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Abstract 
Safe and efficient intracellular delivery of genes or drugs is critically important in targeted cancer 

treatment and gene therapy applications. Ultrasound (US) has been demonstrated to alter the cell 

membrane permeability due to a biophysical mechanism (Sonoporation) and exploited as a 

promising non-invasive gene transfer method. The sonoporation process could induce the formation 

of transient pores without significantly affecting cell viability. 

This research is aimed at investigating some bioeffects due to Therapeutic Ultrasound (pulsed-1 

MHz) which could allow to enhance drugs or genes delivery in a non tumoral cell line. We have 

used the NIH-3T3 cell line as model system and exposed it to US at two different distances from the 

source;  the effects of this pulsed ultrasonic wave on cells were assessed by Fourier transform 

infrared (FT-IR) spectroscopic imaging analysis. This technique combined with a focal plane array 

(FPA) detector  has been widely used to study the general biochemical changes in vitro; moreover, 

the development of FPA detectors and shortening of measurement times specifically for IR 

imaging, from several hours to few minutes, have made possible to image the distribution of 

molecular species in biological samples. We have also performed a cytokinesis-block micronucleus 

(CBMN) assay to reveal the presence or not of micronuclei (named Howell-Jolly bodies) formed 

during the cell division due to the DNA damage.  

The results of IR analysis combined with the cytogenetic analysis have shown that these 

experimental conditions can not cause DNA mutations in the NIH-3T3 cell line. Finally, the 

comparison between the spectral parameters of the average spectrum extracted from the spectral 

map and those of the set of all spectra from the spectral map could be limited by the presence of bad 

pixels inside the map. 

 

List of symbols 

A1 Amide I  (-C=O stretching), proteins 

A2 Amide II (-N-H bending, -C-N stretching), proteins  

BNC Binucleated cells 

CBMN Cytokinesis-block micronucleus 

CTR Control cells (untreated cells) 

DAPI 4’-6’-diamidino-2-phenylindole 

DMEM Dulbecco’s Modified Eagle’s minimum essential Medium 

FBS Fetal serum bovine 

FPA Focal plane array  

FT-IR Fourier transform infrared 

HCA Hierarchical Cluster Analysis 

H Inter-spectral distance 

h Intra-cluster heterogeneity 

hD Distance between petri dish and transducer 

NDI Nuclear division index 

NIH-3T3 Mouse fibroblast cell line 

 

Nbs Number of bad spectra 

MCT Mercury cadmium telluride 

MN Micronucleus 

MNC Mononucleated cells 

PBS Dulbecco's Phosphate Buffer Saline 

PCA Principal Component Analysis 

PCs Principal components 

PC1 First principal component  

PC2 Second principal component 

R1 

I

I

A

A

2

1  intensity ratio 

RMS Root  Mean Square 

SONt_d Sonicated cells (treated cells), t=time and d=distance 

S/N Signal-to-Noise ratio  

US Ultrasound
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1. Introduction 
 

In the last years, Ultrasounds have been employed in gene delivery for the advantages over other 

systems such as virus or nonvirus-mediated systems. Among its advantages there is the fact that it is 

a less invasive-method, with an a higher delivery efficiency, and more applications and minimal cell 

death can be achieved. US systems are available for both in vitro and in vivo studies [1-4].  

US effects (thermal, cavitation and microstreaming) depends on physical and biological factors, 

such as frequency, intensity, time exposure, duty cycle, temporal and spatial structure of sound 

field, the physiological state and the size-volume of a sonicated sample, and external conditions like 

temperature, pressure. Such a great number of variables complicates the analysis of the phenomena 

[5]. The focus of this contribution is on the quantitative evaluation of collateral biological effects of 

the treatment of non tumoral cell lines. 

We have used FT-IR spectroscopy imaging based on the FPA detector [6,7] to study US-bioeffects 

on a cellular system in the range of therapeutic ultrasound (1 MHz in pulsed system). This 

technique has been combined with a cytogenetic analysis (CBMN), that allows to study DNA-

damage at chromosomic level. A micronucleus is formed during the metaphase/anaphase transition 

of mitosis; it may arise from a whole lagging chromosome (aneugenic event leading to chromosome 

loss) or an acentric chromosome fragment detaching from a chromosome after breakage 

(clastogenic event) which do not integrate in the daughter nuclei. These micronuclei are also known 

as Howell-Jolly bodies. In vitro, the analysis of cells in presence of cytochalasin B (added 44 hours 

after the start of cultivation), an inhibitor of actins, allows to distinguish easily between 

mononucleated cells which did not divide and binucleated cells which completed nuclear division 

during in vitro culture; the frequencies of mononucleated cells provide an indication of the 

background level of chromosome/genome mutations accumulated in vivo. Moreover, the 

frequencies of binucleated cells with MN allow to measure the damage accumulated before 

cultivation plus mutations expressed during the first in vitro mitosis.   

According to the previous test, we have established the following conditions of experimental set-up: 

the size of the plexiglass tank, the distances and position between the cellular sample and transducer 

(ultrasound source) within tank , the use of US in pulsed system with 75 % of duty cycle.  

Finally, we have compared the utility of different methods to evaluate the quality of FT-IR maps 

and the chemical similarity between the samples.    

 

2. Materials and Methods 
 

2.1 Cell culture 

 

In this research, we have used a healthy adherent fibroblast cell line, named NIH-3T3; the NIH-3T3 

were grown with a solution of Dulbecco’s Modified Eagle’s minimum essential Medium (DMEM) 

without calcium with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin and 1% L-

glutamine at 37° C in humidified atmosphere containing 95% air and 5% CO2. 

 

2.2 Sample preparation 

 

Before the US exposure, the NIH-3T3 were cultured as monolayer on CaF2 windows, pre-treated 

with polylysine, inside a 35-mm petri dish. The viability of both the untreated (control) and the US-

treated (sonicated) cells has been determined by Trypan blue exclusion test (over 90% of viability). 

After the treatment with US, the control and sonicated cells were fixed in paraformaldehyde (2%  
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for 15 min), washed in Dulbecco's Phosphate Buffer Saline (PBS) and in distilled water to remove 

PBS residues, and dried in a desiccator. 

 

2.3 Ultrasound exposure set up 

 

We have built a plexiglass tank filled with partially degassed water and the US transducer was 

placed at the bottom. According to preliminary tests, the following parameters were chosen: 

distances (hD) between the cellular sample in a petri dish and the transducer were 10 and 15 cm 

(Figure 1), the times of US exposure were 15, 30, 45, 60 minutes.   

Acoustic pressure at both distances was measured by a needle hydrophone (Precision Acoustics 

LTD, HP 0.5 mm Interchangeable Probe) with a sensitivity of -272.7dB re 1V/µPa at the frequency 

of 1 MHz (Table a) [8].  

 

 
 

Figure1. The general scheme of the experimental set-up. 

 

The US frequency has been set to 1 MHz with 100% of maximum power in pulsed system with 

75% duty cycle. 

 

 

 

 

 
 

 

Table a. Values of the pressure within the petri dish and acoustic instant intensity at 10 and 15 cm. 

 

The temperature inside and outside of the petri dish at two different distances was measured; a 

maximum increase of 2 °C or less, that can not induce any breaks in the integrity of plasma 

membrane, was revealed during time of US exposure.   

In the results, we have indicated the control cells as “CTR” and the sonicated cells as “SONt_d”  

where t=0,15,30,45,60 minutes and d=10,15 cm.  

 

2.4 Measurement using FPA detector 

 

An FTIR microscope (Hyperion 3000) coupled to an Vertex 80v FTIR spectrometer (both from 

Bruker Optics, Germany) was used to the analysis and was controlled via PC running OPUS-NT 

software, version 6.5. The microscope was equipped with a computer-controlled x,y stage and the 

sample area within a perspex box was purged in 99,98% pure nitrogen. The Hyperion 3000 

microscope was equipped with a mercury cadmium telluride (MCT) based FPA detector of 64x64  

100% Power with  75% of duty cycle 

Distance (cm) Pressure ± ∆P (Pa) Acoustic Intensity ± ∆I (W/cm
2
) 

10 214.5 ± 21 (3.11 ± 0.4)*10
-6 

 

15 318.7 ± 32 (6.86 ± 0.9)*10
-6 

 

PETRI 

DISH 

AIR 
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pixels where each pixel corresponded to an area of 40x40 µm, so that the visible field corresponded 

to an area 170x170 µm
2
 with 15x magnification objective. Each pixel corresponds to a single 

acquired FT-IR spectrum. For IR measurements, the spectrometer was under vacuum to reduce 

spectral contributions from water vapour and CO2.  

The IR images were continuously acquired with a spectral resolution of 8 cm
-1

 and by co-adding 

512 scans of absorbance spectra were recorded in the range from 4000 to 900 cm
-1

. Every cellular 

sample was measured on CaF2 window in Trasmission mode and a background spectrum/ image of 

a “blank” area on the same CaF2 window was recorded before each cellular sample measurement in 

order to account for temporal variations of water vapour and CO2 levels.   

Three images were acquired for each CaF2 window, resulting in 30 images with 4096 spectra for the 

whole experiment. The acquisition time for each FTIR image was approximately 7 minutes.  

To study the chemical map after a pre-processing analysis, the spectral data were processed via the 

rubberband method baseline correction (64 baseline points).  

The whole spectral region (4000-900 cm
-1

) was normalized through vector normalization in the 

spectral range of the Amide I (1595-1800 cm
-1

) band and we have recorded spectra only in the 

spectral region of proteins and nucleic acids regions, from 1800 to 900 cm
-1

. The molecular maps 

were created from these spectra by plotting different spectral parameters, such as intensities peaks 

ratio, as a function of x-y pixel position.   

 

2.5 Data pre-processing for image analysis and statistical analysis 

 

The resulting FT-IR images were pre-processed by different sofwares (OPUS 6.5, OriginPro 8.0, 

Mathematica 7.0) and were analysed in proteins and nucleic acids regions (1800-900 cm
-1

).  To 

remove poor quality spectra, the data sets were subjected to a quality test such as Signal-to-Noise 

ratio (S/N) and statistical test such as Principal Component Analysis (PCA).  

In the (S/N) test, the signal S in each of the 4096 pixels was evaluated as the maximum in the 

frequency region of the Amide I band (1595-1800 cm
-1

), while the noise N was calculated as the 

standard deviation (RMS) in the spectral range 1800-1900 cm
-1

.   

In order to identify poor quality pixels, those with a Signal-to-Noise ratio S/N smaller than 100 

were labeled as bad pixels and the corresponding spectra, bad spectra.  

The threshold set at 100 was chosen in accordance to [9]. The number of bad spectra inside a map is 

denoted with Nbs. The maps having more than 1000 bad pixels have been discarded.  This 

acceptance threshold for the number of bad pixels was determined by noting that the dispersion of 

the spectroscopic parameter R1 (defined later) around the mean value increased significantly for Nbs 

> 1000. In particular, bad spectra tend to populate the low-R1 tail of the distribution, that is thus 

significantly skewed towards the left for large values of Nbs. On the contrary, the R1 distribution of 

good spectra tends to be Gaussian.   

We also show how poor spectra can be singled out using PCA.  PCA is a multivariate method 

where a complex data set containing P (each spectrum of a single map) different sets of Y variables 

(the absorbance at wavenumbers from 1800 to 900 cm
-1

) is transformed into a smaller set of new 

indipendent variables or principal components (PCs), which maximise the variance of the original 

data set and are actually unrelated (whereas the original, untransformed variables may have been 

correlated to some extent).  

Therefore, the new reference system identified by the PCs is expressed as a linear combination of 

the original data set. PCs are computed hierarchically, with the first PC (PC1) accounting for the 

maximum amount of variance and the others for the subsequent maximum residual variance. The 

coordinates of the spectra in the new reference system are called scores and the coefficients of the 

linear combination describing each PC, i.e. the weights of the original variables on each PC, are 

called loadings.  
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After the data pre-processing on the quality of FT-IR maps, a second statistical test known as 

Hierarchical Cluster Analysis (HCA), was introduced to evaluate the chemical similarity between 

control and sonicated maps of cellular samples; we have extracted the average spectrum of each 

map for control and sonicated cells, and then the average spectrum was processed with a baseline, 

smooth and vector normalization at Amide I as described in section 2.4.  

To calculate the inter-spectral distance or similarity distance (H) is used the squared euclidean 

distance while the intra-cluster heterogeneity or cluster method (h) is assessed by Ward's minimum-

variance (OPUS 6.5 software).  

In the analysis of FT-IR spectroscopic data combined with cytogenetic-results, we have introduced 

the Fisher statistical test (F-test), which allows to establish if any linear correlation exists between 

any two variables of the pool.  

Finally, the statistical significance in the CBMN assay was evaluated by Dunnet’s test.  

 

2.6 Cytokinesis-block micronucleus (CBMN) assay  

 

The control and sonicated cellular samples were treated with 6 µg/ml cytochalasin B. The cells were 

sampled 24 h after addition of cytochalasin B by centrifugation for 5 min; then, hypotonic treatment 

consisted of careful resuspension of the cellular samples in 5 ml hypotonic saline (75 mM KCl). 

Immediately after addition of hypotonic solution, the cells were collected and they fixed in 

Carnoy's fixative (3:1 methanol / acetic acid).  

Finally, the cells were transferred onto pre-cleaned slides and were stained with 10 µg/ml of 4’-6’-

diamidino-2-phenylindole (DAPI) in antifade solution (Vector Laboratories).  

For each concentration of a test compound 500 binucleated cells (BNC) were evaluated.  

Finally, the Nuclear Division Index (NDI), a parameter of cellular mitogen response and 

cytogenetic effect of US, was evaluated for each sample according to Eastmond and Tucker (1989):  

 

 

N

MMMM
NDI

)]4(4)3(3)2(21[ +++
=  

 

 

where M1, M2, M3, M4 indicate the number of mono-, bi-, tri- and quadrinucleate cells and N is the 

total number of counted viable cells. For the scoring of micronuclei the following criteria were 

adopted from Fenech et al. (2003). 

 

3. Results and Discussion 

 

3.1 Spectra pre-processing  

 

From the results of the S/N quality test, we have established the number of bad spectra and have 

evaluated their weight in each data set.  

We report, as an example, the distribution of S/N values in two maps, one of the control cells and 

one of the sonicated cells (SON45_15), that has shown a larger number of bad spectra (Figure 2).  
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Figure 2. Distribution of the S/N ratio vs. Pixel (0-4096): on the left, control cells (4051 good 

spectra and 44 bad spectra), and on the right, sonicated cells for 45 minutes at 15 cm (3344 good 

spectra and 752 bad spectra).  

 

 

By Figure 2, we extract a histogram where we also visualize the total number of pixels of the map 

for control and sonicated (SON45_15) cells corresponding to the values of S/N ratio. 

 

 

 
 

Figure 3. The total number of Pixels corresponding to S/N values: on the left, control cells and on 

the right, sonicated cells for 45 minutes at 15 cm; the good spectra are shown in blue and the bad 

spectra are shown in red. 
 

We have not discarded the FT-IR maps with Nbs<1000 to monitor the presence of major number of 

empty spaces due to the US that perturbed the spatial cellular distribution on the slide forming the 

islands of cellular monolayers.  

As shown in Figure 4, we have compared the number of bad spectra vs. time of FT-IR maps 

between the control and sonicated cells at two distances from the US source. 
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Figure 4. The number of bad spectra (Nbs) vs. time of US exposure within the maps reported at the 

10 and 15 cm from the US source. 

 

Using the PCA statistical tool, large spectral data were reduced into a small number of indipendent 

variables known as principal components (PC1, PC2, PC3 etc.); contributions of these components 

to a given spectra are called scores.   

The score of the principal components is one of the parameters widely used for classification. In 

this research, we have employed PCA method to discriminate poor quality spectra from good 

quality ones within the FT-IR maps.  

The PCA eigenvalue plot (data not reported) has shown that the PCs which have the most 

significant information, were only the first and second principal component (PC1, PC2) for all 

spectra in the FT-IR maps.   

In Figure 5, we have reported an example of PCA results where the information due to the CTR 

map and SON45_15 map is compressed in the first and second principal component of PCA (see the 

percentages of the variance in the caption of Figure 5).  

The PCA analysis of SON45_15 map shows as the majority of the bad spectra (red points) were 

distributed towards the negative values of PC2 and were dissimilar from the good spectra (black 

points); in the CTR map, the bad spectra (red points) were similar between them and were 

distribuited as the good spectra (black points) towards the positive value of PC1.      
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Figure 5. The PCA results (black points=good spectra; red points=bad spectra) obtained for CTR 

(top) and  SON45_15 (bottom) FT-IR map. In the CTR sample, the  values of PC1 and PC2 are 

69.6% and 16.2%, respectively; in the SON45_15 sample, PCs values are different from CTR 

sample (PC1=79.7% and PC2=11.1%).  

 

 

3.2  CBMN assay 

 

Using the cytogenetic test, we have found that the sonicated cells have reported a micronuclei 

frequency higher than the control cells at both distances.  

As described in Figure 6, we have observed a statistically significant value (p = 0.045) only for the 

sonicated cells for 60 minutes at 15 cm. 
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Figure 6. On the left, the histogram describes the value of micronucleated cells (MNC) / 500 

binucleated (BNC) cells for control and sonicated cells at 15 cm from the source; significance 

compared to controls: *p < 0.045. On the right, the histogram shows the NDI parameter vs. time; 

no significant differences are discovered. 
 

Finally, no significant differences between the control and sonicated cells for the values of NDI 

parameter were detected for both distances. 
 

3.3  FTIR Spectral Imaging 

 

FTIR spectral imaging enables the determination of the distribution of several molecules of interest; 

we have studied the chemical map and the average spectrum due to the FT-IR imaging through the 

analysis of a spectroscopic parameter belonging to the proteins and nucleic acids regions (1800-900 

cm
-1

): 

 

� 
I

I

A

A
R

2

1
1 =  

 

where AnI (n=1,2) parameters indicate the intensity of Amide I and Amide II peaks respectively and 

finally, the R1 parameter indicates the ratio due to the intensity of Amide I and Amide II peaks. 

The intensities of IR peaks provide quantitative analysis about sample contents, depending on the 

nature of molecular structure, their bonds, and their environment. The Amide I (A1) and Amide II 

(A2) bands are centered in the control spectrum at 1653 cm
-1

 and 1543 cm
-1

 respectively. The shape 

of the Amide I band is influenced by the overall composition in the secondary structure of the 

samples; the relative contributions fall in the following spectral regions: α-helix between 1645-1662 

cm
-1

, β-sheets between 1613-1637 cm
-1

, β-turns between 1662-1682 cm
-1

 and random coil between 

1637-1645 cm
-1

. 

Before showing the R1 parameter analysis, we have applied the Hierarchical Cluster Analysis 

method to investigate the relationships among spectra for all samples in the spectral range (1800-

900 cm
-1

) at both distances from the US source.  

Through this statistical test, the average spectrum extracted from the control and sonicated maps 

was classified within their respective type cluster according to biochemical similarities.  

As described in Figure 7, the maximum heterogeneity level in the proteins and nucleic acids regions 

was H=1.38 at 15 cm distance; while the maximum heterogeneity within clusters was h=0.14 at 

both distances.  
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Figure 7. HCA results show the cluster members according to the biochemical similarities for 

proteins and nucleic acids regions at 10 and 15 cm from the US source.  

 

  

The spectral comparison through HCA test is consistent with the results of S/N quality test and 

PCA analysis obtained from the FT-IR maps; HCA results were also confirmed by the analysis of 

R1 parameter for all the average spectra.   

As shown in Figure 8, we have analysed the Amide I / Amide II (parameter
I

I

A

A
R

2

1
1 =  ) intensity 

ratio that represents an indirect measure of DNA content, due to the carbonyl group from the bases 

and the spectral changes in the range of 1245-960 cm
-1

 that suggests conformational changes and/or 

rearrangement of existing nucleic acid structures [14]. 

 

 

 

HCA Proteins and Nucleic Acids Regions 10cm  H=0.45, h= 0.14 

HCA Proteins and Nucleic Acids Regions 15cm  H=1.38, h= 0.14 
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Figure 8. Amide I / Amide II intensity ratio vs. time of US exposure at 10 cm (top) and 15 cm 

(bottom) from chemical map and average spectrum is reported, showing small differences between 

the values of chemical map with those of average spectrum.  

 

 

The DNA content is detectable by IR spectroscopy mainly when the cells are in the S phase of the 

cell cycle because the DNA is so tightly packed in the nucleus in the G1 and G2 phases that it 

appears opaque to IR radiation [15-18].  

Assuming that the cells are into the S phase, the small spectral changes in R1 ratio, observed in our 

experiments and confirmed by HCA for the proteins and nucleic acids regions, could correspond to 

a better detection of DNA content.  

In the following Figure 9, we have reported the comparison between the chemical maps of R1 

parameter for CTR and SON45_15 sample, where it is present a considerable difference between the 

number of bad spectra; moreover, the spectral profiles of CTR and SON45_15 average spectrum were 

compared.  
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Figure 9. On the top, the chemical maps of R1 parameter for control (left) and sonicated cells for 

45 minutes at 15 cm (right); on the bottom, the overlap of average spectrum for CTR and 

SON45_15 samples, showing the spectral shape of the Amide I and Amide II bands. 

 

 

In general, the use of FT-IR imaging or spectroscopy only, without other techniques, does not allow 

to understand if the nature of the spectral changes in the R1 parameter, due to DNA unpacking 

effects [19], is linked directly with cell division or the apoptotic process. 

Therefore, we have used the micronuclei test to check a correlation between the results of chemical 

map and the Nuclear Division Index (NDI) parameter.  

Figure 10 shows the correlation between the R1 parameter and the NDI at 15 cm distance from the 

US source; this correlation has a R-value of about 0,85 with a probability of about 99% (Fisher test) 

for the linear significance.   

At 10 cm distance from the US source (data not shown), the degree of correlation decreases to a R-

value of about 0,70 with a probability of about 98% (Fisher test). Thus, the small spectral changes 

in R1 ratio are coherent with the results of micronuclei test: the Ultrasound does not cause the loss 

of structural and functional integrity of DNA at both distances of US exposure.  
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Figure 10. Correlation between the Amide I / Amide II intensity ratio and the NDI parameter with a 

R-value of about 0,85 and a probability of about 99% (Fisher test).  

 

 

4. Conclusions 
 

The information obtained in this study can be utilized as experimental basis to detect the ultrasonic 

effects in vitro. Through the results of FT-IR spectral imaging correlated with applied pression and 

a cytogenetic test, we have found no damage on functionality and structure of DNA (R1 parameter) 

at 10 and 15 cm from the US source. Therefore, the Ultrasound at 1 MHz frequency does not cause 

DNA mutations differently from known environmental agents (ultraviolet light, nuclear radiation or 

certain chemicals).  In the pre-processing analysis, the (S/N) ratio was evaluated to determine the 

number of bad spectra within the maps and the maps with a number of bad spectra over 1000 were 

discarded. We have also used a second method, PCA, to evaluate the distribution of bad spectra 

inside the map.  

We have used the HCA test to study the chemical similarity between the control and the sonicated 

samples and we have found correspondence between the results of this test and the variation in R1 

parameter, i.e. maps with similar average values of R1 result (1800-900 cm
-1

) to be clustered 

together. From spectral data in the proteins and nucleic acids regions, we have not found a perfect 

agreement between the results of the chemical map and the average spectrum. This could be due 

first to the fact that the average value of R1 is different from the ratio of the average values of A1I 

and A2I . Moreover, the R1 –value obtained from the map is actually the mode of the distribution of 

R1 –values, and this concides with the mean only if the distribution is gaussian;  this distribution is 

not gaussian due to the presence of the bad pixels.  

Other experiment are in progress to verify whether the ultrasonic source can produce a transient 

and/or permanent phenomenon of sonoporation on plasma membrane useful for transfection process 

and to study the size of pores and the membrane recovery time due to different kinetics for small 

and large molecules in situ. 
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