
De Vico Fallani F. et al.                       Biophys. and Bioengin. Letters  (2008) – Vol 1 -  Nr 3 

 1 

Characterization of Cortical Networks during Motor 
Tasks in Humans 

 
 

Fabrizio De Vico Fallania,* Laura Astolfia,b, Febo Cincottia, Donatella Mattiaa, Fabio 
Babilonib and Alfredo Colosimob 

 
 
a IRCCS “Fondazione Santa Lucia”, Rome, Italy 
b Department of Human Physiology and Pharmacology, University “Sapienza”, Rome, 
Italy 
 
* Corresponding Author: e-mail fabrizio.devicofallani@uniroma1.it 
 

Abstract 
The present study proposes a theoretical graph approach in order to evaluate the 
functional connectivity patterns obtained from high-resolution EEG signals. In 
particular, we evaluated the dynamics of the cerebral networks during the preparation 
and the execution of the foot movement in healthy subjects. High-resolution EEG 
represents a novel technique that can estimate non-invasively the cortical activity from 
the standard scalp EEG measurements. Brain functional networks are obtained by the 
time-varying Partial Directed Coherence, which describes the time-frequency 
relationships between the signals of different cortical regions. The evaluation of the 
time-varying topology of the estimated networks is addressed by means of graph theory, 
which describes concisely the complexity of the interconnected cerebral system. 
Altogether, our findings reveal new insights about the time-frequency dynamics of the 
cortical networks involved throughout the performance of a simple foot movement. 

Introduction 
The extraction of salient characteristics from brain connectivity patterns is an open 
challenging topic, since often the estimated cerebral networks have a relative large size 
and complex structure. Recently, it was realized that the functional connectivity 
networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can 
be analyzed by means of the graph theory (Eiguluz et al., 2005; Salvador et al., 2005; 
Bartolomei et al., 2006; Stam et al., 2006; De Vico Fallani et al., 2007). Since a graph is 
a mathematical representation of a network, which is essentially reduced to nodes and 
connections between them, the use of a theoretical graph approach seems relevant and 
useful as firstly demonstrated on a set of anatomical brain networks (Watts et Strogatz, 
1998). In those studies, the authors have employed two characteristic measures, the 
average shortest path L and the clustering index C, to extract respectively the global and 
local properties of the network structure. They have found that anatomical brain 
networks exhibit many local connections (i.e. a high C) and few random long distance 
connections (i.e. a low L). These values identify a particular model that interpolate 
between a regular lattice and a random structure. Such a model has been designated as 
“small-world” network in analogy with the concept of the small-world phenomenon 
observed more than 30 years ago in social systems (Milgram, 1967). In a similar way, 
many types of functional brain networks have been analyzed according to this 
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mathematical approach. In particular, several studies based on different imaging 
techniques (fMRI, MEG and EEG) have found that the estimated functional networks 
showed small-world characteristics (Achard et al., 2006; Basset et al., 2006; Stam et al., 
2007). In the functional brain connectivity context, these properties have been 
demonstrated to reflect an optimal architecture for the information processing and 
propagation among the involved cerebral structures (Lago-Fernandez et al., 2000). 
However, the performance of cognitive and motor tasks as well as the presence of 
neural diseases has been demonstrated to affect such a small-world topology, as 
revealed by the significant changes of L and C. The aim of this study is to characterize 
the functional dynamics of the cortical network in every time-point during the 
preparation and the execution of the foot movement. Indeed the cortical connectivity is 
expected to rapidly change according to the different stages during the preparation and 
the execution of the foot movement. 

Materials and Methods 
Five voluntary subjects participated to the study (age, 26-32 years; five males). For the 
EEG data acquisitions, the participants were comfortably seated on a reclining chair in 
an electrically shielded and dimly lit room. They were asked to perform a dorsal flexion 
of their right foot, whose preference was previously attested by simple questionnaires. 
The movement task was repeated every 8 seconds, in a self-paced manner and 200 
single trials were recorded by using 200 Hz of sampling frequency. The ROIs 
considered for the left (_L) and right (_R) hemisphere are the primary motor areas of 
the foot (MF_L and MF_R), the proper supplementary motor areas (SM_L and SM_R) 
and the cingulate motor areas (CM_L and CM_R). The bilateral Brodmann areas 6 (6_L 
and 6_R), 7 (7_L and 7_R), 8 (8_L and 8_R), 9 (9_L and 9_R) and 40 (40_L and 40_R) 
were also considered. In order to inspect the brain dynamics during the preparation and 
the execution of the studied movement, a time segment of 2 seconds was analyzed, after 
having centered it on the onset detected by a tibial EMG. 

Cortical Activity Estimation 
High-resolution EEG technology has been developed to enhance the poor spatial 
information of the EEG activity on the scalp and it gives a measure of the electrical 
activity on the cortical surface. Principally, this technique involves the use of a larger 
number of scalp electrodes (64-256). In addition, high-resolution EEG uses realistic 
MRI-constructed subject head models and spatial de-convolution estimations which are 
commonly computed by solving a linear inverse problem based on boundary-element 
mathematics (Le et Gevins, 1993; Babiloni et al., 2000). In the present study, the 
cortical activity was estimated from EEG recordings by using a realistic head model, 
whose cortical surface consisted of about 5000 triangles disposed uniformly. Each 
triangle represents the electrical dipole of a particular neuronal population and the 
estimation of its current density was computed by solving the linear inverse problem 
according to techniques described in previous works (see Appendix A for more details). 
In this way, the electrical activity in different Regions Of Interest (ROIs) can be 
obtained by averaging the current density of the various dipoles within the considered 
cortical area.  
Each triangle represents the electrical dipole of a particular neuronal population and the 
estimation of its current density was computed by solving the linear inverse problem 
according to techniques described in previous works. In this way, the electrical activity 
in different Regions Of Interest (ROIs) can be obtained by averaging the current density 
of the various dipoles within the considered cortical area. 
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Functional Connectivity Estimation 
Among the linear and nonlinear methods used to estimate functional brain connectivity, 
frequency-based methods are particularly attractive for the analysis of EEG or MEG 
data, since the activity of neural populations is often best expressed in this domain. 
Many EEG and/or MEG frequency-based methods that have been proposed in recent 
years for assessment of the directional influence of one signal on another are based 
mainly on the Granger theory of causality. Granger theory mathematically defines what 
a “causal” relation between two signals is. According to this theory, an observed time 
series x(n) is said to cause another series y(n) if the knowledge of x(n)’s past 
significantly improves prediction of y(n); this relation between time series is not 
necessarily reciprocal, i.e., x(n) may cause y(n) without y(n) causing x(n). This lack of 
reciprocity allows the evaluation of the direction of information flow between 
structures. The advantages of MVAR modeling of multichannel EEG signals in order to 
compute efficient connectivity estimates have recently been stressed. Kus et al. (2004) 
demonstrated the superiority of MVAR multichannel modeling with respect to the pair-
wise autoregressive approach. A very popular estimator, the Partial Directed Coherence 
(PDC), based on MVAR coefficients transformed into the frequency domain was 
recently proposed, as a factorization of the Partial Coherence (Baccalà et Sameshima, 
2001) – see Appendix B for more details. The PDC is of particular interest because of 
its ability to distinguish direct and indirect causality flows in the estimated connectivity 
pattern. If another “true” flow exists from region x2 to region x3, the PDC estimator 
does not add an “erroneous” causality flow between the signal recorded from region x1 
to region x3. This property is particularly interesting in its application to brain signals, 
where the interpretation of a direct connection between two cortical regions is 
straightforward. 

Adaptive MVAR Models 
The standard estimation of these methods requires the stationarity of the signals; 
moreover, with the estimation of a unique MVAR model on an entire time interval, 
transient pathways of information transfer remains hidden. To overcome this limitation, 
different algorithms for the estimation of MVAR with time dependent coefficients were 
recently developed. Hesse et al. (2003) proposed an application to MVAR estimation of 
the extension of the recursive least squares (RLS) algorithm with a forgetting factor. In 
the present study, this estimation procedure allows for the simultaneous fit of one mean 
MVAR model to a set of single trials, each one representing a measurement of the same 
task. 
Fig.1 summarizes the results obtained by means of the methods illustrated throughout 
the present paragraph. 
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Fig. 1 - Up) Locations of the regions of interest (ROIs) on the left hemisphere of the cortex model 
together with their estimated temporal activity. Bottom) Time-varying cortical network in the Beta 
frequency band is shown for a representative subject. In particular, three instants are highlighted; one 
second before the onset, the onset itself and one second after the onset. 

Graph Theory 
A graph is an abstract representation of a network. It consists of a set of vertices (or 
nodes) and a set of edges (or connections) indicating the presence of some of interaction 
between the vertices. The adjacency matrix A contains the information about the 
connectivity structure of the graph. When a weighted and directed edge exists from the 
node i to j, the corresponding entry of the adjacency matrix is Aij ≠ 0; otherwise Aij = 0.  

Network Density 
 The simplest attribute for a graph is its density k, defined as the actual number of 
connections within the model divided by its maximal capacity; density ranges from 0 to 
1, the sparser is a graph, the lower is its value. When dealing with weighted networks, a 
useful generalization of this quantity is represented by the weighted-density kw, which 
evaluates the intensities of the links composing the network. In the present work, the 
link intensity encodes the level of Granger-causality between cortical time series. The 
mathematical formulation of the network density is given by the following: 
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Where A is the adjacency matrix and wij is the weight of the respective arc from the 
point j to the point i. V=1…N is the set of nodes within the graph. 
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Link Reciprocity  
In a directed network, the analysis of link reciprocity reflects the tendency of vertex 
pairs to form mutual connections between each other. Here we computed the correlation 
coefficient index ρ (Garlaschelli and Loffredo, 2004), which measures whether double 
links (with opposite directions) occur between vertex pairs more or less often than 
expected by chance. The correlation coefficient can be written as follows: 
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In this formula, r is the ratio between the number of links pointing in both directions 
and the total number of links, while kw is the connection density that equals the average 
probability of finding a reciprocal link between two connected vertices in a random 
network. As a measure of reciprocity, ρ is an absolute quantity that directly allows one 
to distinguish between reciprocal (ρ>0) and anti-reciprocal (ρ<0) networks, with mutual 
links occurring more and less often than random, respectively. The neutral or 
areciprocal case corresponds to ρ=0. Note that if all links occur in reciprocal pairs one 
has ρ=1, as expected.  

Motifs 
By motif it is usually meant a small connected graph of M vertices and a set of edges 
forming a subgraph of a larger network with N>M nodes. For each N, there are a 
limited number of distinct motifs. For N = 3, 4, and 5, the corresponding numbers of 
directed motifs is 13, 199, and 9364 (Milo et al., 2002). The general formula showing 
the number of schemes compatible with a given number of nodes is not trivial. For the 
sake of simplicity this is not reported here. In this work, we focus on directed motifs 
with N=3. The 13 different 3-node directed motifs are shown in Fig. 2. Counting how 
many times a motif appears in a given network yields a frequency spectrum that 
contains important information on the network basic building blocks. Eventually, one 
can looks at those motifs within the considered network that occur at a frequency 
significantly higher than in random graphs.  

 
Fig. 2 – The 13 possible schemes of connectivity that can be achieved in a graph of 3 nodes. These 
connectivity patterns represent the possible building blocks constituting the estimated cortical networks. 

Network Structure  
Two measures are frequently used to characterize the local and global structure of 
unweighted graphs: the average shortest path L and the clustering index C. The former 
measures the efficiency of the passage of information among the nodes, the latter 
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indicates the tendency of the network to form highly connected clusters of vertices. 
Recently, a more general setup has been examined in order to investigate weighted 
networks. In particular, Latora and Marchiori (Latora et Marchiori, 2003) considered 
weighted networks and defined the efficiency coefficient e of the path between two 
vertices as the inverse of the shortest distance between the vertices (note that in 
weighted graphs the shortest path is not necessarily the path with the smallest number of 
edges). In the case where a path does not exist, the distance is infinite and e = 0. The 
average of all the pair-wise efficiencies eij is the global-efficiency Eg of the graph. Thus, 
global-efficiency can be defined as: 
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where N is the number of vertices composing the graph. Since the efficiency e also 
applies to disconnected graphs, the local properties of the graph can be characterized by 
evaluating for every vertex i the efficiency coefficients of Ai, which is the sub-graph 
composed by the neighbors of the node i. The local-efficiency El is the average of all the 
sub-graphs global-efficiencies: 
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Since the node i does not belong to the sub-graph Ai, this measure reveals the level of 
fault-tolerance of the system, showing how the communication is efficient between the 
first neighbors of i when i is removed.  

Results 
The level of organization in the time-varying cortical networks during the foot 
movement was analyzed by computing the efficiency indexes Eg and El. The Eg and El 
indexes estimated in every subject from the respective cortical networks were contrasted 
with the ones obtained from the respective random structures. Fig. 3 shows the average 
Z-scores of the time-varying Eg (solid line) and El - (dotted line) of the connectivity 
patterns in the Beta frequency band.  
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Fig. 3 – Average time-varying efficiency indexes. The lighter lines around the mean value indicate the 
time courses of the 25th and 75th percentile. The latency from the movement onset is shown on the x-axes. 

In particular, one second before the onset (from about -1 to -0.5 s), the cortical networks 
mostly show low values of Eg and El, reflecting a weak pattern of communication 
characterized by long average distances and few clustering connections between the 
ROIs. Throughout the period closer to the execution of the movement (from about -0.5 s 
to the onset), both the global and local properties increase and in correspondence with it, 
we observe high values of Eg and El. This particular structure represents one of the best 
way in which the cortical areas communicate, since the relevant network presents 
simultaneously short links between each pair of ROIs and highly connected clusters (i.e. 
small-world architecture). After the onset (from the onset to +0.5 s), the estimated 
cortical networks show a typical random organization of the functional links, with a 
high Eg and a low El, reflecting the dense presence of wide-scope interactions among 
the ROIs, but a low tendency of the same cortical regions to form functional clusters. In 
the last period of the movement execution (from about +0.5 to +1 s) the estimated 
cortical networks mainly show high El values and low Eg values.   
Fig. 4a) shows the average time-varying course of the weighted-density kw in the Beta 
band during the analyzed period of interest. The average intensity of the network links 
during the preparation (from -0.5 s to the onset) is relatively low if compared with its 
maximum value reached in the following movement execution. In correspondence with 
this period the network structure presents the most efficient pattern of communication, 
as revealed by the estimated small-world characteristic.  
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Fig. 4 – a) Average time-varying “weighted-density” in the Beta band. b) Average time-varying 
“reciprocity” during the period of interest in the Beta band. On y-axes the correlation coefficient ρ while 
time in seconds on x-axes.  

The analysis of the average time-varying reciprocity index (Fig. 4b) revealed an 
interesting behavior during the preparation (from about -1 to -0.5 s) of the movement in 
the Beta frequency band. In such a period, the functional network moved from a high 
reciprocal state (ρ∼0.25) to a lower reciprocal state (ρ∼0.17) state. This aspect 
emphasizes the role of the early preparation in which a high level of mutual exchange of 
information is required to speed up the cortical process in expectation of the execution. 
Moreover, by tracking the evolving involvement of each single reciprocal connection 
(Fig. 5a) it is possible to observe their “persistence” during the entire period of interest. 
In particular, the persistent bilateral links between the cingulate motor areas and the 
supplementary motor areas (they correspond to the rows 58 and 69) in the Beta band 
reveals a novel aspect of such a connection that anyway was expected in a self-paced 
modality of movement generation, as in our experimental condition. 
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Fig. 5 – a) Time-varying persistence of the bilateral connections in the cortical network.  On y-axes all the 
120 possible reciprocal connections while time in seconds on x-axes. The colour of the line corresponding 
to a particular link codes the number of subjects that actually hold such a connection. b) Average time-
varying 3-motif spectra. On y-axes all the 13 possible directed 3-motifs are listed while time in seconds is 
displayed on x-axes. 

In Fig. 5b), we compared the 3-motif properties of real brain networks with random 
networks and we identified some motif classes that occurred more frequently during 
particular stages of the movement. Of particular interest is the significant (p<<0.01) 
“persistence” of the single-input motif (the third in the Fig. 2) that represented the 
highest recurrent pattern of interconnections during the entire evolution of the foot 
movement. The main function of this motif is known to involve the “activation” of 
several parallel pathways by a single activator (Shen-Orr et al., 2002).  

Discussion 
One of the interesting characteristics of the brain networks presented in this work is that 
such networks have no precise anatomical support, i.e. there is no particular cerebral 
structure that implements the network itself. Thus, those brain networks represent 
functional networks, which could change in topology and properties according to the 
specific subject’s behavior. Application of graph theory to small networks is rather new 
if compared to its usual employment in biological context. However, the need for the 
analysis of small cerebral networks has been recently underlined (Hilgetag et al. 2000; 
Micheloyannis et al. 2006; Stam et al. 2007). We would like to emphasize that the 
opportunity to deal with cortical activity permits the representation of the graph nodes 
as particular Brodmann areas on the cortex (Babiloni et al. 2005; De Vico Fallani et al. 
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2007). The use of raw EEG signals instead returns less powerful results, since the nodes 
within the network represent scalp electrodes, which could have indirect links with the 
cortical areas beneath them. In order to limit the discussion of the results, the present 
study has analyzed the cortical networks in the Beta (13-29 Hz) frequency band 
representing the spectral content principally involved in the preparation and the 
execution of simple motor acts (Pfurtscheller and Lopes da Silva, 1999). However, this 
methodology is not limited to a particular frequency band or a particular set of ROIs, 
since it can be adapted to investigate experimental tasks in any spectral content.  
A possible use of the presented methodology could extract the significant features from 
the brain functional networks during the imagination of limb movements. The 
imagination of these motor acts would produce connectivity patterns that can be treated 
opportunely in the Brain Computer Interface context. The BCI is a recent field of 
research in which brain signals related to movement intention can be suitably treated to 
control external devices. According to this purpose the features extraction would 
improve as the brain functional relationships are supposed to reveal more information 
than simple cortical activity. 
 

Footnotes 
EEG – ElectroEncephaloGraphy  
MEG – MagnetoEncephaloGraphy 
MRI – Magnetic Resonance Imaging 
fMRI – functional Magnetic Resonance Imaging 
EMG – ElectroMioGraphy 
ROI –  cortical Region Of Interest 
MVAR – MultiVariate AutoRegressive models 
PDC – Partial Directed Coherence 

Supplementary Material 

Appendix A 
Head Models and Regions of Interest 

In order to estimate cortical activity from conventional EEG scalp recordings, realistic 
head models reconstructed from T1-weighted MRIs are employed. Scalp, skull and dura 
mater compartments are segmented from MRIs and tessellated with about 5000 
triangles. Then, the cortical regions of interest (ROIs) are drawn by a neuroradiologist 
on the computer-based cortical reconstruction of the individual head model by 
following a Brodmann’s mapping criterion.  

Estimation of Cortical Source Current Density  
The solution of the following linear system: 

nbAx +=      (1.1) 
provides an estimation of the dipole source configuration x which generates the 
measured EEG potential distribution b. The system includes also the measurement noise 
n, assumed to be normally distributed. A is the lead field matrix, where each j-th column 
describes the potential distribution generated on the scalp electrodes by the j-th unitary 
dipole. The current density solution vector ξ of Eq. 1.1 was obtained as: 
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where M, N are matrices associated to the metrics of data and source space, 
respectively; λ is a regularization parameter; || … ||M represent the M-norm of the data 
space b and || … ||N the N-norm of the solutions space x.  The formula 1.2 represents a 
minimization problem also known as linear inverse problem. 
As a metric of the data space the identity matrix is generally employed. However, the 
metric in the source space can be opportunely modified when hemodynamic 
information is available from recorded fMRI data. This aspect can notably improve the 
localization of the source activity.  An estimate of the signed magnitude of the dipolar 
moment for each one of the 5000 cortical dipoles was then obtained for each time point. 
The instantaneous average of all the dipoles’ magnitude within a particular ROI was 
used to estimate the average cortical activity in that ROI during the whole time interval 
of the experimental task 
 

Appendix B 
 MultiVariate AutoRegressive Models 

The approach based on multivariate autoregressive models (MVAR) can simultaneously 
model a whole set of signals. Let X be a set of estimated cortical time series: 

)](),...,(),([ 21 txtxtxX N=   (2.1) 
where t refers to time and N is the number of cortical areas considered. Given an 
MVAR process which is an adequate description of the data set X: 
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where X(t) is the data vector in time; E(t)=[e1(t), …, eN] is a vector of multivariate zero-
mean uncorrelated white noise processes; Λ(1), Λ(2), … Λ(p) are the NxN matrices of 
model coefficients (Λ(0)=I); and p is the model order. The p order is chosen by means 
of the Akaike Information Criteria (AIC) for MVAR processes. In order to investigate 
the spectral properties of the examined process, the Eq. (2.2) is transformed into the 
frequency domain: 
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and Δt is the temporal interval between two samples. Eq. (2.3) can then be rewritten as: 

)()()()()( 1 fEfHfEffX =!=
"

 (2.5) 
H(f) is the transfer matrix of the system, whose element Hij represents the connection 
between  the j-th input and the i-th output of the system. 
 
Partial Directed Coherence 
In order to distinguish between direct and cascade flows, another estimator describing 
the direct causal relations between signals, the Partial Directed Coherence (PDC), was 
proposed in 2001. Like DTF, it is defined in terms of MVAR coefficients transformed 
to the frequency domain. The definition of Partial Directed Coherence (PDC) is: 
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 (2.9)       
The PDC from j to i, πij(f), describes the directional flow of information from the 
activity in the ROI xj(t) to the activity in xi(t), whereupon common effects produced by 
other ROIs xk(t) on the latter are subtracted leaving only a description that is exclusive 
from xj(t) to xi(t). PDC values are in the interval [0 1] and the normalization condition: 

( )!
=

=
N

n

ni f
1

2

1"
   (2.10) 

is verified. According to this condition, πij(f) represents the fraction of the time 
evolution of ROI j directed to ROI i,  as compared to all of j’s interactions with other 
ROIs. Figure 2 shows a schematic representation of the functional connectivity 
estimation from a set of high-resolution EEG signals to the cortical network.  
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