–76, 2007.

[7] J. Eckstein and M. Nediak. Pivot, cut, and dive: a heuristic for 0-1 mixed integer
programming. Journal of Heuristics, 13, pp 471–503, 2007.

[8] P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuejols, I.E. Grossmann, C.D.
Laird, J. Lee, A. Lodi, F. Margot, N.Sawaya and A. Waechter. An Algorithmic
Framework for Convex Mixed Integer Nonlinear Programs. IBM Research Report RC23771,
To appear in Discrete Optimization, in press.

[9] P. Bonami, G. Cornuejols, and A. Lodi, F. Margot. A feasibility pump for mixed
integer nonlinear programs. Mathematical Programming, 119, pp 331–352, 2009.

[10] E. Danna, E. Rothberg, C. Le Pape. Exploring relation induced neighborhoods to
improve MIP solution. Mathematical Programming 102, 1, pp 71–90, 2005.

[11] E. D. Dolan, J. J. Moré. Benchmarking optimization software with performance profile.
Mathematical Programming 91, pp 201–213, 2002.

[12] M. Fischetti, F. Glover, A. Lodi. The Feasibility Pump. Mathematical Programming,
104, pp 91–104, 2005.

[13] M. Fischetti, A. Lodi. Local Branching. Mathematical Programming, 98(1-3), pp 23–47,
2003.

[14] M. Fischetti, D. Salvagnin. Feasibility pump 2.0. Mathematical Programming Com-
putation, 1, pp 201–222, 2009.

[15] F. Glover, M. Laguna. General purpose heuristics for integer programming part I.
Journal of Heuristics, 3, 1997.

[16] F. Glover, M. Laguna. General purpose heuristics for integer programming part II.
Journal of Heuristics, 3, 1997.

28

[17] F. Glover, M. Laguna. Tabu Search. Kluwer Academic Publisher, Boston, Dordrecht,
London, 1997.

[18] F. Glover, A. Løkketangen, D.L. Woodruff. Scatter search to generate diverse MIP
solutions. in: M. Laguna, J. Gonzàlez-Velarde (Eds.), OR Computing Tools for Modeling,
Optimization and Simulation: Interfaces in Computer Science and Operations Research,
Kluwer Academic Publishers, pp. 299317, 2000.

[19] F.S. Hillier, Efficient heuristic procedures for integer linear programming with an interior.
Operations Research, 17, pp 600-637, 1969.

[20] F.S. Hillier, R.M. Saltzman., A heuristic ceiling point algorithm for general integer
linear programming. Management Science, 38(2), pp 263-283, 1992.

[21] ILOG, Cplex. http://www.ilog.com/products/cplex.

[22] A. Løkketangen, F. Glover. , Solving zero/one mixed integer programming problems
using tabu search. European Journal of Operations Research, 106, pp 624-658, 1998.

[23] S. Lucidi, F. Rinaldi. Exact penalty functions for nonlinear integer programming prob-
lems. Accepted for publication on JOTA.

[24] O. L. Mangasarian. Solutions of General Linear Complementarity Problems via Nondif-
ferentiable Concave Minimization. Acta Mathematica Vietnamica, 22(1), pp 199–205, 1997.

[25] Rinaldi F. New results on the equivalence between zero-one programming and continuous
concave programming, Optimization Letters, Vol. 3, No. 3, 377–386 (2009).

29

	copertinaTR10 2010
	FeasPump

