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Abstract

Up to now positive, coactivating interactions polarized the attention
of people studying the time-dependent functional connectivity of brain
networks: we report here about the negative, deactivating interactions
observed, in the same above contest, after filtering by appropriate thresh-
olds the intensities of BOLD signals from coupled brain regions. The final
aims of our strategy remain: 1) studying the de-activating interactions in
their essential role of keeping stationary any functional brain state, and 2)
exploiting the opportunity of clustering different subjects from functional
parameters recorded under the favorable condition offered by the Resting
State.

Keywords. Brain Resting State, Brain Functional Networks, time-dependent
fMRI .
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1 Introduction.

Describing the emerging complexity of interconnected functional patterns in
human brain requires a set of specific analytical tools. Thus, on the basis of
fMRI data, different spatial levels of interactions have been ascribed to differ-
ent cortical and sub-cortical brain regions at different spatial scales [1]: from
the 1 mm2 of grey matter of single anatomical regions to the whole-brain func-
tional network [2]. More recently, different kinds of brain interactions have
been measured, such as correlations (or in phase signal dependences) and anti-
correlations (or in anti-phase signal dependences) [3] [4] [5] [6] [7]. In addition,
the time variability of the functional connections has been also explored and,
in such a context, observations in different cognitive states (such as attention,
motor task, ecc..) showed different patterns.

The fMRI acquisitions considered here are obtained under a resting state
condition (subjects with open eyes in the absence of any cognitive task). To
study the time-dependent functional interactions, we focussed on the sliding-
window and on the Co-Activation Pattern (CAP) methods. The former one [8]
based on the correlation of short time-windows (2 min) in the whole time series
(8 minl) showed different functional patterns in the same subject during the
same acquisition epoch and showed useful to discriminate healthy from patho-
logical mental states in schizophrenic patients [9]. The latter one stems from
the idea that filtering peacks of large amplitude by arbitrary thresholds in the
BOLD signals, can occur without substantial reduction of information. More-
over, Petridou et al. [10] clarified how unexpected conditions may contribute to
the correlation strength and the power spectra of slow fluctuations. From these
assumptions Liu and Duyn [11] proposed the Co-Activation Pattern (CAP)
analysis as an alternative to the traditional use of linear correlation. The au-
thors suggest the use of a few critical peaks (when signal intensities overcome
an arbitrary threshold) to characterize stable spatial patterns.

Along these lines, we studied the relevance of discrete phenomena in appro-
priately thresholded time series. Since CAP takes into account the possibility of
positive co-activation among cerebral areas, we decided to extend the analysis to
a more general set of possibilities , including negative interaction. In addition,
by a Principal Component Analysis (PCA) , we tried and identify significant
events in brain functional dynamics in the aim to characterize the individual
features of the complex trends emerging from the variability of the observed
phenomena.

2 Materials and methods.

2.1 Data collection and processing.

We analyzed the BOLD (Blood-Oxygen-Level Dependent) functional images of
180 healthy individuals from the Beijing Zang dataset (1000 Functional Connec-
tomes Classic collection 1) recorded at the Imaging Center for Brain Research
of the Beijing Normal University , using a 3.0 T Siemens scanner.

As detailed in the Appendix, the images of each subject were corrected by the
anatomical CompCorr method [12], preprocessed by a Matlab Toolbox (CONN),
and divided into 90 ROI (Regions Of Interest) by an automatic anatomical la-
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beling [13]: from each ROI a corresponding time series was eventually obtained.
In agreement with Power et al. [14] we used the Framewise Displacement

(FD) to look for movement variability in single scans and sign as bad scans
movements above than 0.2mm. Then, since artifacts can change signals after
8s, we made a mask from the preceding to the following two scans of a bad scan
(with TR = 2 this means a sequence of 8s in total). Finally, we scrubbed off
the mask from the temporal sequences of BOLD acquisitions; if the number of
slices in the temporal mask was higher then 60 (120 seconds), the subject was
removed from the analysis: in total we rejected 11 subjects (see also Figure 5
in the Appendix).

2.2 Setting of thresholds
In order to detect the significant positive as well as negative interactions oc-
curring among brain regions, a series of thresholds were applied to the BOLD
signals normalized as z-scores within the same ROI.

Thus, we transformed the BOLD signals in series of three possible cases
(activation = 1, deactivation= -1, null = 0), just on the basis of the signal
intensity. As a consequence, the possible interactions between cerebral regions
become 32 = 9, namely :

• [1;1] and [-1;-1] (co-activations and co-deactivations)

• [1;-1] and [-1;1] (mutual deactivations)

• [0;0, 1;0, 0;1, -1;0, 0;-1] (null interactions)

The whole procedure is graphically schematized in Figure 6 in the Appendix.

2.3 Deriving Pointwise Mutual Information (PMI).
Pointwise Mutual Information (PMI) can be used as a measure of association.
More precisely, while PMI refers to a single occurrence, the mutual information
(MI) refers to the average of all possible cases. Thus, the mutual informations
for a combination of activation (1) events among two brain regions is given by:

PMIab(1; 1) = ln(Pab(1; 1)/[Pa(1) ∗ Pb(1)]) (1)

where a and b are the two brain regions, Pab(1;1) is the joint frequency of (1) in
both regions, and Pa(1), Pb(1) are the marginal frequencies of (1) in the signals
pertaining to regions a and b.

Thus, if the joint probability (numerator) is the same as the product of
the marginal probabilities (denominator), the 2 events are independent; If the
numerator is greater than the denominator, the 2 phenomena tend to depend
among each other; the opposite can occur as a consequence of noise. In our
case a negative value of PMI (logarithm lower than 1, associated with noise) is
set to 0 and not considered. The procedure is schematized in the Appendix (
Figure 7).

The PMIs have been calculated for each of the 9 combinations, for all the
couples (90*89/2 = 4005) of brain regions and for each threshold (± 0.25; ±
0.50; ± 0.75; ± 1). The result is a set of 4 matrices each formed by 9 columns
and 4005 rows characterizing the functional connectivity of single individual.

3



2.4 Statistical analyses.

In the aim to pick-up significant coupled-activations in the brain functional
dynamics we applied a Principal Component Analysis (PCA) to the above data-
set, separately at each threshold level, to check for a potential dependence of
the phenomena from the amplitudes of BOLD signals.

In a multivariate data-set PCA finds out a new set of orthogonal variables
defined as linear combinations of the original ones through the so called load-
ings. Our hope is that a significant amount of variability (information) can be
associated, through the loadings, to the original variables from the clustering
patterns of data in a PCA space.

Figure 1: Sum of the PMI of coupled activities.
Notice that at increasing thresholds the corresponding mutual information of coupled activities
[11,-1-1,1-1,-11] increases.

3 Results.

3.1 Marginal, joint frequency and PMI of thresholded neu-
ral activities.

As for the joint frequencies of the 9 differently combined activities, the values of
coupled activations and deactivations decreases at increasing threshold values,
while the coupled null-cases tend to increase (not shown). The corresponding
PMI sums (Figure 1), however, show the opposite trend: low values at low
threshold and greater values at more conservative thresholds for coupled activa-
tion and deactivation (1;1, -1;-1, 1;-1, -1;1) and the inverse trend for the coupled
null cases (0;0)1.

1 The PMI sums of the remaining couples (0;1, 1;0, 0;-1, -1;0) are not sensitive to the
threshold, similarly to the joint frequencies (not shown).
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3.2 PCA analysis of PMI.
By a Principal Component Analysis (PCA) of the 4 matrices (one for each
threshold), formed by 9 columns and 4005 rows characterizing the functional
connectivity of each single individual, we found 4 Principal Component (PC)
explaining most part of the variability. The mean values of the components
for all subjects and the corresponding box plots are shown in Table 1 and in
Figure 2. The similarity of such values across subjects seems to indicate

PC1 PC2 PC3 PC4
0.25 31.4 (±0.7 ) 17.6 (±0.3) 16.7 (±0.3 ) 16.0 (±0.4 )
0.50 31.6 (±1.1) 19.9 (±0.9 ) 16.6 (±0.6 ) 15.5 ( ±0.6)
0.75 32.4 ( ±1.5 ) 20.9 (±1.4 ) 16.3 (±0.7 ) 15.1 ( ±0.7)
1.0 32.9 (±1.5) 20.9 (±1.5 ) 16.3 (±0.3) 14.9 (±0.8)

Table 1: % of first 4 Principal Components at different thresholds.

Figure 2: Principal Components extracted from nine coupled activities (see the text).
In the upper right corner of each panel the associated threshold is reported.

their dealing with some general functional mechanism more than with subjective
processes, differentiest among individuals.

As for PC1, the distribution of averaged loadings in Figure 3 (left panels)
show high values for the coupled activites [1;1], [-1;-1] and [0; 0] at all the used
thresholds. In the other cases the loadings become negative as the threshold
increases, while the corresponding standard deviation decreases as a function of
threshold values, except for [1;-1] and [-1;1] that show a small increase.

PC2, on the other hand, shows high positive loadings for the [1;-1], [-1;1] and
[0;0] couples, which in the first 2 cases increase with the threshold and decrease
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Figure 3: Loading distribution of original variables over PC1 and PC2.
The averaged (over individuals) loading of the original variables (coupled activities) over PC1
(blue line) and PC2 (red line) is reported in the left panels, with the corresponding St. Dev.
in the right panels. In the upper left corner of all panels the associated threshold values.
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in the third one. The [1;1] and [-1;-1] couples show small positive loadings in
the less conservative threshold (0.25) and negative loadings everywhere else,
similarly to the case of all other couples.

The loadings variability across subjects Figure 3 (right panels) decreases
with thresholds mainly for [1;-1] and [-1;1]. The third and fourth PC show a
more complicated behavior (not shown) in which no evident distribution pattern
appears for the loading associated to each couple.

4 Discussion.

In this paper the activity of 90 ROI, identified in the brain BOLD functional
images of 180 healthy individuals, has been followed in time for 8 minutes at a
resolution of 2 seconds. Our preliminary assumption is that each single ROI may
have three functional states: activated [+1] , non-activated [0] and deactivated [-
1] state as a result of filtering and then binarizing the intensity of time-dependent
signals by appropriate thresholds. Such a procedure clearly corresponds to a
noise-cleaning method in which increasing thresholds remove more and more
random events from the subsequent analysis of the 32 = 9 possible combinations
of the three above mentioned states in coupled regions.

Figure 4: Scores distribution of MI values in a PC1 / PC2 space.
The scores are from the 90*89/2 MI values of the ROIs of a single subject reckoned from raw
data filtered at the highest threshold level.

In the combined activity of paired regions, only two states of single regions
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were considered: activated and deactivated. Thus, the possible coupled condi-
tions become: co-activation; co-deactivation; mutual deactivation; null.

The PC1 and PC2 obtained from the multivariate analysis of such 9 possi-
ble combinations seem to indicate 2 phenomena: the first one including some
co-activation [1;1] and co-deactivation [-1;-1] states, the second one related to
mutual deactivation. Both phenomena are reflected by, respectively, in-phase
(or positively related) and anti-phase (or negatively related) signals originated
in the corresponding brain regions.

The loadings of the 9 original combination variables averaged over subjects
and projected on the PC1 / PC2 space (Figure 3, left panels) reveals that
the first two PCs are related to some characteristic common to most subjects2
The same exercise carried out for each single subject should provide a reliable
clustering of subjects on the basis of some unexpected simple or complex feature:
at the moment this is one main goal of our investigations.

Finally, the idea that negative interactions play a basic role in the regulation
mechanisms of brain functional networks, is reinforced by the plot of scores
shown in (Figure 4, where co-activation [+1; +1] and co-deactivation [-1; -1] lie
in the IV quadrant, while mutual deactivations, [-1; +1] and [+1; -1], in the II
(and opposite) quadrant, thus pointing to independent and equally important
functions.
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APPENDIX 1
Data pre-processing procedures.

The 1000 Functional Connectomes Classic collection, Beijing Zang dataset, was
used (http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEnhanced.
html). The database includes 180 brain functional images of healthy individuals
acquired with a 3.0 T Siemens scanner and the following acquisition parameters:
repetition time, 2000 ms; echo time, 30 ms; slices, 33; thickness, 3 mm; gap, 0.6
mm; field of view, 200x200 mm; resolution, 64x64; flip angle, 90o.

For the anatomical images a T1-weighted sagittal three-dimensional mag-
netization prepared rapid gradient echo (MPRAGE) sequence was used, cov-
ering the entire brain: 128 slices, TR= 2530ms, TE= 3.39ms, slice thickness=
1.33mm, flip angle= 7, inversion time= 1100ms, FOV= 256x256mm, and in-
plane resolution= 256x192. The first 10 scans of each subject were removed,
then the remaining functional images were oriented to the twentieth scan, re-
aligned and co-registered to the T1 image. Both the functional and the anatomi-
cal images were normalized to standard space (EPI image in Montreal Neurolog-
ical Institute coordinates) using the normalization parameters of the T1 image.
Afterwards, a spatial gaussian filter was used (4x4x4mm), the motion parame-
ters were regressed out and a band-pass filtering in the range 0.008-0.09 Hz was
performed.

Then, the images were corrected by the anatomical CompCorr method [12]
and the Functional Connectivity Toolbox (CONN) on a MATLAB R2010b plat-
form. Finally, the images of each subject were divided into 90 ROIs by the auto-
matic anatomical labeling [13] and from each ROI the time series were extracted
removing the first 10 scans.
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Figure 6: Thresholding and binarizing the BOLD signal
(A) = the normalized BOLD signal (z-score values) is thresholded at 4 levelsin terms
of Standard Deviation (0.25-0.50-0.75-1). The same criteria is applied to both positive and
negative values;
(B): thresholded signals in which only values above the positive threshold and below the
negative threshold are considered.
(C): coding of positive and negative activations by +1 and -1 values, respectively.
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Figure 7: Deriving Mutual Information values.
a),b) = binarized activity time series (fragments) from signals of the type in Figure
3.
In (I) and (II) 1, 0, -1 correspond, respectively, to positive, null and negative activity peaks
c) Frequencies) of the 1, 0 -1 peaks type in the a) and b) fragments, indicated as independent
probabilities (P).
d) Coupled frequencies/probabilities of the 1, 0, -1 peaks in the a and b fragments (Pab*)
and the corresponding mutual information (Iab).
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