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Abstract

Recent applications of graph theory to brain networks showed the
possibility of a relation between network topological indexes and cog-
nitive abilities. In this paper we want to study the relation between
the topology of brain networks and a known parameter of executive
functions, such as perseveration, using the WCST. To this end, nine
healthy subjects were subjected to a fMRI acquisitions with a 3 Tesla
Siemens scanner under condition of resting state and evaluated with
the WCST. The images were analyzed using the following Matlab tool-
boxes: SPM8 and Functional Connectivity Toolbox. FromWCST data
the indexes of perseverative, nonperseverative errors and perseverative
response were calculated. A small-world feature appears in the cost
range (T) 0.45 - 0.50: In this interval, the γ index shows a positive
correlation with perseverative responses ( T=0.50, r=0.864, p=0.006).
Moreover, among the γ values of single cerebral regions (T=0.50), the
middle part of orbital frontal gyrus left (r=0.920, p=0.001) show a
significant trend for positive correlation with perseverative responses.
These results suggest a relation between network’s segregation and
perseveration; more specifically a greater segregation of subnetworks is
related to a lower adaptability of behavior to the environment changes.
Our findings can provide hints to understand the pathological alter-
ations of mental disease related to impairment of executive functions.
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Abbreviations used in the text:

fMRI: Functional magnetic resonance imaging
BOLD: Blood oxygenation level dependent
ROI: Region of interest
IQ: Intelligence quotient
WCST: Wisconsin card sorting test
SPM: Statistical Parametric Mapping
AM: Adjacency matrix
C: Clusterig coefficient
L: Characteristic Short Path Lenght
k: Node degree
E: Global efficiency
Eloc: Local efficienct
γ: Gamma value
λ: Lambda value
S: Small-worldess
T: Threshold cost
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1 Introduction.
In task-related fMRI technique, the performance of cognitive tests is thought
to influence the activation of one or more specific cerebral areas. With dif-
ferent analysis techniques it is possible to integrate these cerebral areas into
a different networks. As a matter of fact, BOLD signal fluctuations of these
areas have been observed as correlated between each other in the resting
state [1], such correlations remain stable even in the lack of given stimuli and
involve a relevant fraction of brain metabolism. The observed correlation
pattern is reminding the more general time dependent correlation between
two spatially distributed neurophysiological events called functional connec-
tivity. In such a frame, the set of these stable functional connections in the
absence of specific stimulation are defined neurocognitive networks (Figure 1).

In this contest, the graph theory [2] provides a theoretical support in the
investigation of complex network topologies [3, 4] (for details see Appendix
1) allowing us to answer critical questions on brain networks like: 1) How
is the topology of brain network organized? 2) How efficiently the brain in-
tegrates the information coming from subnetworks? A key concept of this
approach is the identification of a "small-world" architecture [5, 6] of brain
network, indicating the possible existence of an intermediate state between
maximal segregation and maximal integration of network’s nodes. Recent
investigations found some significant correlations between the functional effi-
ciency level of the network and cognitive indexes [7–10], indicating a possible
dependence between cognitive abilities and topological features of brain net-
works.

An important cognitive ability, also for clinical implication for neurologic
and psychiatric diseases, are the executive functions. A recent definition
of executive functions has been given by Funahashi: "a product of the co-
ordinated operation of various processes to accomplish a particular goal in
a flexible manner" [11]. Thus, mental flexibility assumes an important role
for the realization of this ability and can be objectively measured by means
of the classical Wisconsin Card Sorting Test (WCST, see Appendix 2). In
such a context, the using of WCST initially showed an altered performance
in patients with prefrontal cortex lesions [12]. More recently, the using of
task-related fMRI methodology showed an unclear picture with distributed
activations in frontal and nonfrontal regions [13–20]. For an exhaustive re-
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view of such intricate situation see [21].

From the bulk of the above mentioned results a complex picture appears,
in which distributed brain networks are involved in the WCST performance.
Complex network approach can be suggested as an approach to distinguish
cognitive functions which depend upon large brain network, from other cogni-
tive functions depending upon more localized brain network clusters. Assum-
ing that cognitive function of the first type would be more depending upon
a higher communication level, while the other type would be more depend-
ing upon the clustering of specific subnetworks, the two types could reach
an equilibrium state between segregation and integration forces to be ulti-
mately identified as a small-world state. In order to validate this hypothesis
we adopt the following strategy:

• Studying the functional brain network in healthy subjects looking at
integration and segregation features.

• Studying the relation between brain network features and cognitive
performance.

• Exploring the relation between specific areas within more distributed
brain network and cognitive performance.

2 Materials and methods.

2.1 Participants and data collection.

Nine volunteers were selected for negative anamnesis of neurological and
psychiatric diseases. Among these, six were females, the mean age was 27.9
years (with minimum and maximum 20 and 42 respectively) and average
school attendance 14.1 years (7 subjects with 13 years and 2 with 18). All the
participants were subjected to an ecoplanar sequence (EPI) in a resting state
condition using a Siemens MRI 3 Tesla, in the Department of Neurological
Sciences, Sapienza - University of Rome. fMRI images were collected under
the following conditions: TR= 3000ms; TE= 30ms; 40 slices; thickness 4 mm;
voxels dimension 3.8x 3.8 x 4; scans 150; see Figure 2. During the scanning
time the volunteers were recommended to keep their eyes closed and think
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Figure 1: Correlation matrix of BOLD signals’ from different anatomical regions. Func-
tional grouping of anatomical regions provided by [22] on the basis of fMRI data.

of nothing in particular without falling asleep. Before the scanning all the
subjects signed the informative consensus document.

2.2 fMRI data preprocessing.

DICOM images were converted to the spm analyze format by MRI-converter.
For image preprocessing the following Matlab toolboxes were used: SPM8
(Statistical Parametric Mapping, Wellcome Department of Cognitive Neurol-
ogy, London, UK) and Functional Connectivity Toolbox. In all cases the first
10 images were discarded, the remaining were reoriented to the 10 scanning
volume, corrected for the acquisition time, realigned and spatially normalized
on the reference standard template in order to reduce the individual anatom-
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Figure 2: Slices from a single subject in a typical fMRI session (raw data, see the text for
details).

ical variability. As standard template an EPI image was used with reference
coordinate from Montreal Neurological Institute (MNI). Subsequently, the
images were corrected for noise source from cephalorachidian liquid, white
matter signal, grey matter signals and body movements.Finally, a band-pass
filter was utilized in the range of 0.008-0.09 Hz on BOLD signals.

2.3 fMRI data analysis.

Our analytical strategy can be schematized as follows (Figure 3):

• The images of subjects were divided into 90 ROI by automatic anatom-
ical labeling [23].

• From each ROI the time series were extracted for each subject (acquisi-
tion time 450 sec with 3 Hz frequency, in order to obtain discrete series
of 150 units. After excluding the first 10 images, as above described,
140 units were left for analysis.)
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• For each subject a correlation matrix was calculated for all possible
couples of the 90 ROIs. This information was used as a functional
connectivity index, (Figure 4).

• A proportional threshold T (cost, see appendix 1) was applied to the
previous matrices. Such a threshold was used to select the fraction
of links with higher correlation coefficient on the matrix correlation, in
order to characterize, within the original network, possible subnetworks
of increasing size. To this purpose, the networks with T from 0.05 to
0.5, at 0.05 intervals, were studied and each network obtained was
binarized. Finally, the associated random network of each binarized
network was calculated preserving the node degree distribution of the
original network (20 iterations for node re-wiring).

• For each threshold range and related random network the following
indexes were calculated: C, L, γ, λ and S (for a detailed description of
the above indexes see Appendix 1). From the T where all the networks
are fully connected (not a node without link exists in the networks
of subjects) the U Mann-Whitney test was used for each threshold
in order to find the small-world range, namely C of random networks
significantly lower than the real networks and no difference between L
of real networks and random networks.

• The correlation matrix of each subject was submitted to the propor-
tional threshold corresponding to the small-world condition and the
following indexes were calculated: C, L, k, E, Eloc, γ, λ and S.

2.4 Neuropsychological evaluation.

After imaging acquisition the WCST was administered to each subject in a
computerized version on the PEBL (The Psychology Experiment Building
Language, http://pebl.sourceforge.net/) platform. Then, the results were
imported in an Excel file for the task performance analysis and the following
behavioral indexes were calculated : perseverative errors, nonperseverative
errors and perseverative responses (see appendix 2).
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Figure 3:
flowchart
of the
data
analysis
methods.

2.5 Statistical analysis.

The following statistical analyses were made: partial correlations (controlling
variable = age) between behavioral data and network indexes. In particu-
lar, a number of performance descriptors, namely the rate of perseverative
responses, perseverative errors and nonperseverative errors, were correlated
with the following network indexes: γ and λ. Finally, the same statistical
analysis was performed on γ value of each node and perseverative responses.
In addition, for controlling demographic variables, such as gender and school
attendance, a series of U Mann-Whitney test were made on the groups male-
female and high school graduation(13 years)-university degree(18 years), for
both behavioral data and network indexes. All the the analyses were carried
out by the IBM SPSS version 20.

3 Results.

3.1 Behavioural data.

Our results on behavioral data include: average rate of perseverative error
(18.51, maximum and minimum values respectively 8.03 - 33.59); average
rate of nonperseverative error (10.51, 4.69 - 23.44); average rate of persever-
ative responses (39.26, 31.25 - 57.03) see also Figure 5. Nonsignificant gender
or school attendance differences were detected by U Mann-Whitney test.
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Figure 4: Cor-
relation Matrix
between ROIs of
a single subject
from fMRI data.
The raw data
are plotted in a
normalized, false
color scale.

3.2 Description of brain complex network model.

Following the procedure detailed in the methods section, a fully connected
network appears starting from a cost value = 0.15. From such a value and
up to 0.50, looking for a threshold range able to induce the smallworld state,
the trend of the following indexes was studied: C, L, γ, λ and S, (see Fig-
ure 6). U Mann-Whitney test was used to determine the differences between
random networks and original networks: C average of original networks re-
mains higher as compared to its equivalent of randomized networks in all
cases (p=0.0000411 one tail), while L average becomes closer and closer to
the corresponding randomic value up to the point where the indexes coalesce
(T=0.45, p=0.050 one tail; T=0.50, p=0.050 one tail; T<0.45, p=0.0000411
one tail). Moreover, (not shown in the figure) λ becomes equal to 1.0003
at T=0.45, while γ and S remain above 1.20 up to all T values. Hence, the
smallworld interval was chosen between 0.45 and 0.50 units. In a further step,
such threshold values were applied to each subject matrix and the relative
mean values collected in Table 1. Nonsignificant differences between genders
or school attendance were detected by the U Mann-Whitney test.
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Figure 5: Box-plot of
behavioural perfor-
mance of 9 normal
subjects (red line is the
median). See the text
for actual numerical
values

Table 1: Network Descriptors used in this work.

cost 0.45 0.50
C 0.6034 (0.591 - 0.628) 0.629 (0.615 - 0.651)
L 1.380 (1.379 - 1.381) 1.333 (1.333 - 1.334)
Eloc 0.803 (0.797 - 0.818) 0.816 (0.810 - 0.828)
E 0.725 (0.724 - 0.725) 0.750 (0.750 - 0.750)
k 40.056 44.500
γ 1.269 (1.236 - 1.322) 1.200 (1.178 - 1.235)
λ 1.000 (0.999 - 1.001) 1.000 (0.999 - 1.000)
S 1.268 (1.235 - 1.321) 1.200 (1.178 - 1.235)

3.3 Global network properties and executive functions.

Partial correlations were used in statistical analysis for taking into account
the influence of subjects age, the correlated variables are γ and λ indexes with
perseverative, nonperseverative errors and perseverative responses. The re-
sults show a positive correlation of perseverative responses and errors with
γ for multiple comparison uncorrected p-value. After Bonferroni correction
there is a trend in γ value of 0.50 threshold and perseverative responses. No
significant correlations were obtained with nonperseverative errors (see Table
2).
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Figure 6: Top, middle and bottom panels contains, respectively: the cost dependence of
clustering coefficient (blue curve), average path lenght (blue curve) and smallworldness
index. The top and middle panels also include the randomized network elements (green
curve) as a reference.
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Table 2: Correlation between behavioral data and indexes of graph at different threshold
of T.

Errors Type Index 0.45 0.50
Perseverative errors Gamma r=0.701, p=0.053 r=0.736, p=0.037*

Lambda r=0.317, p=0.444 r=-0.142, p=0.737
Nonperseverative errors Gamma r=0.275, p=0.509 r=0.170, p=0.688

Lambda r=-0.503, p=0.204 r=0.086, p=0.839
Perseverative responses Gamma r=0.787, p=0.020* r=0.864, p=0.006**

Lambda r=0.356, p=0.387 r=0.120, p=0.777

3.4 Local network properties and executive functions.

The above partial correlation analysis was carried out also for node features
at the threshold 0.50. In particular between γ of each node and perseverative
responses.

Table 3: Correlation between γ value of each node and perseverative responses.

ROI Perseverative responses
Precentral gyrus left r=0.882, p=0.004
Rolandic operculum right r=0.743, p=0.035
Supplementary motor area left r=0.799, p=0.017
Medial part of superior frontal gyrus right r=0.725, p=0.042
Middle part of orbital frontal gyrus left r=0.920, p=0.001
Inferior parietal lobule right r=-0.849, p=0.008
Inferior parietal lobule left r=-0.738, p=0.037

In table 3 were inserted the brain regions that show a significant cor-
relations between their γ value and perseverative responses, uncorrected for
multiple comparision. Moreover, no correlation remains significant after Bon-
ferroni correction for multiple comparisons, but there is a significant trend
in one region such as middle part of left orbital frontal gyrus (Figure 7).
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Figure 7: Scatter plot of perseverative responses and middle part of left orbital frontal
gyrus.

4 Discussion.

4.1 Brain networks and smallworld networks.

Graph theory as applied to brain connectivity maps allows uncovering their
emergent properties and leads, hopefully, to a better understanding of the
brain system. In particular, such a tool enlights the integration-segregation
features of brain network. For an optimal working, not only some well de-
fined brain structural modules are needed, but also an efficient functional
integration between them. The small-word architecture, as quantified by the
smallworldness index (S), clearly points to such a conclusion, since it defines
an equilibrium between the segregation features of lattice-like graphs and the
integration features typical of randomic networks (see Appendix 1).

A smallworldness » 1 is considered an indication of reliable segregation-
integration equilibrium [24]. Under our conditions such a value has been
obtained within a 0.45 - 0.50 window of the cost function. The easiest in-
terpretation of the cost function (see Appendix 1), in this context, refers
to the energy supply limitations unavoidable with the increasing number of
connections [25].
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4.2 Executive functions and global neural network.

A major question we would like to address here, concerns the connection
between the results of the WCST with the segregation level of specific sub-
networks or the integration of whole brain network. It should be mentioned,
however, that the main use of the WCST [12] has been made, up to now,
in the study of executive functions. In our analysis the test results have
been represented in the form of perseveratove responses, perseverative and
nonperseverative errors, in the aim to distinguish between their random or
specific causes.

Our results indicate that perseverative responses show a slightly posi-
tive correlation with the γ index, and no correlation with the λ index, at the
highest considered cost threshold. This means that the probability of making
perseverative responses increases when increasing segregation of the network.
Similar results were reached by other approaches based of the IQ index as a
behavioural parameter. For instance, Van de Heuvel et al. [7], using as nodes
single voxels, showed a negative correlation between the λ and the total IQ
index. In addition, Song et al. [10], using as nodes the default network ROIs,
put in evidence a significant difference in the L and E indexes between two
groups of different QI, pointing to a shorter path length for subjects with
higher IQ. Such conclusions seem confirmed by the analysis of anatomical
connectivity data by means of DTI [8].

In conclusion, the previously mentioned results indicate a correlation be-
tween IQ and integration of whole brain network, allowing to estimate the
former one through a quantitative parameter. On the basis of our results,
we hypothesize that it is possible also with others and more particular cog-
nitive abilities such executive functions. As a matter of fact, only in a single
case [9] it has been estimated the correlation of a well defined cognitive abil-
ities (working memory) with a network index (modularity), which could be
interpreted as a correlation with a segregation level.

4.3 Executive functions and local neural networks.

In order to better estimate the driving forces underlying the global correla-
tion between cerebral segregation and perseverative responses, we focused on
the γ index of each node in the brain network.

16

Parente F. and Colosimo A. - Biophysics and Bioengineering Letters - 2014 (7)1



This analysis shows results in line with global network analysis. In par-
ticular, the middle part of the left orbital frontal gyrus shows positive corre-
lation with trend toward significance. This cerebral area has been associated
already to WCST in previous fMRI studies [13–15,18–20] which confirms the
importance of the prefrontal region in the performance of task-shift function
of the executive functions. In addition, the γ value used in the analysis gives
additional information on the fact that this region uses the transfer of infor-
mation between the networks: in fact, a decrease in this index indicates a
lower degree of functional communication of that region in its sub-network
and an increase with the remaining. We can speculate that this node may
have an important role in communication between their neighboring nodes,
belonging to others sub-networks, to improve the adaptation of behavior to
the environment changes.

5 Conclusions.
It seems fair to suggest that our results confirm a dependence between the
properties of the brain network and behavioral indices already found for the
IQ. In this frame, the results show that in order to facilitate mental flexibil-
ity there is a greater importance of the specific integration between different
brain sub-networks. Besides than opening some new questions over the role
of brain mechanisms in the control of executive functions, our findings also
provide some hints to understand the mechanisms of extremely severe patho-
logical alterations. For instance, in the case of schizophrenia, an appropriate
index of mental flexibility, more than indicating a defective functioning of
specific regions, could point to a distributed brain malfunctions that impair
the functional connectivity between different regions, and hence alter the
topology of their network.
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6 Appendix 1: Graph theory.
According to the graph theory, a network is defined as an ensemble of N
nodes linked by K edges. Three different types of networks may be distin-
guished, whether links are i) directed, ii) weighted, or iii) binarized. In what
follows we deal with binary networks, within which links are not endowed
with weight or direction, and may only exist (1) or non exist (0). The binary
values may be arranged in an NxN squared matrix, called the Adiacency
Matrix (AM), where the i,j location indicates the (non)existence of a link
between i and j nodes. In fMRI studies the links are defined in terms of func-
tional connectivity between nodes corresponding to ROIs localized in specific
voxels [26]. From the AM is straightforward calculate the following indices
of graph’s description:

• C = Clustering Coefficient (index of segregation);

• L = Characteristic Path Length (index of integration);

By consideration of the two above indexes, the following graph typologies
can be distinguished:

• regular or lattice-like type: high C and high L;

• random type: low L and low C;

• small-world type: intermediate C and L (Figure 8);

• scale-free type: low level of L and intermediate C between random and
small-world types (power law distribution of Node Degrees)

In addition, two other indexes have been proposed to characterize the
network topology, namely: Global and Local Efficiency [27], appropriate
for estimating the communication level between nodes in whole network and
in subnetworks respectively; and the Modularity index, indicating the clear
presence of subnetworks [28] .
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Regular Small-world Random
————————————————————————————>
0 Rewiring probability 1

Figure 8: Intermediate location of Smallwordness in the Regular → Random transition of
network as a function of links rewiring. (From [29]). Rewiring probability is the probability
of any edge to be rewired into the graph as a random edge.

6.1 Network parameters.

The Graph Theory indexes [4], used in the present contribution are listed
below:
- N = total number of nodes in the network.
- L = total number of links in the network.
- (i,j) = is a link between i and j nodes.
- aij = link value between nodes i and j ( = 0/1 in binary networks).

Degree: Number of links in node i.

ki =
∑
j∈N

aij (1)

Shortest Path Length: Minimal Number of Links connecting two nodes
i and j, corresponding to the distance between them.

dij =
∑

auv∈gi↔j

auv (2)

where gi ↔j is the Shortest Path passing through u and v intermediate nodes
of the total trajectory between i and j.
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Clustering Coefficient: the fraction of node neighbors that are neigh-
bors of each other.

C =
1

N

∑
i∈N

∑
j,h∈N aijaihajh
ki(ki − 1)

(3)

Characteristic Short Path Lenght: Average of Short Path Length.

L =
1

N

∑
i∈N

∑
j∈N,i6=j dij
N − 1

(4)

Cost: Connectivity Index.

0 ≤ k =
2 ∗ ετ

N(N − 1)
≤ 1 (5)

where ετ is the number of links associated to a given ( τ) threshold.

Global Efficiency: Integration level between nodes, inversely related to
L.

E =
1

N

∑
i∈N

∑
j∈N,i6=j d

−1
ij

N − 1
(6)

Local Efficiency: Segregation Level (related to C).

Eloc =
1

N

∑
i∈N

∑
j,h∈N,j 6=i aijaih[djh(Ni)]

−1

ki(ki − 1)
(7)

with djh(Ni) is the length of the shortest path between j and h, that contains
only neighbors of i.

Gamma : C of a network normalized to the corresponding random net-
work (γ > 1 in the small world networks).

γ =
C

Crand
(8)
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Lambda: L of a network normalized to the corresponding random net-
work (about 1 in the small world networks).

λ =
L

Lrand
(9)

Small-Worldness: S > 1 in Small World networks.

S =
C/Crand
L/Lrand

(10)

7 Appendix 2: Wisconsin Sorting Task.
The Wisconsin Sorting Task was originally developed by Grant and Berg to
estimate the abstract reasoning and the adaptation to an abrupt change of
the response strategy. This task was successively modified by B. Milner to
evaluate alterations consequent to prefrontal lesions. In the classical proto-
col, the task consists in the association between one of 128 response cards
with one of four key cards. The cards are distinguishable by the color, shape
and number of represented objects. An initial association can be modified
in subsequent steps, as a result of the experimenter’s feedback. After 10
consecutive correct associations, on the basis of one of the three above listed
features, the association rule changes by choosing a different feature. The
test is over after 128 responses or after 10 correct responses in six feature
changes (60 total correct responses) (Figure 9). In such a context errors are
connected to inability to recognize the current rule. In particular, if errors
consist in the failing recognition of the rule updating then are defined as
"perseverative" errors, else if the response fall in a card of the previous rule
without falling in error then are defined as perseverative responses. Perse-
verative, nonperseverative errors and perseverative responses quantitatively
estimated, are used as performance indicator in the WCST.
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Figure 9: WCST carried out on the
PEBL platform. As a example: the
four cards at the top are the key
cards, while the bottom card is one
of 128 responses cards. Subject must
associate one of four key cards to the
response card. In our case, the associ-
ation between response card and the
first (1) key card is defined as "cor-
rect" if the rule is based upon the
color similarity. After updating the
rule to another similarity type (e.g.,
number of items), if the subject still
associates response card to 1 key card
(color feature), a perseverative errors
is produced.
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