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Abstract

In this work, we study continuous reformulations of zero-one programming problems. We prove that,
under suitable conditions, the optimal solutions of a zero-one programming problem can be obtained by
solving a specific continuous problem.
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1 Introduction

Several important problems arising in operations research, graph theory and mathematical pro-
gramming are formulated as 0-1 programming problems. A possible approach for solving this
class of problems can be that of transforming the original problem into an equivalent continuous
problem. Various transformations have been proposed in the literature (see e.g. [1]-[3], [10]-[12]).
A well-known continuous reformulation comes out by relaxing the integrality constraints on the
variables and by adding a penalty term to the objective function. This approach has been first
introduced by Raghavachari [13] to solve 0-1 linear programming problems. There are many
other papers related to the one by Raghavachari (see e.g. [4],[6]-[9], [14] and [16]).
In this paper, we propose a different continuous reformulation for solving 0-1 programming
problems obtained by relaxing the integrality constraints on the variables and by making a non-
linear transformation of the variables in the objective function. It can be proved that, under
suitable assumptions, a given binary problem and its continuous reformulation are equivalent.
The paper is organized as follows. In Section 2, we show a general equivalence result between a
0-1 programming problem and a continuous problem. In Section 3, we define various continuous
reformulations, and we show (using the general results stated in Section 2) that a binary problem
and its continuous reformulations share the same global minima.

2 Equivalent continuous reformulations for zero-one program-

ming problems

We start from the zero-one programming problem

min cTx

s.t. x ∈ C (IP)

x ∈ {0, 1}n

where C ⊂ R
n is a convex set.

Then we consider the following nonlinear constrained problem

min f(x)

s.t. x ∈ C (CP)

0 ≤ x ≤ e

where

f(x) =

n
∑

i=1

ci>0

ci gi(xi) +

n
∑

i=1

ci<0

|ci| gi(xi) +

n
∑

i=1

ci=0

gi(xi)−

n
∑

i=1

ci<0

|ci|, (1)

and gi : [0, 1] → R, i = 1, . . . , n are continuous concave functions.

In order to prove the equivalence between Problem (IP) and Problem (CP), we now make some
assumptions on the set of extreme points of (CP) and on the functions gi used in the definition
of f .

Assumption 1 Let S be the set of extreme points of (CP). Let xl and xu be two values defined
as follows:

xl = inf
x∈S

{xi : i = 1, . . . , n; xi 6= 0},
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xu = sup
x∈S

{xi : i = 1, . . . , n; xi 6= 1}.

We assume there exists a value ǫ > 0 such that xl > ǫ and 1− xu > ǫ.

In Fig. 1 we have an example of a convex feasible set of (CP) satisfying Assumption 1.

x
l

x
u

C ⊂  R2

0 1

1

Figure 1: Example of a feasible set C.

Assumption 2 For all indices i such that ci > 0, we have

(i) gi(0) = 0, gi(1) = 1;

(ii) gi(xi) >
(n+1) maxi |ci|+

∑
i
|ci|

mini |ci|
if xi ∈ [xl, xu];

For all indices i such that ci < 0, we have

(iii) gi(0) = 1, gi(1) = 0;

(iv) gi(xi) >
(n+1) maxi |ci|+

∑
i
|ci|

mini |ci|
if xi ∈ [xl, xu];

For all indices i such that ci = 0, we have

(v) gi(0) = 0, gi(1) = 0;

(vi) gi(xi) > n maxi |ci|+
∑

i |ci| if xi ∈ [xl, xu].

We report here some important results about the minimization of a concave function over a
closed convex set (See [15] for further details):
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Proposition 1 Let f be a concave function, and let C be a closed convex set contained in dom
f . Suppose there are no half-lines in C on which f is unbounded below. Then:

inf {f(x) | x ∈ C} = inf {f(x) | x ∈ E}, (2)

where E is the subset of C consisting of the extreme points of C ∩L⊥, being L the lineality space
of C and L⊥ the orthogonal complement of L. The infimum relative to C is attained only when
the infimum relative to E is attained.

The following results are an immediate consequence of Proposition 1:

Corollary 1 Let f be a concave function, and let C be a closed convex set contained in dom f .
Suppose that C contains no lines. Then, if the infimum of f relative to C is attained at all, it
is attained at some extreme points of C.

Corollary 2 Let f be a concave function, and let C be a nonempty polyhedral convex set con-
tained in dom f . Suppose there are no half-lines in C on which f is unbounded below. Then the
infimum of f relative to C is attained.

Combining Corollary 1 and 2 we obtain the following result:

Corollary 3 Let f be a concave function, and let C be a nonempty polyhedral convex set con-
tained in dom f . Suppose that C contains no lines, and that f is bounded below on C. Then
the infimum of f relative to C is attained at one of the (finitely many) extreme points of C.

Now we can prove the equivalence between the zero-one programming problem (IP) and its
continuous concave reformulation (CP).

Theorem 1 If Assumptions 1 and 2 hold, then problems (IP) and (CP) have the same minimum
points.

Proof. We first prove that if x∗ is a solution of (IP) then x∗ is a solution of (CP).

Let x∗ be a solution of (IP) and suppose by contradiction that there exists a point x̄ solution of
(CP) such that

f(x̄) < f(x∗) = cTx∗. (3)

We consider two cases:

1. Suppose that x̄i ∈ {0, 1} for all i = 1, . . . , n:

cT x̄ = f(x̄) < f(x∗) = cTx∗.

This cannot be the case as it would exists x̄ ∈ C ∩ {0, 1}n such that cT x̄ < cTx∗, contra-
dicting the fact that x∗ is the optimum of (IP).

2. Suppose now that ∃ j ∈ {1, . . . , n} s.t. x̄j /∈ {0, 1}:

If cj > 0, by (i) and (ii) in Assumption 2 we have:

f(x̄) =
∑

i:x̄i=1

ci + cj gj(x̄j) ≥ −
∑

i

|ci|+min
i

|ci| gj(x̄j) > n max
i

|ci|.
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If cj < 0 by (iii) and (iv) in Assumption 2, we have:

f(x̄) =
∑

i:x̄i=1

ci + |cj | gj(x̄j)− |cj | ≥ −
∑

i

|ci|+min
i

|ci| gj(x̄j)−max|cj | > n max
i

|ci|.

Finally if cj = 0, by (v) and (vi) in Assumption 2, we have:

f(x̄) =
∑

i:x̄i=1

ci + gj(x̄j) ≥ −
∑

i

|ci|+ gj(x̄j) > n max
i

|ci|.

Hence, for each x ∈ C ∩ {0, 1}n we have

f(x̄) > n max
i

|ci| > cTx (4)

which implies
f(x̄) > cTx∗,

but this contradicts (3).

We now prove that if x̄ is a solution of (CP) then x̄ is a solution of (IP).

If x̄ is a solution of (CP) then, since we are minimizing a concave function over a compact and
convex set, by Corollary 1, we have that x̄ is an extreme point of C ∩ [0, 1]n.

We first prove that x̄ ∈ {0, 1}n.

By contradiction, we suppose that there exists an index j ∈ {1, . . . , n} such that x̄j /∈ {0, 1}. By
repeating the same arguments used in the first part of the proof (case 2), for all x ∈ C ∩ {0, 1}n

we have
f(x̄) > cTx = f(x)

thus obtaining a contradiction.

Now suppose by contradiction that there exists x∗, solution of (IP), such that

cTx∗ < cT x̄. (5)

Since x̄ ∈ {0, 1}n we have that f(x̄) = cT x̄, thus (5) implies that f(x∗) < f(x̄), contradicting
the optimality of x̄ for (CP). The Theorem is then proved. 2

We can apply the previous result to the case of zero-one linear programing problems. Suppose
that we are dealing with the following problem:

min cTx

s.t. x ∈ P (ILP)

x ∈ {0, 1}n

where P is a polyhedral set. Then we can prove the equivalence of (ILP) with the following
problem

min f(x)

s.t. x ∈ P (LP)

0 ≤ x ≤ e

where the function f : [0, 1]n → R is defined as in (1). The following result is a straightforward
application of Theorem 1.
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Proposition 2 If Assumption 2 holds, then problems (ILP) and (LP) have the same minimum
points.

Proof. First of all, we see that the feasible set of problem (LP) satisfies Assumption 1. Let V
be the set of the vertices of the polyhedron P . Since the cardinality of V is finite, we can define

xl = min
x∈V

{xi : i = 1, . . . , n; xi 6= 0},

xu = max
x∈V

{xi : i = 1, . . . , n; xi 6= 1}.

It is easy to see that there exists a value ǫ > 0 such that xl > ǫ and 1− xu > ǫ. In other words,
xl and xu are respectively the minimum and the maximum component (different from 0 and 1)
of the vertices of the polyhedron P .
The rest of the proof is a verbatim repetition of Theorem 1. 2

3 Examples of continuous reformulations

In this section, starting from the ideas developed in [5], we propose various examples of contin-
uous reformulations for solving a given zero-one programming problem, and we show (using the
general results stated in the previous section) that these reformulations have the same global
minimizers of the original zero-one programming problem.
First of all, we denote

c̃ =
(n+ 1) maxi |ci|+

∑

i |ci|

mini |ci|
.

Now we can define the functions gi to be used in (1):

Exponential Functions

Case ci > 0 :

gi(t) = min
{

γ1+(1− e−αt), 1 + γ2+(1− e−α(1−t))
}

, (6)

γ1+ >
c̃

1− e−αxl
, γ2+ >

c̃− 1

1− e−α(1−xu)
; (7)

Case ci < 0 :

gi(t) = min
{

1 + γ1
−

(1− e−αt), γ2
−

(1− e−α(1−t))
}

, (8)

γ1
−

>
c̃− 1

1− e−αxl
, γ2

−

>
c̃

1− e−α(1−xu)
; (9)

Case ci = 0 :
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gi(t) = min
{

γ0(1− e−αt), γ0(1− e−α(1−t))
}

, (10)

γ0 > max
{nmaxi |ci|+

∑

i |ci|

1− e−αxl
,
nmaxi |ci|+

∑

i |ci|

1− e−α(1−xu)

}

; (11)

with α > 0.

Logistic functions

Case ci > 0 :

gi(t) = min

{

δ1+

(

1− e−αt

2(1 + e−αt)

)

, 1 + δ2+

(

1− e−α(1−t)

2(1 + e−α(1−t))

)}

, (12)

δ1+ > c̃
2(1 + e−αxl)

1− e−αxl
, δ2+ > (c̃− 1)

2(1 + e−α(1−xu))

1− e−α(1−xu)
; (13)

Case ci < 0 :

gi(t) = min

{

1 + δ1
−

(

1− e−αt

2(1 + e−αt)

)

, δ2
−

(

1− e−α(1−t)

2(1 + e−α(1−t))

)}

, (14)

δ1
−

> (c̃− 1)
2(1 + e−αxl)

1− e−αxl

, δ2
−

> c̃
2(1 + e−α(1−xu))

1− e−α(1−xu)
(15)

Case ci = 0 :

gi(t) = min

{

δ0

(

1− e−αt

2(1 + e−αt)

)

, δ0

(

1− e−α(1−t)

2(1 + e−α(1−t))

)}

, (16)

δ0 >
(

nmax
i

|ci|+
∑

i

|ci|
)

·max
{2(1 + e−αxl)

1− e−αxl
,
2(1 + e−α(1−xu))

1− e−α(1−xu)

}

; (17)

with α > 0.

Logarithmic functions

Case ci > 0 :

gi(t) = min
{

α1+(ln(t+ ǫ)− ln ǫ), 1 + α2+(ln(1− t+ ǫ)− ln ǫ)
}

, (18)

α1+ >
c̃

ln(xl + ǫ)− ln ǫ
, α2+ >

c̃− 1

ln(1− xu + ǫ)− ln ǫ
; (19)

Case ci < 0 :

gi(t) = min
{

1 + α1
−

(ln(t+ ǫ)− ln ǫ), α2
−

(ln(1− t+ ǫ)− ln ǫ)
}

, (20)

α1
−

>
c̃− 1

ln(xl + ǫ)− ln ǫ
, α2

−

>
c̃

ln(1− xu + ǫ)− ln ǫ
; (21)
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Case ci = 0 :

gi(t) = min
{

α0(ln(t+ ǫ)− ln ǫ), α0(ln(1− t+ ǫ)− ln ǫ)
}

, (22)

α0 > max
{nmaxi |ci|+

∑

i |ci|

ln(xl + ǫ)− ln ǫ
,
nmaxi |ci|+

∑

i |ci|

ln(1− xu + ǫ)− ln ǫ

}

; (23)

with ǫ > 0.

Hyperbolic functions

Case ci > 0 :

gi(t) = min
{

β1+(−(t+ ǫ)−p + ǫ−p), 1 + β2+(−(1 − t+ ǫ)−p + ǫ−p)
}

, (24)

β1+ >
c̃

−(xl + ǫ)−p + ǫ−p
, , β2+ >

c̃− 1

−(1− xu + ǫ)−p + ǫ−p
; (25)

Case ci < 0 :

gi(t) = min
{

1 + β1
−

(−(t+ ǫ)−p + ǫ−p), β2
−

(−(1− t+ ǫ)−p + ǫ−p)
}

, (26)

β1
−

>
c̃− 1

−(xl + ǫ)−p + ǫ−p
, β2

−

>
c̃

−(1− xu + ǫ)−p + ǫ−p
; (27)

Case ci = 0 :

gi(t) = min
{

β0(−(t+ ǫ)−p + ǫ−p), β0(−(1− t+ ǫ)−p + ǫ−p)
}

, (28)

β0 > max
{nmaxi |ci|+

∑

i |ci|

−(xl + ǫ)−p + ǫ−p
,

nmaxi |ci|+
∑

i |ci|

−(1− xu + ǫ)−p + ǫ−p

}

; (29)

with ǫ > 0.

In Fig. 2, we report the various functions that can be used in the reformulation of a zero-one
programming problem. By setting the functions gi equal to the exponential terms, we can define
the objective function of the continuous problem (CP) as follows:

f(x) =
n
∑

i=1

ci>0

cimin
{

γ1+(1− e−αxi), 1 + γ2+(1− e−α(1−xi))
}

+

n
∑

i=1

ci<0

|ci|min
{

1 + γ1
−

(1− e−αxi), γ2
−

(1− e−α(1−xi))
}

(30)

+

n
∑

i=1

ci=0

min
{

γ0(1− e−αxi), γ0(1− e−α(1−xi))
}

−

n
∑

i=1

ci<0

|ci|.

Now we can prove that for a particular choice of the functions gi, problems (IP) and (CP) are
equivalent.
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Figure 2: Examples of functions gi for ci > 0 (in red) and ci < 0 (in blue). The green line
represents y(x) = c̃.

Proposition 3 If Assumption 1 holds and f is defined as in (30), then problems (IP) and (CP)
have the same minimum points.

Proof. We only need to prove that the functions gi used in the definition of the objective
function (30), satisfy Assumption 2.

Since c̃ > 1 and
ǫ < xl ≤ xu < 1− ǫ,

we have that all the γ-parameters are strictly greater than zero.

We consider three different cases:

1. ci > 0: the choice of the parameters γ1+ and γ2+ , and the fact that c̃ > 1 guarantee,

g(0) = min
{

0, 1 + γ2+(1− e−α)
}

= 0

and
g(1) = min

{

γ1+(1− e−α), 1
}

= 1.

Furthermore, for all xi ∈ [xl, xu], we have

gi(xi) = min
{

γ1+(1− e−αxi), 1 + γ2+(1− e−α(1−xi))
}

>

> min
{ c̃ · (1− e−αxi)

1− e−αxl

, 1 +
(c̃− 1) · (1− e−α(1−xi))

1− e−α(1−xu)

}

> c̃.
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2. ci < 0: the choice of the parameters γ1
−

and γ2
−

, and the fact that c̃ > 1 guarantee,

gi(0) = min
{

1, γ2
−

(1− e−α)
}

= 1

and
gi(1) = min

{

1 + γ1
−

(1− e−α), 0
}

= 0.

Furthermore, for all xi ∈ [xl, xu], we have

gi(xi) = min
{

1 + γ1
−

(1− e−αxi), γ2
−

(1− e−α(1−xi))
}

>

> min
{

1 +
(c̃− 1) · (1− e−αxi)

1− e−αxl
,
c̃ · (1− e−α(1−xi))

1− e−α(1−xu)

}

> c̃.

3. ci = 0: the choice of the parameter γ0 guarantees

gi(0) = min
{

0, γ0(1− e−α)
}

= min
{

γ0(1− e−α), 0
}

= gi(1) = 0.

Furthermore, for all xi ∈ [xl, xu], we have

gi(xi) = min
{

γ0(1− e−αxi), γ0(1− e−α(1−xi))
}

> nmax
i

|ci|+
∑

i

|ci|. (31)

Then Assumption 2 is satisfied.

2

The following result is obtained as an immediate consequence of Proposition 2:

Corollary 4 If function f is defined as in (30), then problems (ILP) and (LP) have the same
minimum points.

References

[1] Abello, J., Butenko, S., Pardalos, P.M., Resende, M.,Finding independent sets in a
graph using continuous multivariable polynomial formulations. J. Glob. Optim. 21, 111137,
2001.

[2] Balasundaram, B., Butenko, S.,Constructing test functions for global optimization using
continuous formulations of graph problems. Optim. Methods Softw. 20, 439452, 2005.

[3] Horst, R., Pardalos, P.M., Thoai, N.V.,Introduction to Global Optimization 2nd edn.
Kluwer, Dordrecht, 2000.

[4] Borchardt M., An Exact Penalty Approach for Solving a Class of Minimization Problems
with Boolean Variables. Optimization. 19(6), pp. 829-838, 1988.

[5] M. De Santis, S. Lucidi, F. Rinaldi. New Concave Penalty functions for improving the
feasibility pump. Department of Computer and System Sciences Antonio Ruberti Technical
Reports, Vol.2(10), 2010.

10



[6] Giannessi F., Niccolucci F., Connections between nonlinear and integer programming
problems. Symposia Mathematica, Academic Press, New York , Vol. 19, pp. 161-176, 1976.

[7] Kalantari B., Rosen J.B., Penalty Formulation for Zero-One Integer Equivalent Problem.
Mathematical Programming, Vol. 24, pp. 229-232, 1982.

[8] Kalantari B., Rosen J.B., Penalty Formulation for Zero-One Nonlinear Programming.
Discrete Applied Mathematics, Vol. 16(2), pp. 179-182, 1987.

[9] S. Lucidi, F. Rinaldi. Exact penalty functions for nonlinear integer programming prob-
lems. J Optim Theory Appl Vol. 145, pp. 479-488, 2010.

[10] Mangasarian, O.L., Knapsack Feasibility as an Absolute Value Equation Solvable by
Successive Linear Programming.Optim. Lett. Vol. 3(2), 2009.

[11] Murray W., Ng K. M., An algorithm for nonlinear optimization problems with binary
variables. Computational Optimization and Applications, Vol. 47(2), 257-288, 2010.

[12] Pardalos P. M., Prokopyev O. A., Busygin S., Continuous Approaches for Solving
Discrete Optimization Problems. Handbook on Modelling for Discrete Optimization, Springer
US, Vol. 88, pp. 39-60, 2006.

[13] Raghavachari M., On Connections Between Zero-One Integer Programming and Concave
Programming Under Linear Constraints, Operation Research Vol. 17(4), pp. 680-684, 1969.

[14] Rinaldi F. New results on the equivalence between zero-one programming and continuous
concave programming, Optimization Letters, Vol. 3(3), 377–386, 2009.

[15] Rockafellar T., Convex Analysis, Princeton University Press, 1970.

[16] Zhu W. X., Penalty Parameter for Linearly Constrained 0-1 Quadratic Programming,
Journal of Optimization Theory and Applications, Vol. 116(1), pp. 229-239, 2003.

11


	TR16 2010
	Continuous reformulations

