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1. Introduction

Proteins occupy a unique position in the hierarchy of natural systems, since they lie in the
twilight zone between chemistry and biology. Proteins are linear heteropolymers that, unlike most
synthetic polymers, consist of nonperiodic sequences of 20 different monomers (aminoacids). The
majority of proteins fold as self-contained structures determined by the sequence of monomers.
Thus, we can consider the particular linear arrangement of amino acids as a sort of ”recipe” for
making a water-soluble polymer with a well-defined three-dimensional architecture (54; 42; 8).
It is important to stress this dynamical perspective. ”Well defined three-dimensional structure”
should not be intended as ”fixed architecture”: many proteins appear as partially or even totally
disordered when analyzed with spectroscopic methods (1) in spite of the high efficiency in their
physiological functions.

Understanding the link (if any) between sequence-embedded information and folding behav-
ior is currently a crucial problem of both theoretical and applied physical biochemistr4y of
proteins. More specifically, the problem deals with: i) sequence-based functional predictions, ii)
3D structure-based functional predictions, and iii) folding mechanism elucidation.
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An amazing observation made by several authors concerns the existence of only weak de-
partures of real protein sequences from random strings (42; 48) , namely from series whose
autocorrelation structure remains substantially invariant after random shuffling the positions of
its constituent elements. (61) An obvious consequence of that is the notion that the ”code”
linking a sequence to a particular structure (2) is not emerging from simple periodicities in the
amino acids’ occurrence (26).

There is voluminous literature dealing with theoretical models following ab initio approaches
to the sequence-structure puzzle (15; 49). Most theoretical models adopt a statistical physics
perspective based on proteins considered as lattices, i.e., squared grids in which each residue is
considered as interacting with the same number of neighbours. Other groups instead of looking
for general laws linking sequence and structure across all protein families, apply a purely local
statistical approach (11; 46). In the last 15 years or so, investigating new algorithms to discover
even relatively remote homologues of a given leader sequence allowed the development of new
sequence alignment techniques, and represents a ”leitmotif” in bioinformatics and computational
biology (14; 3).

The present minireview instead is devoted to a scarcely populated but potentially quite in-
teresting field of computational biochemistry: the use of signal analysis methods to describe
protein sequences as mono-dimensional series. The protein sequences are described by means
of a vector of numerical variables that summarize their autocorrelation structures. Thus, the
simplest level of protein sequences description shifts from the pairwise alignment of structures
to a self-consistent numerical description of the single sequence.

The main feature of the methods described in what follows is the production of numerical
indexes that parametrize the protein sequences as a whole in terms of amount and profile of
periodicities in the hydrophobicity distribution along the chain. This is similar to the quantitative
structure activity relationships (QSAR) analyses widely used in medicinal chemistry (27; 28).
By analogy with QSAR, the investigated molecules (proteins in this case, organic compounds
in the case of QSAR) are described by means of an array of numerical features parametrizing
various chemico-physical properties. These properties act as regressors (independent variables)
for modeling a given biological activity, which in turn acts as a dependent variable. The biological
activities most often modeled by QSAR are pharmacological or toxicological potencies, while the
properties modeled so far for proteins are protein/peptide interactions, folding behavior, and
thermal stability. From the theoretical side comes the consideration of protein sequence as a
unitary system embedded into a global force field based on hydrophobicity (4), since the analysis
ends with one number deriving from a computation extended over the whole sequence). From the
statistical side comes the local approach and the use of soft data analysis methods with no peculiar
distributional constraints (5). The main steps of the method can be summarized as follows: a)
use of hydrophobic code for primary structures (52; 35); b) treatment of the hydrophobicity
distribution along the sequence like a time series, with the corresponding use of nonlinear signal
analysis techniques to underpin position-dependent properties of the hydrophobicity profiles
(50; 43); c) adoption of a local approach for both inter-sequence (within homologous series
of proteins) comparisons and intra-sequence (among short patches along the same sequence)
analyses as a starting point for periodicity detection (47).

2. Analytical strategy

2.1. The signal analysis perspective. Protein sequences can be considered as discrete series
equivalent to time series, with the aminoacid order playing the role of subsequent time steps.
Thus, on a purely formal viewpoint, any technique used for signal and time series analysis could
be successfully applied to protein primary structures. From a practical viewpoint, however,
the fact that protein sequences are very short and basically non stationary signals drastically
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limits the range of signal analysis techniques usable in this context(14). Thus, the ideal method
for approaching signal analysis of protein sequences should be nonlinear, independent of any
stationary assumptions, and able to deal with very short series. (10) Methods satisfying these
constraints are those adopting a purely correlative point of view, with no a priori distributional
and/or physical assumption. The only aim of such methods is looking for autocorrelation patterns
along the series, i.e., for the recurrences of particular short motifs (like in recurrence quantification
analysis, RQA) or for periodicities of no predefined functional form spanning all the studied
sequences (like in principal component analysis, PCA). At the basis of these methods is the
transformation of the original series into an ”embedding matrix” with the method of delays.
(19)

An n-dimensional embedding (deconvolution) procedure consists of building an n-column ma-
trix out of the original linear array by shifting the series by a fixed lag. In the example below n
= 4, lag = 1.

15 12 27 39
12 27 39 31
27 39 31 65
39 31 65 22
31 65 22 12
65 22 12 42
22 12 42 11
12 42 11 33
42 11 33
11 33
33

The rows of the embedding matrix (EM) correspond to subsequent windows of length 4 (em-
bedding dimension) along the sequence. Notice that the last (n-1) values are eliminated from the
analysis as an obvious consequence of shifting the series. The choice of the embedding dimen-
sion corresponds to the choice of the scale at which the autocorrelation structure of the series is
estimated.

2.2. Recurrence Quantification Analysis (RQA). The application of RQA is based on the
calculation of the Euclidean distance between all the pairs of rows of an embedding matrix
(47; 10). If the distance between two generic rows (i.e. windows of predefined length along the
sequence) falls below a predefined ’radius’, we get a recurrence. The concept of recurrence is
straightforward: for any ordered series (time or spatial), a recurrence is a point which repeats
itself. Recurrences are strictly local and independent of any mathematical assumption (23; 36).
Furthermore, calculation of recurrences requires no transformation of the data and can be used
for both linear and nonlinear systems (60; 22). The concept of recurrence can be expressed as
follows: given a reference point, Xo, and a ball of radius r, a point X is said to recur (with
reference to Xo) if :

(1) X : ‖X −Xo‖ 6 r

In the case of a time series, i.e., of a system occupying in different times different positions along
a trajectory in a suitable state space, the recurrences correspond to the time points where the
system passes nearby to already visited states. In the case of protein sequences, time corresponds
to the amino acid order and the recurrences are patches, with a length equal to the embedding
dimension, sharing their profile with other patches along the chain. The number and relative
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Figure 1. Recurrence plot and hydrophobicity profile of human P53 protein.
The presence of an extremely deterministic ordering of amino acids between
residues 61 and 98 is clearly evident in the figure in terms of its consequences
on the recurrence plot. This highly deterministic portion is ”resembled” by
other segments along the sequence. This observation is not clear by the simple
inspection of the hydrophobicity plot but is made evident by the recurrence plot:
the ”resemblances” correspond to linear (or alternatively horizontal given the
symmetrical character of recurrence plot) banding of the plot. For the RQA
descriptors meaning, see the text. (Modified from (67)).

positions of recurrences are expressed by recurrence plots (RP), that are symmetrical NxN arrays
in which a point is placed at (i, j) whenever a point Xi on the trajectory is close to another point
Xj .

The closeness between Xi and Xj is expressed by calculating the Euclidian distance between
these two normed vectors, i.e., by subtracting one from the other obtaining the expression ‖Xi−
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Figure 2. Quantification of the main Recurrence Plots’ features. 1: a line
segment composed of 8 recurrent points. 2: a 4-point line segment. 3: several
recurrent points that are not part of a line segment. 4: the identity line (i.e.,
where Xi = Xj). Modified from (68)

Xj‖ 6 r, where r is the predefined radius. If the distance falls within this radius, the two vectors
are considered to be recurrent, and graphically this can be indicated by a dot (Figure 1).

An important feature of recurrence plots is the existence of short line segments parallel to the
main diagonal (Figure 2), which correspond to sequences (i, j), (i+ 1, j+ 1), ..., (i+k, j+k) such
that the fragment:

Xj , Xj+1, ..., Xj+k

is close to:

Xi, Xi+1, ..., Xi+k

The absence of such patterns suggests randomness (18). For protein sequences these deter-
ministic lines correspond to contiguous patches of similar hydrophobic/ hydrophilic patterns.

Several strategies to quantify features of such plots have been developed and led to the gen-
eration of the following variables (for an exhaustive definition, see (60; 39)):
- Recurrence (%REC) : % of recurrence points in a RP.
- Determinism (%DET) : % of recurrence points which form diagonal lines.
- Laminarity (%LAM) : % of recurrence points which form vertical lines.
- Maximum line (MAXL) : length of the longest diagonal line.
- Trapping time (TT) : average length of vertical lines.
- Entropy (ENT) : Shannon entropy of the distribution of the diagonal line lengths.
- Trend (TREND) : Paling of the RP towards its edges.
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2.3. Principal Component Analysis (PCA). In contrast to RQA, principal component anal-
ysis (PCA) is a well-established method frequently used in physical as well as in social and
biological sciences(5).

When applied to a time (or spatial) series that is originally monodimensional, PCA requires
that the original series is represented on a multidimensional space by the agency of the embed-
ding procedure. The original data can be projected into a new set of coordinates given by linear
combinations of the original variables, and no original information is lost. The new coordinates
are orthogonal by construction (i.e., statistically independent), each representing an independent
aspect of the data set. The number of principal component is equal to the number of original
variables, but principal components have the fundamental property of explaining the system
variability in a hierarchical way. This implies that we can save the meaningful (signal-like) part
of the information retained by the first principal components and discard the (noisy) last ones.
In other words, the most correlated portion of information is retained by the first components,
while all the singularities are discarded. Therefore, by the use of a threshold for the cumu-
lative percentage of explained variance, PCA allows for the reduction of a complex system of
correlations into a lower-dimensional one.

The application of PCA to a data set having as statistical units different proteins and as vari-
ables the RQA descriptors corresponding to each sequence, highlights the presence of regularities
in the data set as a whole. This the allows a fully statistical investigation of protein structures,
without being confined to few, specific cases. In what follows the application of this approach
will be exemplified by discussing two problems of general relevance.

3. EXAMPLE 1: Studying a large protein dataset

In this example we show how the statistical information present in the 1141 protein sequences
extracted from the Swiss-Prot data-set by Menne et al. (40) can be exploited, according to an
approach outlined in (65). From the whole data set, available at:

ftp://ftp.ebi.ac.uk/pub/contrib/swissprot/testsets/signal

we selected the non-secreted, eukaryotic proteins, namely an ensemble that can be considered as
a random pick from the entire protein niverse, without the bias of the initial hydrophobic, short
signal typical of secreted proteins. By means of this relativelay large ensemble we tackled two
relevant problems, namely: i) identifying an optimal physico-chemical code for protein sequences,
and ii) correlating hydrophobicity patterns distribution and functional properties.

3.1. An optimal physico-chemical code for aminoacid residues. Table 1 reports the av-
erage value of recurrence (%REC) and determinism (%DET) in our protein data set for the
different codings. It is evident how the recurrence value markedly varies among codings, from
0.08 (symbolic coding) to 1.78 (MJ scale). This 20-fold difference underestimates the real differ-
ence if we consider that the symbolic coding is analyzed with a shorter epochs length as compared
to other codings. MJ hydrophobicity scores have an average recurrence (Table 2a) and deter-
minism (Table 2b) much higher than the other physicochemical scales, highlighting a peculiar
position of this index in elucidating sequence/structure relations. The MJ scale derives from an
investigation of the contact probability between different types of amino acid residues in a large
ensemble of 3-D protein structures: it was designed as a sort of statistical potential for amino
acid interactions, and only a posteriori was it recognized as a hydrophobicity scale (59; 53).
Since it has been specifically tailored to protein structures, this may explain its performance in
detecting amino acid patterning along polypeptide chains.
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Code Mean std. dev. min. max.
(a)
Ch 0.50 0.33 0.15 4.80
KD 0.77 0.51 0.25 10.24
MJ 1.78 1.05 0.54 24.01
mw 0.40 0.56 0.06 11.75
Po 0.66 0.50 0.16 8.86
mr 0.41 0.33 0.06 6.18
Vo 0.63 0.52 0.21 9.88
Sy 0.08 0.39 0 8.91

(b)
Ch 16.78 11.33 0 90.14
KD 20.54 10.09 0 90.14
MJ 27.46 9.49 0 84.06
mw 14.26 11.03 0 80.27
Po 19.78 11.56 0 94.89
mr 15.52 11.30 0 87.32
Vo 18.19 10.14 0 89.81
Sy 17.07 21.47 0 100.00

Table 1. %REC (a) and %DET (b) statistics on Protein Sequences for
Different Codings (column 1). Recurrenc and Determinism are calculated on the
whole data set of 1141 proteins used in this work. Ch: Chothia hydrophobicity
(12); KD : Kyte and Doolittle hydrophobicity (32); MJ : Miyazawa-Jernigan
hydrophobicity (41); mw : molecular weight; Vo : volume; Po : polarity; mr :
molar refractivity.

If our hypothesis of a basic code-independent structure is true, when submitting the RQA-
based representations of proteins of the various codings to a Principal Component Analysis, we
should obtain as the main mode (first Principal Component) a consensus axis collecting all the
codings and representing the degree of code-independent autocorrelation structure. This was
actually the case: all the codings were strongly loaded on the first principal component which,
both for REC and DET, was the most important source of information explaining, respectively,
70% and 50% of the total variability (Table 2). It is worth noting that the symbolic coding was
highly correlated with the first component, as a further indication of the role of code-independent
autocorrelation measure played by PC1.

In the aim to separate order dependent from pure compositional effects, we repeated the above
analyses on the shuffled sequences, looking for what remains invariant after a random scrambling
of amino acid order in each protein sequence. The results showed that %REC (Native) and
%REC (Shuffled) remain largely similar (r = 0.76), while in the case of %DET no correlation
was detected (r = -0.14). Analogously, the ranking of the 1141 proteins based on the first
recurrence component for both shuffled and native sequences was markedly correlated [PC1REC
(Native) vs PC1REC (Shuffled) (r = 0.87)], while the determinism rankings based on shuffled
and native structures were essentially unrelated (r = 0.2). This result suggests that (i) %REC
in each protein sequence is strongly dependent on the amino acid composition and (ii) %DET
only depends on the order of amino acids along the chain. Since, in fact, %REC is the simple
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Code PC1REC PC2REC PC3REC
(a)
Ch 0.86 -0.20 -0.07
KD 0.82 0.04 0.42
MJ 0.77 -0.29 0.37
mw 0.90 -0.23 -0.26
Po 0.69 0.60 -0.20
mr 0.91 -0.03 -0.17
Vo 0.79 0.39 0.21
Sy 0.92 -0.14 -0.25

% of expl.variance 69.9 8.9 6.9

(b)
Ch 0.71 -0.04 0.38
KD 0.77 -0.30 -0.19
MJ 0.64 -0.42 0.42
mw 0.68 0.44 -0.01
Po 0.79 -0.19 -0.15
mr 0.65 0.49 0.26
Vo 0.70 0.001 -0.50
Sy 0.70 0.10 -0.12

% of expl.variance 50 9.4 8.9

Table 2. Principal Component Analysis on the recurrence descriptors of
protein sequences. Panels (a) and (b) refer, respectively, to %REC and %DET
variables and contain the ’loadings’ (correlation values) of the original variables
with the new one extracted by the PCA algorithm. The Principal Components
were obtained from matrices containing as rows the 1141 proteins of the data set
and, as columns, the %REC and %DET descriptors of each protein calculated
from the profiles in the various amino acid codings (see Table 1). Sy refers to
the symbolic, one-letter code. The last rows in both panels contain the % of
total variance explained by each component.

count of how many times four-residue epochs are repeated (even if not perfectly) in whatsoever
location along the sequence, in a quasi-random string this is expected to occur with similar
frequency, by chance, both before and after scrambling. %DET, on the other hand, represents the
fraction of consecutive recurrent points, considering the relative position and not the number of
recurrent patches. Since any peculiar syntactic rule of amino acid patterning should be shuffling-
dependent, the quantification of contiguous and mutually correlated patches of hydrophobicity
(%DET) appears as a significant and informative descriptor of monomer distribution in protein
chains.

3.2. Hydrophobicity dynamical patterns and structure/function features. Proteins
Distribution in a Principal Component Space. To find the consequences of amino acid pat-
terning alon the primary structure in terms of protein 3D structure or functional features, we
inspected proteins endowed with exceedingly high values for the first determinism Principal Com-
ponent (PC1DET). Protein distribution along this Component is quite asymmetric with a very
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small but long tail made of extremely deterministic sequences: Table 3 lists the 50 most deter-
ministic sequences in our 1141 protein data set, having component scores greater than 2, with a
maximum of 8.5. The remaining 1091 proteins are confined in the interval between -2 and +2.
Keeping in mind that Principal Components are constrained by construction to have a mean
equal to zero and a unitary standard deviation helps in appreciating this extremely asymmetric
distribution. No enzyme or enzyme subunit is present in Table 3, with the only exception of pro-
tein Q34522 (NADH -ubiquinone oxydoreductase, chain 3). This is, however, only an apparent
exception, since the Q34522 sequence is included in a much bigger functional unit working in
the form of a multimeric enzyme. All the extremely deterministic proteins share the property of
being involved in protein-protein or DNAprotein interactions, both for regulatory and structural
purposes (e.g., histones, protamines, and trascription factors) as well as of forming polymeric
assemblies (cornifin, myosin, keratin).

Recently Dunker and co-workers demonstrated how the most represented class of natively
unfolded structures is composed of polypeptides involved in protein-protein interactions. More-
over, the increasing evidence that low complexity sequences tend to be natively unfolded (55; 45)
suggested a check for the presence of an excess of natively unfolded zones in the deterministic tail
of our data set. The 10 most deterministic sequences scored a percentage of estimated disorder
(computed by the PONDR predictor) (17) of 66.46% against the 27.27% of the 10 proteins situ-
ated at the low determinism tail (significance of p ¡ 0.001). Calculation of a foldability coefficient
for the highly deterministic sequences listed in Table 4 indicates that more than 75% may be
classified as natively unfolded, and this figure becomes even larger if the reduced form of the
-S-S- bridges present in many sequences is considered.

From the above analysis the role of ”deterministic spots” as crucial sites for interaction seems
to gain support. Assuming that protein-protein interactions are driven by essentially the same
type of forces leading to mutual recognition between different portions of the same molecule in
normal folding, we can hypothesize that highly deterministic sections along the sequence mark
the nucleation zones for both folding and protein-protein interactions.

In other words, the analysis of extremely deterministic sequences points to statistically sin-
gular, nucleation zones crucial for mutual recognition events. Such a conjecture is reinforced
by the fact that the estimated length of 6 for the deterministic patch matches the 6.12 average
length we calculated from the data by the Casadio group concerning approximately 800-folding
”nucleation centers”. (13) Moreover, a relation between the deterministic peaks and aggregation
properties of different proteins ranging from prion (63) to P53 (44) has been also demonstrated.

3.3. The essential dimensions of the protein alphabet. An interesting paper by Dokholyan
(16) showed that the 20 element alphabet corresponding to the symbolic code is highly redundant
in describing protein sequences. This redundancy stems from the physicochemical similarities of
amino acid residues that drastically lower the dimensionality of the protein alphabet. This is
in line with our findings that physicochemical codes are much more efficient than symbolic code
in picking up syntactic regularities in protein sequences. Thus, we complement the Dokholyan
results by showing that correlations in amino acid properties exert an effect not only at the
level of single residues (letters, alphabet) but also at the level of short patches of consecutive
residues (words). As for the practical impact of our study, the analysis of RQA descriptors of
protein sequences, being not dependent on homology, could allow for (i) detection of unexpected
”neighbors” of query structures, thus enlarging the possibility of both function assignment and
protein engineering and (ii) possible classification of newly discovered sequences only on the basis
of their primary structure.
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Swiss-Prot code Name PC1DET

P35324 CORNIFIN ALPHA 8.52
Q62267 CORNIFIN B 7.79
Q63532 CORNIFIN ALPHA 6.95
Q62266 CORNIFIN A 6.19
Q07187 EM-like PROTEIN GEA1 6.05
P06144 LATE HISTON H1 5.27
P35326 SMALL PROLINE-RICH PR. 2A 4.97
P17483 HOMEOBOX PROTEIN HOX-B4 4.49
O35762 HOMEOBOX PROTEIN NKX-6.1 4.32
P37108 SIGNAL RECOGN. PART. 14 Kda 4.24
P28318 PROTEIN MRP-126 4.19
P15771 NUCLEOLIN 3.99
009116 CORNIFIN BETA 3.96
P02604 MYOSIN LIGHT CHAIN 1 3.89
P42132 SPERM PROTAMINE P1 3.79
P22793 TRICHOHYALIN 3.71
Q34522 NADH-UBIQ. OXYDORED. CHAIN 3 3.61
P17502 PROTAMINE 3.52
P42129 SPERM PROTAMINE P1 3.42
P22238 DESICCATION REL. PROT. 3.37
Q22053 FIBRILLARIN 3.35
P55947 COPPER-METALLOTHIONEIN 3.30
P15870 HISTONE H1-DELTA 3.21
P41139 DNA BINDING PROT. INHIB. ID-4 3.13
Q13329 COMPLEXIN 2 3.08
Q63754 BETA-SYNUCLEIN 3.07
Q01821 GUANINE NUCL. BIND. 3.07
P34618 CEC-1 PROTEIN 3.04
P06146 HISTONE H2B.2, SPERM 3.02
P09442 LATE EMBRYOG. PROT. D-11 3.01
P02292 HISTONE H2B.3, SPERM 2.99
P12950 DEHYDRIN DHN1 2.97
Q05831 SPERM-SPECIFIC PROTEIN PHI-2B 2.79
P12952 DEHYDRIN DHN2 2.77
P47928 DNA BIND. PROTEIN INHIB. ID-4 2.74
P52168 GATA-BINDING FACTOR-A 2.74
P22974 SPERM SPECIFIC PROTEIN PHI-2B 2.66
P12035 KERATIN TYPE II CYTOSKEL. 3 2.62
Q09821 SPERMATID NUCLEAR TRANS. 2.56
Q15672 TWIST RELATED PROTEIN 2.46
P90648 MYOSIN HEAVY CHAIN KINASE B 2.40
P06145 HISTONE H2B.1, SPERM 2.32
P02836 SEGMENT. POLAR. HOMEOBOX 2.31
O42105 COMPLEXIN 2 2.24
P17480 NUCLEOLAR TRANSCR. FACT. 1 2.23
P54844 TRANSCR. FACTOR MAF 2.20
P40262 HISTON H1 E 2.20
P25979 NUCLEOLAR TRANSCR. FACTOR 1 2.17
P21952 OCT. BIND. TRANSCR. FACT. 6 2.07
Q12948 FORK HEAD BOX PROTEIN C1 2.04

Table 3. Highly deterministic proteins in the examined data set (see the
text). List (in decreasing order of %Det) of elements in the ’High Determinism
Tail’ of the Distribution along the First Determinism Component (PC1DET)

.
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Figure 3. Scaling of Determinism with Embedding Dimension as a function
of Radius in 1141 protein sequences. The RQA parameters are calculated on
hydrophobicity profiles (MJ coding) averaged over the whole protein data set,
at low values of Radius showing a maximum at Embedding Dimension = 4 (see
the text for further explanations).

In order to provide a further check to Dokholyan results, a Principal Component Analysis
was applied to a data matrix having as rows the 1141 proteins of our data-set and as variables
the values of the RQA descriptors for the various codings. The same procedure was carried
out after a random shuffling of each protein sequence, so to discriminate the order-dependent
properties from the pure compositional features. The distribution of proteins along the most
important RQA descriptor (DET) was investigated for its relation to protein structural (and
possibly functional) features. The coding with the highest sensitivity in identifying syntactic
rules (MJ hydrophobicity) was finally submitted to a scaling procedure to check the existence of
a privileged scale at which the effect is maximized. Figure 4 reports the embedding dimension
scaling of average determinism over the 1141 proteins set for MJ coding at very low radius
values (5% and 10% meandist): a maximum of determinism at an embedding dimension of 4
can be detected. In other words, using four-letter epochs of the primary structures allows the
extraction of maximal information from the amino acid patterning. This is in agreement with the
conclusions of other groups (62; 51) who identified tetrapeptides as carriers of maximal Shannon
entropy values by applying a classical information theory method to a large set of proteins. Since
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we used a minimal length of 3 consecutive recurrences to score determinism, the maximum of
determinism at embedding dimension 4 corresponds to a characteristic length of deterministic
patches of 6: thus, 4 and 6 appear as crucial numbers for identifying meaningful words, in the
form of ”quasi-repeats”, along protein sequences.

Figure 4. Distribution of point mutants of the Aα-chain of human fibrinogen
in a principal component space. Circles and triangles refer, respectively, to
the hemorrhagic and nonhemorrhagic natural point mutants listed in table 4.
The straight line separates the hemorrhagic from the nonhemorrhagic group
according to the results of a discriminant analysis. The location of simulated
mutants (see the text) containing a lysine or a methionine in the position of the
naturally occurring hemorrhagic mutants, indicated by self explanatory symbols,
were calculated by projecting them in the PC1, PC2 plane on the basis of the
appropriate set of RQA parameters according to the method in reference (34).

4. EXAMPLE 2 : Studying a single protein

In this example, we analyze by RQA the α, β and γ chains in the wild type and in a number
of both natural and simulated mutants of human fibrinogen, summarizing the results obtained
in a recent paper by Colafranceschi et al. (66). A structural basis for distinguishing between
silent and pathological mutants (For more details see the Supplementary Material) was
found in the case of mutations of the α chain, thanks to the peculiar features of this chain as
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compared to the other two. Moreover, we could show that: a) the RQA-based classification of
such mutants is in good agreement with the clinical classification based upon hemorrhagic and
nonhemorrhagic (or thrombotic) mutants; b) the location of the mutated residues plays a role
more relevant than their hydrophobic features; c) the artificial point mutants in the terminal
zone (600-866 residues) of the extended isoform of the α-chain cluster together with the natural
haemorrhagic mutants of the first 1-207 residues, suggesting a similar role for initial and final
portions of the sequence.

To improve the sensitivity of the discrimination between the various type of mutants, we
applied a local RQA analysis protocol (44), focusing over a window of 36 residues sliding along
the hydrophobicity profile with lag = 1. The RQA variables are computed at each sliding step,
and the sum of differences (in absolute value) between the mutant and the wild type calculated
according to the following function:

(2) f =
∑

i

|V (i)
N − V (i)

M |

where V = any of the RQA parameters listed in table 1; N and M indicate the native and
the mutant, respectively; i = the ith epoch in the polypeptide chain, corresponding to a sliding
window of 36 residues along the sequence, lag = 1.

4.1. Natural Mutants. In table 4, the point mutants on the Aalpha chains used in the present
work are listed together with their clinical impact, as reported on the Web (http://databases.
biomedcentral.com/browsesubject/?sub-id = 2010, under the Fibrinogen Variants Database,
28/02/2005 update). A selected subset was obtained from the database excluding the ambiguous
results. The score plot (PC1 vs. PC2) relative to the Aα-chain highlights a good separation
between hemorrhagic and nonhemorrhagic mutants on the PC1 axis (fig. 4), at odds with the
same type of plot relative to β and γ chains, where no significant separation of different groups
appears (not shown).

brem17, E [Gly17Val] (58)
canter20, E [Val20Asp] (9)
detr19, E [Arg19Ser] (7)

lima141, E [Arg141Ser] (33)
munich19, E [Arg19Asp] (29)
cha3 554, NE [Arg554Cys] (57)
car5 532, NE [Ser532Cys] (37)
car2 434, NE [Ser434Asn] (34)
indi 554, NE [Arg554Leu] (6)
chri 526, NE [Glu526Val] (21)

Table 4. Natively occurring mutants of the human fibrinogen (Aα chain).
The first column contains the names of the hemorrhagic (E) and nonhemor-
rhagic (NE) mutants; the second and the third columns contain, respectively,
the mutation type and the corresponding reference.
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4.2. Simulated Mutants. By simulating the effect of point mutations in selected locations
of the Aα-chain we addressed the question whether the distinction between hemorrhagic and
thrombotic mutants depends upon the substitution type or upon the substitution location. To
answer the question we replaced one at a time, in the hemorrhagic mutants, the mutated residue
with the two residues characterized by the largest difference in hydrophobicity according to the
Miyazawa-Jernigan (41) scale, namely Met (hydrophobicity = 8.95) and Lys (hydrophobicity =
2.95). Thus, we produced two sets of artificial mutants, and the result of clustering in a PC1,
PC2 plane the recurrence variables is reported in figure 5. Notice that, irrespective of the type
of substituted residue, all the artificial mutants lie in the sector spanned by the hemorrhagic
natural mutants, with the only partial exception of point 141M.

Figure 5. Distribution of simulated point mutants of human fibrinogen (Aα-
chain) in a principal component space. A,B The results of substituting each of
the wild-type cysteine residues (c47, c55, c64, c68, c180, c184, c461, c491) with
lysine or methionine, obtaining as a total 16 artificial mutants. The PCA was
carried out on the whole set of RQA variables listed in table 1. The principal
components used in each panel were selected on the basis of a T test /F test
indicating the significance of the discrimination between the different groups of
mutants represented in the panel. The following zones of the Aα-chain were
considered: E (residues 0-200), D (residues 200-400), and N (residues 400-600).
Concerning substitutions of cysteine residues, a good separation between mu-
tants different for the hydrophobicity of the substitution and for the substitution
location along the chain is highlighted in a) and b), respectively. In the latter
case, only E and N zones were considered because of the lack of cysteine residues
in the D (200-400) zone.

Besides those of the naturally occurring mutants, other locations for the Lys and Met substi-
tutions were chosen and, in particular, those corresponding to the Cys residues present in the
Aα-chain at location 28, 36, 45, 49, 161, 165, 442, and 472. In this case, the PCA filter applied to
the RQA variables provides 3 components (PC1, PC2 and PC3) which altogether explain 81% of
the total variability. If PC1 and PC3 are used to define the plane, the different hydrophobicities
of Lys and Met emerge ( fig. 5A). However, substitutions of the Cys in the N zone (residues
0-200), namely c442 and c472, cluster in a different group from all the others ( fig. 5B). In
the case of a quite longer isoform of the Aα-chain (866 residues instead of 600), the Cys632,
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Cys663, Cys799 and Cys812, were substituted in the last zone of the chain (residues 600-end)
according to the same above criteria. Figure 7 shows that both Met and Lys substitutions of the
above mentioned Cys residues cluster in the same group as the mutants simulated in the E zone
(residues 400-600) typical of the hemorrhagic natural mutants, at difference with the mutants
simulated in the intermediate section (residues 400-600).

The above result points to: i) a similar role of hydrophobic patterns in the first and in the
last regions of the Aα-chain, and ii) a predictive usage of the RQA parameters in correlating
structural features and potential functional properties. Since the recurrence patterns of both the
beta and gamma chains were substantially different from those of the Aα chain, it appeared of
interest to check the recurrence patterns of the former two chains against each other by means
of a ”cross Recurrence Plot (figure 7). This plot, analogous to a cross-correlation analysis,
represents the sequences on the two axes and the dots indicate recurrences between stretches of
residues in the position of the corresponding coordinates. A pattern of short, although clearly
distinguishable, deterministic lines (three of which are indicated by arrows) appears in this plot,
and it is noticeable that they are perfectly aligned with the position of the two Cys bridges
connecting the two

Figure 6. Distribution of simulated point mutants of human fibrinogen (Aα
E-chain, 847 residues) in a principal component space. The plot was drawn
following the same criteria as in figure 4. Besides the 16 substitutions in figure
5c,d, 8 more substitutions, namely those corresponding to c632, c663, c799 and
c812, are included for a total of 24 mutants. The following zones were considered:
E (residues 0-200, N (residues 400-600) and F (residues 600-end). The line
marking the result of the discriminant analysis indicates a quite good separation
between mutants in the N zone and in the E, F zones.
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chains, namely Bβ c110 - γ c45 and Bβ c227 - γ c161 . Besides reinforcing the importance of
Cys residue location in the formation of the Bβ-γ aggregate, this seems to indicate a combined set
of chemical bonds and hydrophobic forces contributing to the overall stability of the interaction
between thebeta and gamma chain in the fibrinogen trimers.

Altogether, the reported results: a) support a remarkable role of the αC domain in determining
the structure and the properties of the clots, b) reinforce the hypothesis that the αC domain is
an intrinsically unstructured entity, and c) uphold the view that the clinical symptoms observed
in Aalpha-chain dysfibrinogenic patients can be predicted from calculations based on RQA.
Accordingly, it seems fair to state that RQA represents a precious tool for the development of a
database of point mutations in fibrinogen Aα-chain, in which epidemiological as well as structural
and functional data could find a proficient integration.

Figure 7. Cross recurrence plots of Bβ-and γ chains of human fibrinogen.
The grey arrows mark the S-S bridges connecting the two chains, while the
black arrows indicate some of the deterministic lines of recurrent points in perfect
alignment with the S-S bridges (see the text). Notice that the residue numbering
for both proteins refers to chains depleted of the signal peptides (30 and 26 amino
acids for Bbeta and gamma respectively).

5. Conclusions

Since 1994 Hans Frauenfelder and Peter Wolynes (20) focused on the peculiarity of the
sequence-structure relation in proteins and on the need to have very accurate physics princi-
ples of microscopic ”simple” systems (like atoms, small molecules) cooperatively interacting to
produce macroscopic principles describing complex systems (like protein structure). While we
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do have an accurate knowledge of potentials (hydrophobic interactions, hydrogen bonding, size
constraints, etc.) acting at microscopic levels, the ”mesoscopic” principles needed to predict the
3D structure of proteins remain essentially unknown. This blend of microscopic principles and
macroscopic consequences has been a typical feature of chemical sciences in the last century and
also inspired the present review.

The reported examples are indicative of an analytical strategy located half-way between the
purely empirical ’sequence homology’ and ’theoretically intensive’ ab initio approaches in pro-
tein science. The intensive use of statistics is made possible by the systematic reckoning of a
set of dynamical descriptors characterizing each sequence, so that ensemble-based correlations
can be sketched on large and heterogeneous data sets without the limitation of dealing with
sequences similar enough to compute a meaningful homology score . On the other hand, coding
the aminoacid residues by chemico-physical properties allows to link theoretically sound consid-
erations with the obtained results.

The basic assumption of the proposed method, namely the consideration of a protein primary
sequence as an ordered numerical series analogous to a time series, has a relevant impact for the
prediction of structural and physiological properties. While this assumption is surely reasonable
in general (given the already stated importance of the aminoacid sequence in the determination
of protein function), the success of the approach in the specific cases, as for any empirical investi-
gation, strictly depends upon both the selection of an appropriate data set and the formulation of
a pertinent questions, consistent with the data at hand. As usual, the boundary conditions play
a much more relevant role than basic principles when dealing with complex system behaviour.

6. Appendix
Fibrinogen structure (low resolution: see Figure 8).
Fibrinogen is a protein made up of two copies of three different polypeptide chains named Aα, Bβ

and γ (69) composed of 644, 491 and 453 amino acids, respectively . It is assembled in hepatocytes
to form an elongated (45 nm), tri-nodular molecule organized into dimers. The molecule includes a
central disulfide-bridged E domain (or central nodule) containing the amino termini of all six chains and
connected by two α-helical coiled-coil segments that extend in opposite directions from the center to two
outer disulfide-bridged D domains (or external nodules).

Plasma-derived human fibrinogen shows a high degree of heterogeneity in healthy individuals (70),
being typically made up of a predominant (50 to 70%) circulating component having a molecular mass of
340 kDa, and a component with one or two degraded Aα chains (20 to 50 %). Two splice variants, called
γ (5 to 8%), and Aα extended (1 to 3 %), may also be present. The latter variant (also termed fibrinogen-
420 for the high molecular mass of 420 kDa) contains Aα isoforms named αE (where subscript E means
extended) which include a unique 236-residue C-terminal extension (αEC). The extension constitutes
an additional globular domain containing a recognition site for leucocyte 2-integrins that mediate the
recruitment of leucocyte to the site of inflammation.
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