
Project Based Learning + Agile Instructional Design =
EXtreme Programming based Instructional Design
Methodology for Collaborative Teaching

Domenico Lembo
Mario Vacca

Technical Report n. 8, 2012

1

Project Based Learning + Agile Instructional Design =
EXtreme Programming based Instructional Design

Methodology for Collaborative Teaching

Domenico Lembo

Dipartimento di Ingegneria Informatica, Automatica e Gestionale “A. Ruberti”
Sapienza Università di Roma

lembo@dis.uniroma1.it

Mario Vacca

Direzione Generale per gli studi, la statistica e i sistemi informativi

Ministero del’Istruzione, dell’Università e della Ricerca

mario.vacca1@istruzione.it

Abstract

In the last years, the use of ICT in teaching and learning activities is widespread and
“Course design has developed from a craftsmanship-like process to a structured
production, which involves interdisciplinary teams and requires more complex
communication skills.” [Botturi 2006], making methods and modeling languages more and
more important. Many instructional design methods have been developed in the last years,
but they seem to be inadequate if applied in the context of the 21th century school. In fact,
nowadays, new skills for students are requires, like to be able to perform social useful
activities or to collaborate to solve real problems [De Vincentis 2007, Pearlman 2009,
Pearlman 2010], which, in turn, make it necessary that learning and values in the national
instruction programs naturally embody and encompass these new activities. These yields
other problems to be faced, like the students and parents’ satisfaction, the administrative
transparency and the effectiveness of the documentation, the need for cooperation among
the teachers of a team. In this paper we map both the principles of Agile methodologies
and the features of eXtreme Programming method (XP) into a new agile instructional
design methodology which is suitable to solve the previous problems: it redefines the role
of the teacher and introduces a new collaborative way to design and manage courses; it
allows the realization of the new concept of administrative transparency and access to
documents, that we call active transparency.

Keywords: agile methods; eXtreme programming; instructional design; software
engineering methodology; smart city.

2

1. Introduction and motivations

Lately, the use of ICT in teaching and learning activities is widespread, fostering the change of
educational environments. As a consequence “Course design has developed from a
craftsmanship-like process to a structured production, which involves interdisciplinary teams and
requires more complex communication skills.” [Botturi 2006]; hence, the instructional design
process is always becoming closer to the software production development, making greater the
need for methods and modeling languages.

Based on the software engineering methods, many instructional design methodologies have been
developed and many others are emerging to face the problem of the course design, each of them
carrying the same advantages and disadvantages, limits, conditions of applications and problems
such as the originating methods.

Moreover, living in our society, new skills for students are required to perform social useful
activities or to collaborate among each other to solve real problems [De Vincentis 2007], which, in
turn, make it necessary that learning and values in the national instruction programs naturally
embody and encompass these new activities. These ones yields other problems to be faced, like
the students and parents’ satisfaction, the administrative transparency and the effectiveness of the
documentation, the need for cooperation among the teachers of a team.

Today, the most common methodology in Italian schools is the Dick and Carey one [Dick and
Carey 1990], or its several variants; some of the typical problems with the application of this
method are: the marginal role of students and their parents in the instructional design process and
the related problems of satisfaction; the often unbalanced student workload for each subject and
term; the compelling choice of materials and technological tools at the beginning of the
instructional process; the scheduling and the revision of the plan in case of failure; the difficulty of
collaboration among teachers in the design of the course.

These problems are very similar to those arising from the application of traditional software
engineering methods like, for example, the waterfall model [see, for example, Pressman 1997].

In order to solve the problems arising from classical software engineering methods, in 2001 a
group of software developers and designers formed the Agile Alliance, which published the
Manifesto for Agile Software Development [Manifesto for Agile Software distribution, 2001] based
on the assumption that individuals and interactions, working software, customer collaboration and
responding to change are, respectively, more important than process and tools, documentation,
contract negotiation and following a plan.

Agile methodologies aim to satisfy the customer, to welcome changing requirements, to deliver
working software frequently (e.g. every few weeks), to make customers and developers
collaborate, to motivate individuals by suitable environment and to support, considering dialogue
essential to exchange information about the project (for the complete list of principles see
http://agilemanifesto.org/principles.html).

There are many agile methods and the eXtreme Programming is one of these, whose paradigm
can be summarized using the word of its inventor Kent Beck: "Driving is not about getting the car
going in the right direction. Driving is about constantly paying attention, making a little correction
this way, a little correction that way." [Beck 1999] “This is the paradigm for XP. Stay aware. Adapt.
Change.” [Beck 1999]

In this paper we show that it is possible to apply the Agile and XP principles to instructional design;
therefore, we propose EPIC (EXtreme Programming based Instructional Design Methodology for
Collaborative Teaching), a new agile instructional design methodology, based on the XP, with two

3

concepts at its base: the instructional design as a cooperative/collaborative act; the active
participation of students and parents to the instructional design process.

These assumptions lead to the possibility to solve the previous mentioned problems based on the
redefinition of the role of the teacher along with the introduction of a new collaborative way to
design and manage course design. Moreover, it makes possible the introduction of a new concept
of administrative transparency, and access to documents, we call active transparency and
synthesize by the statement:

 transparency + participation = active transparency

This means not only having the possibility to access to documents, or being informed of the
individual marks got in a test of in a final report, but also participating to the writing of documents or
negotiate the kind of right evaluation.

2. Background knowledge

2.1. A short overview of software development methods

A software development method is a way to rationalize the process of software development, that
is to structure, plan, and control it, through the definition of the software life cycle (SLC), which is
the sequence of the activities to be performed on the software itself from the inception to its
dismissal. These activities can be specified through either a language (e.g. a modeling language
like UML) or informally.

There are many software development methods, each characterized by a specific cycle of life: the
waterfall; the incremental and evolutive method; the spiral method; the unified process; the MDA;
agile methods. In the following we only give a short account of some methods (for further readings
see [Arlow 2005, Beck 1999, Kleppe 2003, Pressman 1997).

The Waterfall model is the most famous software engineering method; it is a sequential approach,
whose SLC is divided in phases, each of them characterized by a kind of deliverable
(documentation): requirements analysis, design, coding, testing (validation), deployment and
maintenance (see figure below).

4

The aim of these phases can be roughly summarized as follows: in the phase of requirement
analysis the features of the software system are identified; the activities of design consist of
designing the architecture, i.e. of dividing the software to be developed in parts; the coding is
translating the parts defined during the phase of design into a given programming language;
testing serves to discover programming bugs, while validation tests must be passed by the
software to be accepted by customers; the deployment and maintenance are dedicated,
respectively, to the delivery of the system and to its improvement.

The waterfall is a “big bang” model because it provides the software all at once, at the end of the
process. The main risk, linked with the linear nature of this method, is that problems (for instance
software bugs or customer dissatisfaction) arise only at the end making it difficult to fix them. To
solve this problem, evolutive and incremental methods allow splitting the project in smaller parts,
so that the software is produced incrementally. One or more prototypes (either working or only
demonstrative versions of the final software) are often provided during the course of the
development process; in this way the users have the opportunity to validate the software while it is
produced and the developers can control the process (costs, the time scheduling of the project,
etc).

Some of the problems arising in software development are the customer satisfaction, the increase
in costs during the process and the time scheduling of the project, the efforts needed to produce
the documentation and its usefulness for the process; the management of change and, in
particular, of the requirement change which can pervade the whole project.

2.1.1. Agile methodologies and the eXtreme Programming

In order to solve the previously mentioned problems, in the 2000, a group of software developers
and designers formed the Agile Alliance, which published the Manifesto for Agile Software
Development [Manifesto for Agile Software distribution 2001] based on the following assumptions:

“We have come to value
Individuals and interactions over process and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan
That is, while there is value in the items on the right, we value

the items on the left more”.

A list of principles behind the agile methodologies have also been formulated here, among which
there are: satisfying the customer, welcoming changing requirements, delivering working software
frequently (e.g every few weeks), making customers and developers collaborate, motivating
individuals by suitable environment and support, considering dialogue essential to exchange
information about the project (for the complete list of principles see
http://agilemanifesto.org/principles.html).

In 2005 the declaration of interdependence stated the basic principles for the agile project
management, among which there are the following, quoted from http://pmdoi.org/: delivering
“reliable results by engaging customers in frequent interactions and shared ownership”; expecting
“uncertainty and managing for it through iterations, anticipation, and adaptation”; “unleashing
creativity and innovation by recognizing that individuals are the ultimate source of value, and
creating an environment where they can make a difference”; “boosting performance through group
accountability for results and shared responsibility for team effectiveness”.

There are many agile methods like Crystal, the eXtreme Programming or Scrum; the eXtreme
Programming’s paradigm can be summarized using the metaphor of Kent Beck, who proposed the

5

method: "Driving is not about getting the car going in the right direction. Driving is about constantly
paying attention, making a little correction this way, a little correction that way. This is the paradigm
for XP. Stay aware. Adapt. Change.” [Beck 1999]
Therefore, according to this paradigm, managing a project is like driving a car, that is it’s necessary
to adjust the route continuously. Therefore, it is important to stay aware and taking care of
changes. In order to apply this philosophy practically, the method extremes the good practices in
software production process, like code revision, testing, design, simplicity, architecture, integration,
short iterations and documentation (this is the reason for its name). The extremes practices are
reported in the following table:

Good practices in software development Extremes practices in software development

code revision pair programmino

testing continuous testing

simplicity simple design, simple and standard coding

architecture shared metaphor

design Re factoring

integration continuous integration

short iterations planning game

documentation collective ownership of the code

The XP extremes practices aim to realize

a continuous development process with continuous feedback, steadily documented, and realized
by an efficient and comfortable organization.

The continuous process is realized by small releases, refactoring (code restructuration and
improvement) and continuous integration of the new produced code in the already developed one.
The continuous feedback is reached through a development team including the customer, the
planning game (periodical meeting of the team), the pair programming (a programmer write the
code while another one check and periodically vice-versa), the continuous testing. To make the
whole process steadily documented, it is proposed to use the collective ownership of the code
(each programmer is responsible for all the code), a system metaphor synthetically describing the
project, the use of a standard coding to make it easier to understand the code and the use of
simple design. Finally, the organization has to support the workers, trying to avoid stressing them
(extraordinary work is forbidden) and let them work in a comfortable environment which promote
dialogue and collaboration.

The phases of the XP method are the exploration, the planning, the design, the coding and the
testing. During the exploration, the users and the developers write the stories related to the
working of the system; the planning phase serves to decide which stories have to be implemented
and which others can wait; the design states the right architecture (the classes involved and their
responsibilities); during the phases of coding and testing, the stories selected in the planning

6

phase with the architecture of the design one are, respectively, implemented using some
programming language and tested using the tests formulated both by programmers and the users.

2.2. Instructional design methodologies: a short state of the art

2.2.1. Notes on the instruction process and related theories

What does it means teaching or what is an instruction process is a question of point of view. There
are, in fact, many views of the instructional process depending on the theory taken in account. In
these short notes we consider the behaviorist, the cognitivist, and the constructivist view of
instructional process, showing only the main features.

According to the view “The instructional process, or teaching, has traditionally involved instructors,
learners, and textbooks. The content to be learned was contained in the text, and it was the
instructor's responsibility to "teach" that content to the learners. Teaching could be interpreted as
getting content from the text into the heads of learners in such a way that they could retrieve the
information for a test.” [Dick and Carey, 1990]

The Gagné behavioral psychology theory [Gagné, 1985] is based on the statement that if students
have learned, then it is more likely that they will exhibit a desired behavior in a given situation.

The cognitivist model sees instruction process aiming to improve students' mental processes
(memorizing new information to be used, for instance, to perform new skills, through the
organization of activities and the providing of information.

The constructivist model see instruction process as one where learners construct their own
interpretation of the world based on the use of new and old information and experiences.

2.2.1. Instructional design methods: a short overview

All the theories in the previous section, other than other ones, can be applied in a systematic way
using instructional design methods. According to merril et al. [Merril et al.1996] “Instructional
design is a technology for the development of learning experiences and environments, which
promote the acquisition of specific knowledge and skill by students. Instructional design is a
technology which incorporates known and verified learning strategies into instructional experiences
which make the acquisition of knowledge and skill more efficient, effective, and appealing”.
There is a strong link between the software engineering methodologies and the instructional
design ones, as many authors stressed [Kennedy 1998, Rawsthorn 2005, Stewart et al. 2009,
Tripp and Bichelmeyer 1990].
Rawsthorn claimed that “Since the 1960’s computer technologies and related practices and
methods have had a significant influence over Instructional Design methods. One of the major
trends is the influence of Software Development Life Cycle methodologies over Instructional
Design methodologies. This influence is evident in the ADDIE, Dick and Carey, Rapid Prototyping
and other Instructional Design methodologies” [Rawsthorn 2005].

Stewart et al observed that “At first glance, the similarities between the software development
methodologies and the educational methodologies are easily seen. Both teaching and software
development require detailed planning and scheduling. Each requires management and constant
assessment and feedback from all involved. Making sure a course is delivered correctly and on
time presents similar difficulties to those encountered in software development projects” [Stewart et
al. 2009].

7

Tripp et al. observed that “Engineering and education are both disciplines which fit Simon's
definition of artificial sciences. Software design and instructional design are fields that have similar
methodologies and purposes. The waterfall model (Maher & Ingram, 1989) of software design and
the interservices ISD model (Branson, 1975) represent two well-known models from the respective
fields. Both models consist of five steps. The waterfall model includes Analyze, Design, Implement,
Test, and Maintain. The interservices ISD model specifies Analyze, Design, Develop, Implement,
and Control. The superficial similarities are obvious. At a deeper level, Maher and Ingram (1989)
note that in both fields, designers attempt to be systematic in approaching large, complex
problems. Designers in both fields attempt to bring orderly and replicable practices to disciplines
which are dominated by individual practitioners. Both have typically advocated the use of formative
evaluation procedures in the development of systems. Additionally, the two often deal with similar
constraints in planning, budgeting, scheduling, and tracking the development of materials. The
most fundamental difference between the two fields is the degree of rigor that can be expected in
each. Software designers deal with systems that are based on mathematical logic. Instructional
designers deal in part with computer software, but primarily with systems based on human
cognition, which entail more uncertainty and accept more ambiguity. Based on the large number of
similarities and the minor differences that exist, practitioners in the two fields have often used
similar models in their efforts to create effective materials” [Tripp and Bichelmeyer 1990].

In this section we overview the most used methods, give a short account about new methods
arising in the field of instructional design.

The ADDIE method
ADDIE (Analyze, Design, Develop, Implement, Evaluate) is the simplest and most common
instructional design method. It is constituted by five phases as its name suggests:

Phase 1) Analyze
 identify instructional goals and tasks, analyzing learner characteristics; formative

evaluation.

Phase 2) Design
 develop learning objectives, choose an instructional approach, define performance

objectives, develop assessment instruments, develop instructional strategy

Phase 3) Develop
 choose materials; design formative evaluation.

Phase 4) Implement
 deliver instructional materials; apply instructional activities; formative evaluation.

Phase 5) Evaluate
 summative evaluation.

The Dick & Carey method
The Dick and Carey method [Dick and Carey 1990] belongs to the class of Instructional System
design (ISD), where the instructional process is viewed as a feedback system, whose interacting
components are the learners, the instructor, the instructional materials, and the learning
environment and whose goal is to bring about learning; the testing gives the feedback to control
the system, making some changes.

The phases of ISD are analysis, design, development, implementation, and evaluation.

8

The Dick and Carey method is constituted by a series of steps, all of which will receive input from
the preceding steps and will provide output for the next steps. All of the components work together
in order for the user to produce effective instruction. The model includes an evaluation component
that will help determine what, if anything went wrong and how it can be improved.

The model includes ten interconnected boxes and a major line that shows feedback from the next-
to-last box to the earlier boxes. The boxes refer to sets of procedures and techniques employed by
the instructional designer to design, develop, evaluate, and revise instruction. The steps will be
briefly described in sequence below and in much greater detail in subsequent chapters.

Phase 1) Assess Needs to Identify Goal(s)
 Determine the instructional goals

Phase 2) Conduct Instructional Analysis
 Determine the required skills, knowledge, and attitudes.

Phase 3) Analyze Learners and Contexts
 Analyze the context in which the learners will learn the skills and they will use them.

Phase 4) Write Performance Objectives
 Determine the conditions under which the skills must be performed, and the validation

criteria.

Phase 5) Develop Assessment Instruments
 Develop assessments to measure the learners' ability to perform the skills.

Phase 6) Develop Instructional Strategy

Phase 7) Develop and Select Instructional Materials

Phase 8) Develop and Construct Formative Evaluation of Instruction

Phase 9) Design and Conduct Summative Evaluation

9

Phase 10) Revise instruction
 The data from formative evaluation are used to revise the whole instructional process.

The Dick and Carey methodology linearity is broken by the revise instruction phase whose effects
pervade the whole process.

Rapid prototyping
These classic instructional design models so far seen (ADDIE and Dick and Carey) are linear, in
the sense that the instructional design process, even if it include a revision process, advances
through the advancement of the Analysis, Design, Development, Implementation and Evaluation
phases.
The process proposed by the Rapid Prototyping method is an iterative one and it is based on the
observation that analysis is rarely complete. For this reason the phases Set Objectives, Construct
Prototype, Utilize Prototype, Install & Maintain could be overlapping.

Assess needs & Analyze Content Set Objectives

 Construct Prototype (Design)

 Utilize Prototype (Research)

 Install & Maintain System

The rapid prototyping model (from Tripp and al. 1990)

Recent trends in instructional design
The design of courseware’s has further increased the use of software engineering methods in
instructional design: in fact, in [Dwolatzky et al. 2002, Luden 2002] the UML and the UP method
are proposed to design courseware’s; Dodero et al. [Dodero et al. 2006] propose to use the Model
Driven Approach (MDA) to generate learning material.

2.3. Agile approaches in education

In [Stewart et al. 2009] a survey of agile methods can be found, concerning the use of agile
teaching in course about software development or computer science or similar. Common features
are: minimized use of lectures in favor of, possibly, group application; short activities; use of
feedback. The results include more motivated students and more satisfactory experience both for
students and teachers. In the sequel we illustrate some agile education approaches.

Agile Instructional Design [Peter Rawsthorne 2005]
(Agile Methods of Software Engineering should Continue to have an Influence over
Instructional Design Methodologies.)
The author maintains that the software engineering methodologies have had influence over
Instructional Design methodologies and, now agile methodologies are spreading and then they can
provide new techniques to Instructional Design methodologies. According the author, from the
point of view of learning theories, Agile Instructional Design methods enhance constructivism as
they involve the learner in the curriculum development process.
The phases of the proposed method are as in the following figure from [Peter Rawsthorne 2005]:

10

Rawsthorn P. propose the following change upon the Dick and Carey model:
Stage 1. Curriculum Planning
Stage 2. Identify Learning Themes and Metaphors (Anchors)
Stage 3. Identify Learner Roles
Stage 4. Trawl for Learning Objectives, Modules and Competencies.
Stage 5. Identify Test Cases (Proof of Competencies)
Stage 6 & 7. Pair Programming (Development)
Stage 8. Unit Test (Automated Testing)
Stage 9. Release to Production (Refactor, Refactor, Refactor)
Iterate to Stage 4. within curriculum plan.

Despite their importance within the XP methodology (see Beck 1999), the Rawsthorn paper
doesn’t consider the roles of actors involved in the instructional process

Agile Education [De Vincentis 2007] spde@deakin.edu.au
In this approach, it is taken in account the problem that “Students need to develop not only
excellent numeracy and literacy skills, but problem solving skills, creative solution skills, strategy
skills, relationship skills, think-on-your-feet skills” because of the need to create new jobs and be
able to change job.
The author observes that State curricula are essentially based on values and the essential learning
and that life skills are considered through the blending of discipline based content with values and
life skills they. Moreover, equity and standardization are opposite and teaching is often for testing.
She proposed a student-centric approach based on the following Agile Education Manifesto based
on the Agile Manifesto:

11

“We are uncovering better ways of developing education by doing it and by helping others do it.

Through this effort we have come to value:

individuals and interactions over processes and tools,
working education over comprehensive documentation,
customer collaboration over contract negotiation, and

responding to change over following a plan.

While we value the items on the right in this list, we value the items on the left more.”

[De Vincentis 2007, based on The Agile Manifesto, Agile Alliance 2001].

Agile principles, active and cooperative learning [John C. Stewart et al. 2009]
The authors maintain that in order to learn, students have to participate actively to the learning
process, that is they have to discuss, to read, to write, but also to solve problem, to analyze, to
evaluate and to synthesize. To be active, students have to do things in addition to think about the
think they are doing; moreover, to be cooperative students have to participate in tasks as a group.
In that paper, according to the authors, agility is referred to student learning and it is interpreted as
a means to make teaching student-centric and effective.
The authors propose the following student-centric learning oriented Agile Manifesto

Students over traditional processes and tools.
Working projects over comprehensive documentation.

Student and instructor collaboration over rigid course syllabi.
Responding to feedback rather than following a plan.

They also mapped the principles of the Agile Manifesto into Corollary to the Pedagogical
Environment (see afterward in the paper). The authors show that agile teaching methodologies fall
in the categories of Active and Cooperative learning.

3. The change of learning environment and the educational needs in the 21th century
society

The technologies are changing our daily life and with it all the social activities, from trade to the
processes of government, relations with the government up to the schools and universities, where
the change is even more important because it affects not only processes, but comes to teaching, ie
the basic tools for citizen education.
To manage the relationship technology-education becomes a crucial issue for society today, as it
directly affects the formation of future citizens.

The relationship between the use of technological tools and education is manifested in the creation
and testing of new learning environments, or environments in which the actors are always the
students and teachers, but they may have, by virtue of the use of technologies, a different
connotation space-time, or "pushing the limits of the classroom" and "school time" to allow a more
personalized learning and to measure student.

From another point of view is the importance of knowing how to use technology to solve problems,
as established and adopted by the Digital European Digital Agenda Italian. So the new learning
environments conducive to the spread of technologies, driver of the economy.

12

We must add, that the flourishing of languages associated with the new medium of communication
that young people are common (they are the so-called digital natives) makes the combination of
technology-teaching or learning technological environments, of further importance, since in able to
attract young people to culture and resolution of problems in language and modes of operation that
young people commonly use.

Another observation to make, concerning the importance and role of knowledge in Internet
time. Today, knowledge is widely scattered, but many, so it takes two types of skills: building
survey, or systematize the knowledge on a comprehensive framework and be able to use
knowledge to solve problems. We can say that the lofty goals of Bloom's taxonomy, analysis,
synthesis, problem solving, today constitute basic skills that every citizen should have as their
culture, much more than individual knowledge.

Therefore more than learning notions it is important solving real problem in a real way, even
because this could have a positive influence over the student motivation. On the contrary, school
curricula are based on values and learning, neglecting the real life problems which are considered
only out of the curricula values and learning (in the Italian educational systems projects can be
dedicated to this end).

“Digital technology potentially brings great many advantages to education, including ease of
connecting with the world, ease of sharing, ease of getting and giving feedback, and better, faster
ways to create and communicate (just to name a few).
But digital technology is not, by itself, the answer to education, or our educational problems. In
fact, just adding technology to the old “tell-test” pedagogy can actually hinder education and
learning, by distracting students from listening, while not taking maximum (or any) advantage of the
powerful tools they have. So the pre-requisite for adding technology to change teachers’ pedagogy
to some form of partnering” [Prensky 2011].

To sum up, as many authors observe, the 21th century societies are characterized by smart cities
each of them with a smart specialization. Moreover, modern societies, the information society, ask
citizens for new skills like the ability to change job frequently or to create new jobs, the habit to
collaborate with other workers or to do research to solve the problems of their community, using
the ICT to retrieve the information needed.
In other words, it is required to be creative.

3.2. Inadequacy of the current instructional design methodologies to face the problems of
the 21th century way of teaching and learning

If instructional design methodologies have been useful so far, now they provoke some problems,
like the following:

● effectiveness of documentation and plan revision
The project plan related to each subject is made at the beginning of the course; each time that
some problem happens imposing the plan revision, the new project plan should be rewritten in
order to make this document effective. Rewriting documents requires time and efforts to make the
document coherent with the others related to the other subjects.

● the time scheduling of the project

13

It is well known that projects are often delayed; it can happen that, in order to meet deadlines, the
realization of some activities could be accelerated, yielding problems in student understanding
skills and increasing the workload.

● marginal role of students and their parents in the design of course
Students and their parents have little space in the course design: they participate a few times a
year to teachers’ team meetings. Their contribution is often limited to the discussion about general
problems arising and to the possibility to contribute to choose
From an engineering point of view, the students and parents’ role is essentially limited to the
validation of the instructional contract.
It is worth to note that other instructional systems based on different methods allow, for example,
students to negotiate the activities with teachers in order to follow their own attitude and will, but
always within the school general [Garnier 2011].

● unbalanced student workload among the disciplines and the term.
because of each discipline produces its own workplan applying the more appropriate method and
without a detailed verification of the relations among the modules or activities of the different
disciplines, it could be possible that in some period the student workloads results unbalanced or
unbearable, producing negative results on the quality of learning.

● the choice of the more appropriate technological tools
There are cases where the didactical project has to follow a special idea of teaching aiming to
modify the learning environment (the so called Idea 2.0) [Barca 2011, iTEC]; to realize this kind of
ideas (that is to design the project and to realize it; the teacher team is supported by an expert, a
coach. This case shows how the classic project plan used in the Italian school is inadequate.

Moreover, as it is observed in [Rawsthorn 2005] “there is also a growing discontent among many
practitioners with the ISD methodology.” In addition traditional has been criticized for being too
slow and having an outdated world-view.

4. PBL: teaching and learning by projects

As underlined from many authors the didactical formula based on lectures where the teacher

teaches (teacher telling or talking or lecturing) and students learn is not more adequate: the new

paradigm fostered by the use of technologies is “students teaching themselves with teacher’s

guidance (a combination of “student-centered learning,” “problem-based learning,” “case-based

learning,” and the teacher’s being the “Guide on the Side.””[Prensky, 2008].

To this end, Pearlman proposed to consider real life problem to be solved by real methods, so that

useful outcomes requires student active participation, that is students that learn by themselves with

the teacher guidance. Moreover, parents participation is also important within a newer evaluation

system.

The Pearlman proposal is called PBL (Project Based Learning) and can be defined as “a system-
atic teaching method that engages students in learning knowledge Designing New Learning
Environments and skills through an extended inquiry process structured around complex, authentic
questions and carefully designed products and tasks” [Pearlman 2010]

The main features of the PBL are:

14

- the main teaching activity is the project (which is one to three weeks long);

- projects are realistic (real word);

- projects generates a set of knowledge to be known in order to solve them;

- projects are designed to complex problems and require critical thinking, collaborative activities,
problem solving capabilities;

- students as Workers and Producers (constructors of knowledge);

- students work and engage in self directed learning;

- students have to be motivated to learn and have personal “need to knows“;

- projects have associated rubrics for content, collaboration, written communication, oral
communication, critical thinking, etc., all posted online for students, so that they can decide on their
own whether to achieve basic, proficient, or advanced work;

- Self-direction is a learned behavior accomplished by students motivated
to learn, and having information on “how am I doing?” and “what do I want to accomplish?”

- Assessment and feedback are crucial.

In other words the process (project) comes before the content (information) which is a direct
consequence. This is not new in philosophy and mathematics: in fact, reasoning by problems and
on the problems has been studied and emphasized by many philosophers and mathematicians like
Cellucci [Cellucci 1998, 2002], Hintikka [Hintikka 2007], Polya [Polya 1957] or Popper [Popper
1999] and it is considered as opposed to the traditional logic (the Aristotelic one) based on the
reasoning on affirmations and using deduction as its main reasoning tool.

In the Italian school is a long time now that the practice of teaching by projects is increasingly
shifting from the extra-curricular to the curricular context.

Teaching by projects using a form of horizontal teaching involves, the same as Pearlman notes, a
number of difficulties and problems, starting with the management of a class that adopts the PBL.

In fact, students will:

• need access to project materials;

• must always be aware of the times;

• must know the criteria and methods of project evaluation;

• need to know about their assessments in order to improve their performance;

• must be able to choose the level of the tasks to be performed in accordance with
their aspirations and abilities.

As Pearlman points out the same, this is where technology can make a difference: technology
used to enable the activities mentioned above, as well as collaborative activities (wikis, blogs,
video conferencing, etc.).

But not only technologies: a methodology is needed to help develop and manage the project.
A problem relates to the difficulties of managing a PBL classroom.

15

“Students can’t work effectively as individuals or as members of a team unless they can access all
their project materials, calendars, and rubrics for how the project will be assessed. They also need
to check their grades constantly to see how they are doing and also see the criteria for how they
can do better. In addition, teachers need to design projects, project calendars and benchmarks,
and assessments and post them online for student access. This is an area where today’s
technology can make a huge difference.”

5. Agile management of learning projects: adapting the Agile and eXtreme Programming
principles to the instructional design context and PBL.

“The result of using the systems view of instruction is to see the important role of all the
components in the process. They must all interact effectively, just as the parts in a heating or
cooling system must interact effectively in order to bring about the desired outcomes. There is not
an overemphasis of any one component in the system, but a determination of the exact
contribution of each one to the desired outcome. And it is clear that there must be both an
assessment of the effectiveness of the system in bringing about learning and a mechanism to
make changes if learning fails to occur.”
[Dick and Carey 1990]

Methodology has roles, activities performed by roles and producing artifacts and possibly ordered
in phases.

Instructional design as software design paradigm implies the description of the instructional design
process in terms of activities performed by roles

The instructional design process is therefore viewed as constituted by roles (students, teachers
and headmaster, parents, consultants, etc.) each of them performing some activities (lecturing,
checking, solving problems, discussions, exercises, personal study, presentation production, etc.).

In order to give the dynamics of the method, activities have to be arranged in phases or ordered in
some way.
In this paper a teaching/learning process is constituted by activities that have to be designed,
realized, performed. Activities help in fullfilling a goal
Activities involve students: single, groups or the whole class The acting subjects could be a single
learner along with the tutor, a whole class with the instructor, or a tutor alone.

The XP paradigm is well suited also for teaching, because in teaching everything changes as well
students are human and their learning response to teaching is not completely predictable, change
with the time and from student to student; needs change; the technology and the materials change;
the team members change; the team change.
“The whole team drives the development process. XP lets you adapt by making frequent, small
corrections; moving towards your goal with deployed software at short intervals. You don't wait a
long time to find out if you were going the wrong way.” [Beck 1999]

Students and parents participate to the definition of the content of the system

Our interpretation of the agile manifesto from a didactic point of view is as follows:

The collaboration between students and teachers over processes and tools

16

The collaboration between students, parents and teachers over educational agreements
(patti formativi)

Interesting activities over instructional design documentation

The design, the problem solving and task performing over notions and knowledge

Responding to feedback over following plans

1. Principles of the Agile
Manifesto
[agilemanifesto.org/principles.ht
ml]

Corollary to the
Pedagogical
Environment [Stewart
et al. 2009]

Our interpretation

Our highest priority is to satisfy the
customer through early and
continuous delivery of valuable
software.

Our highest priority is
to prepare the student
to contribute to an
organization through
continuous
delivery of course
components that reflect
competence.

Our highest priority is to satisfy
the students and their parents
through the continuous
production of real projects and
the achievement of results.

Welcome changing requirements,
even late in development. Agile
processes harness change for the
customer's competitive advanta- ge.

The instructor and
students welcome and
adapt to changes even
late in the semester.
Agile pedagogical
methods use problems
and change as an
opportunity to facilitate
learning and better
develop marketable
skills in the students.

Deliver working software frequently,
from a couple of weeks to a couple
of months, with a preference to the
shorter timescale.

Requiring working
deliverables from the
students over short
time periods allowing
for frequent feedback
and guided problem
solving and
experimentation.

Business people and developers
must work together daily throughout
the project.

There is iterative
interaction between the
instructor and students
(or student groups)
during each iteration of
course components.

A collaboration between
teachers, students and parents
takes places during each
iteration of the project.

17

Build projects around motivated
individuals. Give them the
environment and support they
need, and trust them to get the job
done.

Trust that most
students are motivated.
Give them the
environment and
support necessary that
for them to be
successful.

Motivate the students through
design and realization of real
projects.

The most efficient and effective
method of conveying information to
and within a development
team is face-to-face conversation.

To the extent possible,
allow for direct face to
face interaction with
students or student
groups.

The most efficient method to
inform is the face to face one
within the group students,
teachers and parents.

Working software is the primary
measure of progress.

Working deliverables
(i.e. models, software,
project deliverables,
presentations, etc.) are
the
primary measure of
student progress (not
necessarily
midterm & final exams
that require
rote learning and
memorization).

Agile processes promote sustainable
development. The sponsors,
developers, and users should be
able to maintain a constant pace
indefinitely.

The cooperative
learning environment
where students actively
seek guidance and
tools to solve problems
is the basis for
teaching the skills
needed for life-long
learning.

Continuous attention to technical
excellence and good design
enhances agility.

Continuous attention to
technical excellence
and good design
enhances learning.

Simplicity--the art of maximizing the
amount of work not done--is
essential.

While in education
there is some value in
exploring subjects in
depth just because
there is student
interest, understanding
the problem and
solving it simply and
clearly is essential.

The best architectures, Student groups and

18

requirements, and designs emerge
from self-organizing teams.

teams should self
organize, but all should
participate equally in
the effort.

At regular intervals, the team reflects
on how to become more effective,
then tunes and adjusts its behavior
accordingly.

At regular intervals, the
students and instructor
reflect and offer
feedback on how to be
more
effective. All
stakeholders then
adjust accordingly with
the goal of being more
effective.

Good practices in teaching

Extremesed practices in teaching

Activity revision Pair programming

Formative evaluation Testing all the goals

Summative evaluation Transversal evaluation

Restructuring of activities Continuous design

Simplicity Simple design

Architecture Shared metaphor

The Council instructional design Collective ownership of the instructional design

Short iteration Planning game

Participation of students and parentsActive participation of students and parents

The metaphor plays an important role in learning projects where the use of technologies is
relevant, as it happens in the action cla@ssi 2.0. Examples of metaphors can be found in [Barca
2001].

6. The method: activities, strategies and roles.

The feature of projects are:

- the teaching of basic annual educational programming is to define a set of projects;

- a project must be: designed to solve complex real life problems, solvable with real instruments
and means, and of short duration;

- a project must generate a set of useful knowledge to the resolution of the same;

- the set of projects in a school year shall exhaust the knowledge, skills and capabilities provided
by the ministry guidelines;

- a project must require critical activities, analysis, synthesis, problem solving, to be applied
individually or in a cooperative and collaborative way;

- project proposals are written in the form of stories and shared with students and parents
(stakeholders).

19

6.2. The activities and strategies

The Council's work within the class of extreme programming is organized in four tasks (repeated
several times during the school year): listening, design, coding, testing.
The listening is listening to the desires and needs of users and staff, in setting goals and in
consideration of the technological opportunities offered by the market to meet the needs of users
and teachers.
The design layout of the project concerns the teaching and integration of project activities in the
curriculum.
The coding consists in designing and implementing activities, while the verification testing is to
achieve the objectives set out in the business of listening to the proper functioning of the planned
activities.

The method therefore provides four strategies: strategy planning, strategy design, development
strategy, the strategy of testing.

6.2.1. The planning strategy and game planning

The planning strategy aims to identify activities to be undertaken and the priorities and estimate
costs and duration of the project.
 As happens in XP, projects must involve only the objectives and activities necessary to be able to
pursue the achievement of the curriculum.
The planning strategy is achieved through a game, planning game, with two participants: the
management (students, parents, teachers, coaches, consultants) and teachers.
The strategy for the Council is to reduce the risk by investing as little as possible to realize the
most important activities
The members of the Planning Game are the tabs containing the stories of operating activities.
The user stories are the characteristics of the activities are written on index cards of the official
school history to each is assigned a value of importance is that a verb that indicates the priority
(must, should, could, etc..).
(For the use of teaching stories see Jonassen, David H., Hernandez-Serrano, Julian (2002) Case-
based Reasoning and Instructional Design: Stories to Support Problem Solving Educational
Technology Research and Development, Vol 50, No. 2, pp. 65-77)
The Planning Game, the two actors are the development team and management. The group
development comprises a total of all the people who will be responsible
of implementation. The management consists of total of all
those taking the decisions about what should be done.

The game is developed in three phases: exploration, commitment and management. The
exploration phase aims to identify new goals and activities, the commitment to choose the activities
to real ize in the next step, then the management has the task of address on the basis of what
happens (adjustments based on reality).
Each phase consists of the moves.
The moves of the exploration phase:
1. Writing a story
management writes a story that describes an activity
2. Estimate the length of a story
teachers estimate the time necessary to produce and implement the story.
3. Subdivision of a story

20

The moves of the management phase:
1. Iteration (by management)
choice of stories to implement.
2. Recovery (by management)
choice of stories to keep the issue in the course if there are
problem of overestimation of the speed of implementation.
3. New story (by the management and developers)
The management can introduce a new story (and delete them).
4. New estimates (by developers)
if the old estimates are not more realistic

6.2.2. The design strategy

As mentioned before, the XP is based on short release, XP also applied to the teaching activities
will be feasible and practicable in 2-4 weeks.
This phase is called the architecture education, whose basic components are the activities, each
activity must identify what it does (responsibility) and ATRE activities that must work together to
fulfill the responsibility.

The documentation of the design phase is the production of cards CRA (Cooperation,
Responsibility, Activity).
The architecture is characterized by "project metaphor" that defines a simple and concise what you
are doing at that time.
 The simple design means designing teaching a small number of activities (as necessary),
preferably interdisciplinary or multidisciplinary collaborations with a few.

6.2.3. The encoding strategy

The coding tasks is to create (e.g. choice of technologies, creation of slides, etc..) And in their
implementation.
The practices in support of this activity are the pair programming, collective ownership of assets,
The integration continues, the standard coding, refactoring.
The pair programming consists in realizing the activities in pairs (not in the program them), using
standard (eg models of slides; shooting LIM with certain characteristics, etc.).
 The programming takes place in pairs, both to facilitate the control to favor solutions
mutual control of the property / product code and to stimulate the generation of innovative solutions
by comparison between different people. It is advisable to replenish the pairs.

The collectivization of the code should help simplify the structure of work, together with the
adoption of coding standards. Refactoring (restructuring) is used to restructure the activities sualla
abase of new requirements (eg the next year or for the recovery or because it has identified a more
effective).
The ongoing integration of new activities within the existing architectural scheme involves
understanding the role of training activities in the context of a class.

6.2.4. The test strategy evaluation

The tests are written before the activities are carried out continuously, and frequently.

Since the tests take time, we must design tests that help track down the important issues, to help
people understand where the action exerted through educational activities has failed.

21

Because the tests take time, we must design tests that help track down the important issues, to
help people understand where the action exerted through educational activities has failed.

The different modes of evaluation should be written before the activities are performed
continuously, and (often) to monitor the status of implementation and the quality of the project.

He must not play around with: activities must propose some simple things that test is useless, thus
remain to be tested only the important things.

6.3 The roles

If the programmer is the heart of XP, the teacher will be the heart of EPIC.
As in XP, even in EPIC, the main value is communication with other people.

6.3.1 Students

The student:

- must be motivated to participate in the project;

- must practice self-learning;

- must have personal knowledge needs and adhering to the project;

- participates in the writing of stories;

- participate actively in the planning and implementation;

- is always aware of the activities and duties;

- choose the activities to be carried out while participating in the project based on their aspirations
and abilities;

- are aware of the criteria for evaluation of individual activities and overall value.

6.3.2 Teachers

The teacher:

- plans activities;

- assesses the scope of activities;

- guides and directs the students during the definition and implementation of the project;

- defines the evaluation activities.

A teacher takes on the role of tracker who manages the result of tests; takes in account the
problems, solutions and tests; collects information on the project realization;

 Another teacher or an outside expert's role is the coach who is responsible for the entire process.
S/he controls the operations of the council.

6.3.3 Parents

Parents participate in the

22

- writing of stories and functional tests (test type);

- definition of final validation tests

6.3.4 Headmaster
In our proposal the headmaster is interested in the instructional process and assure the fulfillment
of the goals.

6.3.5 Consultants

The consultants are teachers who solve the problems for which they was called.

The participation of students, parents, counselors and coaches should also be facilitated by the

use of technology and, in particular, those collaborative, parents and students should be seen as

analogous to an inherent customer, effective contributors to the definition of the training project

class, not just subjective to which the school has only the obligation to fulfill the training agreement.

We must create a working space open for the group, with a central common area for programming
and small private spaces around.

7. Conclusions and future work

In this paper the needs of the society are taken on account, according with the concept of smart
community. The school becomes a part of the smart community and this foster the participation of
the maximum number of stakeholder. To this end a new methodology based on the eXtreme
Programming is presented.

New concepts are introduced:

- collective instructional design;
the collective guarantees a right equilibrium between the load and importance of the
disciplines.

- active transparency;
- active role of students and their parents.

In addition to the necessary experimentation , future work include the definition of

- teacher 2.0;

- tools 2.0 for supporting the methodology.

Moreover the relation between the presented methodology and the concept of school 2.0 has to be
investigated.

23

References

2. Manifesto for Agile Software distriubution (2001), http://agilemanifesto.org/

www.agilealleance.org,.
3. J. Arlow, I. Neustadt (2005)``UML 2 andTthe Unified Process'',. Pearson Education, 2005
4. Barca D. (2011) “2.0 in classe Dalla rete: il bisogno, l’idea” (in Italian) . Retrieved from

http://www.comprensivocigliano.it/Classe%202.0%20dalla%20rete%20il%20bisogno%20l'idea
.pdf on19th November 2011

5. Beck K. (1999). Extreme Programming Explained: Embrace Change, Addison–Wesley.
6. Botturi, L. (2006). E2ML. A visual language for the design of instruction. Educational

Technologies Research & Development, 54(3), 265-293.
7. Andy Hon Wai Chun (2004): The Agile Teaching/Learning Methodology and Its e-Learning

Platform. ICWL 2004: 11-18
8. Cellucci Carlo (1988) Le ragioni della logica, Laterza (in Italian)
9. Cellucci Carlo (2002) Filosofia e Matematica, Laterza (in Italian)
10. Cla@ssi 2.0 http://www.scuola-digitale.it/classi-2-0/il-progetto/introduzione-2/
11. Dall’Agnol Michela, Sillitti Alberto, and Succi Giancarlo (2004) Jutta Eckstein Hubert

Baumeister (Eds.) Project Management and Agile Methodologies: A Survey
12. Dick, W. & Cary, L. (1990), The Systematic Design of Instruction, Third Edition, Harper Collins
13. Declaration of Interdependence http://pmdoi.org/

14. De vincentis Sue (2007), Agile education: Student-driven knowledge production ACEL/ASCD
conference, New Imagery for Schools and Schooling Sydney, October 2007
http://www.acel.org.au/conf07/papers/De%20Vincentis%20paper.pdf

15. Dodero Juan Manuel, Díez David (2006), Model-Driven Instructional Engineering to Generate
Adaptable Learning Materials, Advanced Learning Technologies.

16. Dubinsky Y., Hazzan O. (2004). Roles in Agile Software Development Teams. XP 2004: 157-
165

17. Dwolatzky B., Kennedy I.G. and Owens J.D. Modern software engineering methods for
developing courseware Engineering Education 2002

18. El-Abbassy Ahmed, Muawad Ramadan, Gaber Ahmed (2010), Evaluating Agile Principles in
CS Education IJCSNS International Journal of Computer Science and Network Security,
VOL.10 No.10, October 2010

19. Garnier X. (2011). Personalised teaching and flexible time management in a digital
environment in ”Implementing 21st century ways of learning and schooling” 12 May 2011,
Roma Conferenza internazionale sui nuovi scenari dell'apprendimento organizzata a Roma
da ANSAS e EUN http://www.scuola-digitale.it/eventi/scuole-2.0/

20. Hintikka J. (2007), Socratic Epistemology; Explorations of Knowledge
21. iTec – “Design the future classroom” - Project http://itec.eun.org/
22. Gagné, Robert M. (1985). The conditions of learning (4th ed.). New York: Holt, Rinehart and

Winston.
23. Jonassen, David H.; Hernandez-Serrano, Julián (2002) Case based Reasoning and

Instructional Design: Stories to Support Problem Solving Educational Technology Research
and Development, Vol. 50, No. 2, pp. 65–77

24. Kennedy, David (1998). Software Development Teams in Higher Education: An Educators
View. Retrieved on Jan. 02, 2011 from
http://www.ascilite.org.au/conferences/wollongong98/asc98-pdf/kennedyd.pdf

25. Kleppe Anneke G., Warmer Jos, Bast Wim (2003), “MDA Explained: The Model Driven
Architecture: Practice and Promise", Addison-Wesley Professional.

26. Luden Lorna (2002), Courseware Engineering Methodology, JOURNAL OF COMPUTING IN
HIGHER EDUCATION Volume 14, Number 1

24

27. Merrill, M. D., Drake, L., Lacy, M. J., Pratt, J., & ID2_Research_Group. (1996). Reclaiming
instructional design. Educational Technology, 36(5), 5-7.

28. Pearlman Bob (2009), Making 21st Century Schools: Creating Learner-Centered
Schoolplaces/Workplaces for a New Culture of Students at Work ,EDUCATIONAL
TECHNOLOGY September–October 2009

29. Pearlman Bob (2010), Designing New Learning Environments to Support 21st Century Skillsin
James Bellanca and Ron Brandt (Eds.) 21st Century Skills Rethinking How Students Learn,
2010

30. Polya G. (1957), How to solve it Garden City, NY.
31. Popper K. (1999), All life is Problem Solving, Routledge
32. Prensky Marc(2008), The Role of Technology in Teaching and the Classroom (in Educational

Technology Nov-Dec 2008
33. Prensky Marc (2011), Interview in l’Unita http://www.marcprensky.com/writing/Prensky-l'Unita-

Interview-6-11-english.pdf
34. Pressman, Roger (1997). Software Engineering: A practitioner’s approach (Forth ed.)
35. Principles behind the Agile Manifesto agilemanifesto.org/principles.html
36. Rawsthorn P. (2005). Agile Methods of Software Engineering should Continue to have an

Influence over Instructional Design Methodologies.
http://www.rawsthorne.org/bit/docs/RawsthorneAIDFinal.pdf

37. Razmov, V., Anderson, R.J. (2006), "Experiences with Agile Teaching in Project-Based
Courses," In ASEE 2006, available from asee.org.

38. Robinson Hugh and Sharp Helen (2004) The Characteristics of XP Teams in Jutta Eckstein
Hubert Baumeister (Eds.) Extreme Programming and Agile Processes in Software
Engineering

39. Stewart John C., DeCusatis Carolyn Sher, Kidder Kevin, Massi Joseph R., and Anne Kirk M.
(2009) Evaluating Agile Principles in Active and Cooperative Learning Proceedings of
Student-Faculty Research Day, CSIS, Pace University, May 8th, 2009

40. Traxler, J. Courseware Engineering : A Paradigm for Development [On-line] Available
WWW:http:llds~ace.dial.vi~ex.com/mouldindCisedsreid/S IGTOSElmtn 92. htm#John Traxler

41. Tripp,Steven, Bichelmeyer,Barbara (1990), Rapid prototyping: An alternative instructional
design strategy, Educational Technology Research and Development, 38, 1, 3/18/1990,
Pages 31-44.

	copertinaTR 8 2012
	MetodologiaDidatticaXPTP-1

