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Abstract
In this work, we study exact continuous reformulations of nonlinear integer programming problems.
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1 Introduction

Many real world problems can be formulated as a nonlinear minimization problem where some
(or all) of the variables only assume integer values. When the dimensions of the problem get
large, finding an optimal solution becomes a tough task. A reasonable approach can be that of
transforming the original problem into an equivalent continuous problem. A number of different
transformations have been proposed in the literature (see e.g. [1, 2, 5, 8, 9, 10, 11, 12]).
In this work, we consider a particular continuous reformulation which comes out by relaxing
the integer constraints on the variables and by adding a penalty term to the objective function.
This approach was first described by Ragavachari in [12] to solve zero-one linear programming
problems. There are many other papers closely related to the one by Ragavachari (see e.g.
[3, 4, 6, 7, 13, 14]). In [4], the exact penalty approach has been extended to general nonlinear
integer programming problems. In [13], various penalty terms have been proposed for solving
zero-one concave programming problems. We generalize the results described in [4], and we
show that a general class of penalty functions, including the ones proposed in [13], can be used
for solving general nonlinear integer problems.
In Section 2, we state a general result concerning the equivalence between an unspecified opti-
mization problem and a parameterized family of problems. In Section 3, by using the general
results described in Section 2, we prove that a specific class of penalty terms can be used to
define exact equivalent continuous reformulations of a general zero-one programming problem.
In Section 4, following the idea of Section 3, we show a general nonlinear integer programming
problem is equivalent to a continuous penalty problem. The results proposed in Section 3 and
4 can be easily extended to mixed integer programming problems.

2 A General Equivalence Result using Penalization

We start from the general nonlinear constrained problem:

min
x∈W

f(x) (1)

where W ⊂ Rn and f(x) : Rn → R.
For any ε ∈ R+, we consider the following problem:

min
x∈X

f(x) + ϕ(x, ε). (2)

where W ⊆ X ⊂ Rn, and ϕ(·, ε) : Rn → R.
In the following Theorem we show that, under suitable assumptions on f and ϕ, Problem (1)
and (2) are equivalent.

Theorem 1 Let W and X be compact sets. Let ‖ · ‖ be a suitably chosen norm. We assume
that

a) f is bounded on X, and there exists an open set A ⊃ W and real numbers α, L > 0 such
that, for any x, y ∈ A, f satisfies the following condition:

|f(x)− f(y)| ≤ L‖x− y‖α. (3)

b) the function ϕ satisfies the following:
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(i) For every x, y ∈ W , and every ε ∈ R+

ϕ(x, ε) = ϕ(y, ε).

(ii) There exist a value ε̂ and an open set S ⊃ W such that, for every z ∈ W , x ∈
S ∩ (X \W ) and ε ∈ (0, ε̂], we have

|ϕ(x, ε)− ϕ(z, ε)| ≥ L̂‖x− z‖α (4)

where L̂ > L.
Furthermore, there exists a point x̄ /∈ S such that

lim
ε→0

[ϕ(x̄, ε)− ϕ(z, ε)] = ∞ (5)

for every z ∈ W , and
ϕ(x, ε) ≥ ϕ(x̄, ε). (6)

for every x ∈ X \ S, and for every ε > 0;

Then, a real value ε̃ exists such that, for any ε ∈ (0, ε̃], problem (2) and problem (1) have the
same minimum points.

Proof. First we prove that every optimal solution of Problem (2) is also an optimal solution of
Problem (1).

For all ε > 0 if x? is an optimal solution of problem (2) we have

f(x?) + ϕ(x?, ε) ≤ f(x) + ϕ(x, ε) ∀ x ∈ X. (7)

Since W ⊆ X it follows that

f(x?) + ϕ(x?, ε) ≤ f(z) + ϕ(z, ε) ∀ z ∈ W. (8)

If x? ∈ W , assumption (i) ensures that

f(x?) ≤ f(z) ∀ z ∈ W,

which shows that x? is a global minimum of Problem (1).

Now we prove that there exists a value ε̃ such that, for all ε ∈ (0, ε̃], every global minimum point
of Problem (2) belongs to the set W .

Let x̄ and S be respectively the point and the open set defined in Assumption (ii). Hence, by
(5), there exists a value ε̄ such that for all ε ∈ (0, ε̄] the following inequality holds:

ϕ(x̄, ε)− ϕ(z, ε) > sup
x∈W

f(x)− inf
x∈X\S

f(x). (9)

Then we can introduce the value ε̃ as follows

ε̃ = min{ε̄, ε̂} (10)

where ε̂ is defined as in (ii).

Now, suppose, by contradiction, that for a value ε ∈ (0, ε̃] there exists a global minimum of
Problem (2) x? which does not belong to W , namely x? /∈ W .
We consider two different cases:
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1) x? ∈ S:
without any loss of generality, consider S ⊆ A. In this case for any z ∈ W , using the
definition of ε̂, assumption a) and (ii), we obtain

f(z)− f(x?) ≤ |f(z)− f(x?)| ≤ L‖x? − z‖α < L̂‖x? − z‖α ≤ ϕ(x?, ε)− ϕ(z, ε) (11)

and we get the contradiction

f(z) + ϕ(z, ε) < f(x?) + ϕ(x?, ε). (12)

2) x? /∈ S:
in this case we have that x? ∈ X \ S and, recalling Assumption (ii), by using (6) we can
write for any z ∈ W :

f(x?) + ϕ(x?, ε) ≥ inf
x∈X\S

f(x) + ϕ(x?, ε)

≥ f(z)− sup
x∈W

f(x) + inf
x∈X\S

f(x) + ϕ(x?, ε)

≥ f(z)− sup
x∈W

f(x) + inf
x∈X\S

f(x) + ϕ(x̄, ε), (13)

adding and subtracting ϕ(z, ε) we write

f(x?) + ϕ(x?, ε) ≥ f(z) + ϕ(z, ε) + ϕ(x̄, ε)− ϕ(z, ε)− sup
x∈W

f(x) + inf
x∈X\S

f(x).

Recalling definition of ε̃ and (9), for all ε ∈ (0, ε̃] we obtain the contradiction:

f(x?) + ϕ(x?, ε) > f(z) + ϕ(z, ε). (14)

Now we prove that, for all ε ∈ (0, ε̃] (where ε̃ is defined as in (10)), every optimal solution of
Problem (1) is also an optimal solution of Problem (2).
Suppose, by contradiction, that there exists an ε ∈ (0, ε̃] such that

f(x?) + ϕ(x?, ε) < f(z?) + ϕ(z?, ε), (15)

where z? is an optimal solution of Problem (1) and x? is an optimal solution of Problem (2).
Recalling the first part of the proof, we have that, for all ε ∈ (0, ε̃], the point x? is also a optimal
point of Problem (1) and, hence, using assumption (i), we have

f(x?) < f(z?) (16)

and this contradicts the fact that z? is an optimal solution of problem (1).2

3 Smooth Penalty Functions for Solving Zero-one Programming
Problems

We consider the following problem
min f(x)
x ∈ T
x ∈ {0, 1}n

(17)
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where T ⊆ Rn, and f is a function satisfying assumption a) of Theorem 1.
Our aim consists in showing that the zero-one problem (17) is equivalent to the following con-
tinuous formulation:

min f(x) + ϕ(x, ε)
x ∈ T
0 ≤ x ≤ e

(18)

where ε > 0, and ϕ(x, ε) is a suitably chosen penalty term.
In [4], the equivalence between (17) and (18) has been proved for

ϕ(x, ε) =
1
ε

n∑

i=1

xi(1− xi). (19)

In this section, by using Theorem 1, we can prove the equivalence between (17) and (18) for a
more general class of penalty terms including (19).
In particular, the penalty terms we consider are:

ϕ(x, ε) =
n∑

i=1

{log(xi + ε) + log[(1− xi) + ε]} (20)

ϕ(x, ε) =
n∑

i=1

{−(xi + ε)−p − [(1− xi) + ε]−p} (21)

ϕ(x, ε) =
1
ε

n∑

i=1

{[
1− exp(−α · xi)

]
+

[
1− exp(−α · (1− xi))

]}
(22)

ϕ(x, ε) =
1
ε

n∑

i=1

{(xi + ε)q + [(1− xi) + ε]q} (23)

ϕ(x, ε) =
1
ε

n∑

i=1

{[
1 + exp(−α · xi)

]−1
+

[
1 + exp(−α · (1− xi))

]−1}
(24)

where ε, α, p > 0 and 0 < q < 1. Functions (20)-(23) have been proposed in [13], where the
equivalence between (17) and (18) has been proved in the case when f is a concave objective
function and T is a polyhedral set. The use of penalty term (24) in formulation (18) has never
been proposed before.
We set

W =
{
x ∈ T : x ∈ {0, 1}n

}

and
X =

{
x ∈ T : 0 ≤ x ≤ e

}
.

Proposition 1 For every penalty term (20)-(24), there exists a value ε̄ > 0 such that, for any
ε ∈ (0, ε̄], problem (18) and problem (17) have the same minimum points.

Proof. As we assumed that function f satisfies assumption a) of Theorem 1, the proof can
be derived by showing that every penalty term (20)-(24) satisfies assumption b) of Theorem 1.
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Consider the penalty term (20).
For any x ∈ {0, 1}n we have

ϕ(x, ε) = n · log[ε · (1 + ε)]

and (i) is satisfied.
We study the behavior of the i-th function ϕi(xi, ε) in a neighborhood of a feasible point zi. We
can consider three different cases:

1. zi = 0 and 0 < xi < ρ: Using the mean theorem we obtain

ϕi(xi, ε)− ϕi(zi, ε) =
(

1
x̃i + ε

− 1
1− x̃i + ε

)
|xi − zi| (25)

where x̃i ∈ (0, xi). Choosing ρ < 1
2 , we have

ϕi(xi, ε)− ϕi(zi, ε) ≥
(

1
ρ + ε

− 1
1− ρ + ε

)
|xi − zi| (26)

≥
(

1
ρ + ε

− 2
)
|xi − zi| (27)

Choosing ρ and ε such that

ρ + ε ≤ 1
L̃ + 2

, (28)

we obtain
ϕi(xi, ε)− ϕi(zi, ε) ≥ L̃|xi − zi|. (29)

2. zi = 1 and 1− ρ < xi < 1: Using the mean theorem we obtain

ϕi(xi, ε)− ϕi(zi, ε) =
(

1
1− x̃i + ε

− 1
x̃i + ε

)
|xi − zi|. (30)

Then, repeating the same reasoning as in case 1, we have again that (29) holds when ρ
and ε satisfy (28).

3. zi = xi = 0, or zi = xi = 1: We have ϕi(xi, ε)− ϕi(zi, ε) = 0.

We can conclude that, when ρ and ε satisfy (28),

ϕ(x, ε)− ϕ(z, ε) ≥ L̃
n∑

i=1

|xi − zi| = L̃‖x− z‖1 ≥ L̃‖x− z‖∞ (31)

for all z ∈ {0, 1}n ∩ T and for all x such that ‖x− z‖∞ < ρ.
Now we define S(z) = {x ∈ Rn : ‖x− z‖∞ < ρ} and S =

⋃N
i=1 S(zi), where N is the number of

points z ∈ {0, 1}n ∩ T , and (4) holds.
Let x̄ be a point such that x̄j = ρ (x̄j = 1−ρ), and x̄i ∈ {0, 1} for all i 6= j. If {εk} is an infinite
sequence such that εk → 0 for k →∞, we can write for each z ∈ {0, 1}n:

lim
k→∞

[ϕ(x̄, εk)− ϕ(z, εk)] = lim
k→∞

{
log[(ρ + εk) · (1− ρ + εk)]− log[εk · (1 + εk)]

}
= +∞,
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and (5) holds.
Then for every x ∈ X \ S, and for every ε > 0 we have

ϕ(x, ε)− ϕ(x̄, ε) =
∑

i6=̃

{
log[(xi + ε) · (1− xi + ε)]

}
− (n− 1) · log[ε · (1 + ε)]

+ log[(x̃ + ε) · (1− x̃ + ε)]− log[(ρ + ε) · (1− ρ + ε)] ≥ 0,

where ρ ≤ x̃ ≤ 1− ρ. Then (6) holds, and Assumption (ii) is satisfied.

Consider the penalty term (21).
For any x ∈ {0, 1}n we have

ϕ(x, ε) = −n · [(ε)−p + (1 + ε)−p]

and (i) is satisfied.
We study the behavior of the i-th function ϕi(xi, ε) in a neighborhood of a feasible point zi. We
can consider three different cases:

1. zi = 0 and 0 < xi < ρ: Using the mean theorem we obtain

ϕi(xi, ε)− ϕi(zi, ε) =
[

p

(x̃i + ε)p+1
− p

(1− x̃i + ε)p+1

]
|xi − zi| (32)

where x̃i ∈ (0, xi). Choosing ρ < 1
2 , we have

ϕi(xi, ε)− ϕi(zi, ε) ≥
[

p

(ρ + ε)p+1
− p

(1− ρ + ε)p+1

]
|xi − zi| (33)

≥
[

p

(ρ + ε)p+1
− p · 2p+1

]
|xi − zi| (34)

Choosing ρ and ε such that

(ρ + ε)p+1 ≤ p

L̃ + p · 2p+1
, (35)

we obtain
ϕi(xi, ε)− ϕi(zi, ε) ≥ L̃|xi − zi|. (36)

2. zi = 1 and 1− ρ < xi < 1: Using the mean theorem we obtain

ϕi(xi, ε)− ϕi(zi, ε) =
[

p

(1− x̃i + ε)p+1
− p

(x̃i + ε)p+1

]
|xi − zi| (37)

Then, repeating the same reasoning as in case 1, we have again that (36) holds when ρ
and ε satisfy (35).

3. zi = xi = 0, or zi = xi = 1: We have ϕi(xi, ε)− ϕi(zi, ε) = 0.
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We can conclude that, when ρ and ε satisfy (35),

ϕ(x, ε)− ϕ(z, ε) ≥ L̃
n∑

i=1

|xi − zi| = L̃‖x− z‖1 ≥ L̃‖x− z‖∞ (38)

for all z ∈ {0, 1}n ∩ T and for all x such that ‖x− z‖∞ < ρ.
Now we define S(z) = {x ∈ Rn : ‖x− z‖∞ < ρ} and S =

⋃N
i=1 S(zi), where N is the number of

points z ∈ {0, 1}n ∩ T , and (4) holds.
Let x̄ be a point such that x̄j = ρ (x̄j = 1−ρ), and x̄i ∈ {0, 1} for all i 6= j. If {εk} is an infinite
sequence such that εk → 0 for k →∞, we can write for each z ∈ {0, 1}n:

lim
k→∞

[ϕ(x̄, εk)− ϕ(z, εk)] = lim
k→∞

{
−(ρ + εk)−p − [(1− ρ) + εk]−p + [(εk)−p + (1 + εk)−p]

}
= +∞,

and (5) holds.
Then for every x ∈ X \ S, and for every ε > 0 we have

ϕ(x, ε)− ϕ(x̄, ε) =
∑

i6=̃

{
−(xi + ε)−p − [(1− xi) + ε]−p

}
+ (n− 1) · [(ε)−p + (1 + ε)−p]

−(x̃ + ε)−p − [(1− x̃) + ε]−p + (ρ + ε)−p + [(1− ρ) + ε]−p ≥ 0

where ρ ≤ x̃ ≤ 1− ρ . Then (6) holds, and Assumption (ii) is satisfied.2

Consider the penalty term (22).
For any x ∈ {0, 1}n we have

ϕ(x, ε) =
n

ε

[
1− exp(−α)

]

and (i) is satisfied.
We study the behavior of the i-th function ϕi(xi, ε) in a neighborhood of a feasible point zi. We
can consider three different cases:

1. zi = 0 and 0 < xi < ρ: Using the mean theorem we obtain

ϕi(xi, ε)− ϕi(zi, ε) =
α

ε

[
exp(−α · x̃i)− exp(−α · (1− x̃i))

]
|xi − zi| (39)

where x̃i ∈ (0, xi). Choosing ρ < 1
2 , we have

ϕi(xi, ε)− ϕi(zi, ε) ≥ α

ε

[
exp(−α · ρ)− exp(−α · (1− ρ))

]
|xi − zi| (40)

Choosing ρ and ε such that

L̃ ≤ α

ε

[
exp(−α · ρ)− exp(−α · (1− ρ))

]
, (41)

we obtain
ϕi(xi, ε)− ϕi(zi, ε) ≥ L̃|xi − zi|. (42)

2. zi = 1 and 1− ρ < xi < 1: Using the mean theorem we obtain

ϕi(xi, ε)− ϕi(zi, ε) =
α

ε

[
exp(−α · (1− x̃i)− exp(−α · x̃i))

]
|xi − zi| (43)

Then, repeating the same reasoning as in case 1, we have again that (42) holds when ρ
and ε satisfy (41).
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3. zi = xi = 0, or zi = xi = 1: We have ϕi(xi, ε)− ϕi(zi, ε) = 0.

We can conclude that, when ρ and ε satisfy (41),

ϕ(x, ε)− ϕ(z, ε) ≥ L̃
n∑

i=1

|xi − zi| = L̃‖x− z‖1 ≥ L̃‖x− z‖∞ (44)

for all z ∈ {0, 1}n ∩ T and for all x such that ‖x− z‖∞ < ρ.
Now we define S(z) = {x ∈ Rn : ‖x− z‖∞ < ρ} and S =

⋃N
i=1 S(zi), where N is the number of

points z ∈ {0, 1}n ∩ T , and (4) holds.
Let x̄ be a point such that x̄j = ρ (x̄j = 1−ρ), and x̄i ∈ {0, 1} for all i 6= j. If {εk} is an infinite
sequence such that εk → 0 for k →∞, we can write for each z ∈ {0, 1}n:

lim
k→∞

[ϕ(x̄, εk)−ϕ(z, εk)] = lim
k→∞

1
εk

{[
1−exp(−α·ρ)

]
+

[
1−exp(−α·(1−ρ))

]
−

[
1−exp(−α)

]}
= ∞,

and (5) holds.
Then for every x ∈ X \ S, and for every ε > 0 we have

ϕ(x, ε)− ϕ(x̄, ε) =
1
ε

∑

i 6=̃

{[
1− exp(−α · xi)

]
+

[
1− exp(−α · (1− xi))

]}
− (n− 1) ·

[
1− exp(−α)

]

+
{[

1− exp(−α · x̃)
]
+

[
1− exp(−α · (1− x̃))

]

−
[
1− exp(−α) · ρ

]
−

[
1− exp(−α · (1− ρ))

]}
≥ 0

where ρ ≤ x̃ ≤ 1− ρ. Then (6) holds, and Assumption (ii) is satisfied.2

Consider the penalty term (23).
For any x ∈ {0, 1}n we have

ϕ(x, ε) = n · [(ε)q + (1 + ε)q]

and (i) is satisfied.
We study the behavior of the i-th function ϕi(xi, ε) in a neighborhood of a feasible point zi. We
can consider three different cases:

1. zi = 0 and 0 < xi < ρ: Using the mean theorem we obtain

ϕi(xi, ε)− ϕi(zi, ε) =
[

q

(x̃i + ε)1−q
− q

(1− x̃i + ε)1−q

]
|xi − zi| (45)

where x̃i ∈ (0, xi). Choosing ρ < 1
2 , we have

ϕi(xi, ε)− ϕi(zi, ε) ≥
[

q

(ρ + ε)1−q
− q

(1− ρ + ε)1−q

]
|xi − zi| (46)

≥
[

q

(ρ + ε)1−q
− q · 21−q

]
|xi − zi| (47)

Choosing ρ and ε such that

(ρ + ε)1−q ≤ q

L̃ + q · 21−q
, (48)

we obtain
ϕi(xi, ε)− ϕi(zi, ε) ≥ L̃|xi − zi|. (49)
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2. zi = 1 and 1− ρ < xi < 1: Using the mean theorem we obtain

ϕi(xi, ε)− ϕi(zi, ε) =
[

q

(1− x̃i + ε)1−q
− q

(x̃i + ε)1−q

]
|xi − zi| (50)

Then, repeating the same reasoning as in case 1, we have again that (49) holds when ρ
and ε satisfy (48).

3. zi = xi = 0, or zi = xi = 1: We have ϕi(xi, ε)− ϕi(zi, ε) = 0.

We can conclude that, when ρ and ε satisfy (48),

ϕ(x, ε)− ϕ(z, ε) ≥ L̃
n∑

i=1

|xi − zi| = L̃‖x− z‖1 ≥ L̃‖x− z‖∞ (51)

for all z ∈ {0, 1}n ∩ T and for all x such that ‖x− z‖∞ < ρ.
Now we define S(z) = {x ∈ Rn : ‖x− z‖∞ < ρ} and S =

⋃N
i=1 S(zi), where N is the number of

points z ∈ {0, 1}n ∩ T , and (4) holds.
Let x̄ be a point such that x̄j = ρ (x̄j = 1−ρ), and x̄i ∈ {0, 1} for all i 6= j. If {εk} is an infinite
sequence such that εk → 0 for k →∞, we can write for each z ∈ {0, 1}n:

lim
k→∞

[ϕ(x̄, εk)− ϕ(z, εk)] = lim
k→∞

{
(ρ + εk)q + [(1− ρ) + εk]q − [(εk)q + (1 + εk)q]

}
= +∞,

and (5) holds.
Then for every x ∈ X \ S, and for every ε > 0 we have

ϕ(x, ε)− ϕ(x̄, ε) =
∑

i 6=̃

{
(xi + ε)q + [(1− xi) + ε]q

}
− (n− 1) · [(ε)q + (1 + ε)q]

+(x̃ + ε)q + [(1− x̃) + ε]q − (ρ + ε)q − [(1− ρ) + ε]q ≥ 0

where ρ ≤ x̃ ≤ 1− ρ. Then (6) holds, and Assumption (ii) is satisfied.2

Consider the penalty term (24).
For any x ∈ {0, 1}n we have

ϕ(x, ε) =
n

ε

{
0.5 +

[
1 + exp(−α)

]−1}

and (i) is satisfied.
We study the behavior of the i-th function ϕi(xi, ε) in a neighborhood of a feasible point zi. We
can consider three different cases:

1. zi = 0 and 0 < xi < ρ: Using the mean theorem we obtain

ϕi(xi, ε)− ϕi(zi, ε) =
α

ε

{
[1 + exp(−α · x̃i)]−2 · exp(−α · x̃i)

−[1 + exp(−α · (1− x̃i))]−2 · exp(−α · (1− x̃i))
}
|xi − zi|(52)

where x̃i ∈ (0, xi). Choosing ρ < 1
2 , we have

ϕi(xi, ε)− ϕi(zi, ε) ≥ α

ε

{
[1 + exp(−α · ρ)]−2 · exp(−α · ρ)

−[1 + exp(−α · (1− ρ))]−2 · exp(−α · (1− ρ))
}
|xi − zi|

≥ α

ε

[
0.5 · exp(−α · ρ)− exp(−α · (1− ρ))

]
|xi − zi| (53)
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Choosing ρ and ε such that

L̃ ≤ α

ε

[
0.5 · exp(−α · ρ)− exp(−α · (1− ρ))

]
, (54)

we obtain
ϕi(xi, ε)− ϕi(zi, ε) ≥ L̃|xi − zi|. (55)

2. zi = 1 and 1− ρ < xi < 1: Using the mean theorem we obtain

ϕi(xi, ε)− ϕi(zi, ε) =
α

ε

{
[1 + exp(−α · (1− x̃i))]−2 · exp(−α · (1− x̃i))

−[1 + exp(−α · x̃i)]−2 · exp(−α · x̃i)
}
|xi − zi| (56)

Then, repeating the same reasoning as in case 1, we have again that (55) holds when ρ
and ε satisfy (54).

3. zi = xi = 0, or zi = xi = 1: We have ϕi(xi, ε)− ϕi(zi, ε) = 0.

We can conclude that, when ρ and ε satisfy (54),

ϕ(x, ε)− ϕ(z, ε) ≥ L̃
n∑

i=1

|xi − zi| = L̃‖x− z‖1 ≥ L̃‖x− z‖∞ (57)

for all z ∈ {0, 1}n ∩ T and for all x such that ‖x− z‖∞ < ρ.
Now we define S(z) = {x ∈ Rn : ‖x− z‖∞ < ρ} and S =

⋃N
i=1 S(zi), where N is the number of

points z ∈ {0, 1}n ∩ T , and (4) holds.
Let x̄ be a point such that x̄j = ρ (x̄j = 1−ρ), and x̄i ∈ {0, 1} for all i 6= j. If {εk} is an infinite
sequence such that εk → 0 for k →∞, we can write for each z ∈ {0, 1}n:

lim
k→∞

[ϕ(x̄, εk)− ϕ(z, εk)] = lim
k→∞

1
εk

{[
1 + exp(−α · ρ)

]−1

+
[
1 + exp(−α · (1− ρ))

]−1 − 0.5−
[
1 + exp(−α)

]−1}
= ∞,

and (5) holds.
Then for every x ∈ X \ S, and for every ε > 0 we have

ϕ(x, ε)− ϕ(x̄, ε) =
1
ε

∑

i6=̃

{[
1 + exp(−α · xi)

]−1
+

[
1 + exp(−α · (1− xi))

]−1}

−(n− 1) ·
{
0.5 +

[
1 + exp(−α)

]−1}

+
{[

1 + exp(−α · x̃)
]−1

+
[
1 + exp(−α · (1− x̃))

]−1}

−
{[

1 + exp(−α · ρ)
]−1

+
[
1 + exp(−α · (1− ρ))

]−1} ≥ 0

where ρ ≤ x̃ ≤ 1− ρ. Then (6) holds, and Assumption (ii) is satisfied.2
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4 Smooth Penalty Functions for Solving Integer Programming
Problems

In this section we consider the following problem

min f(x)
x ∈ T
x ∈ D = D1 × . . .×Dn

(58)

where f is a function satisfying assumption a) of Theorem 1, T is a compact set, and

Di = {dj ∈ Z, j = 1, . . . ,mDi}. (59)

It is well known (see i.e. [4]) that Problem (58) can be reformulated as a zero-one programming
problem by using the following representation for the integer variables:

xi =
M∑

k=0

y
(i)
k · 2k y

(i)
k ∈ {0, 1}, i = 1, . . . , n (60)

where M is an upper integer bound for log xi. This approach can be troublesome, especially
when dealing with problems having sets Di not uniformly distributed in Z. In order to face
this type of problems, we propose a different approach that directly penalizes the constraints
xi ∈ Di. Once again, by using Theorem 1, we prove the equivalence between (58) and the
following continuous penalty formulation:

min f(x) + ϕ(x, ε)
x ∈ T,

(61)

where the penalty term can assume different forms. An example of such penalty terms is the
following:

ϕ(x, ε) =
n∑

i=1

min
dj∈Di

{
log[|xi − dj |+ ε]

}
(62)

Proposition 2 For the penalty term (62), there exists a value ε̄ > 0 such that, for any ε ∈ (0, ε̄],
problem (61) and problem (58) have the same minimum points.

Proof. As we assumed that function f satisfies assumption a) of Theorem 1, the proof can
be derived by showing that penalty term (62) satisfy assumption b) of Theorem 1.

Consider the penalty term (62).
For any x ∈ D we have

ϕ(x, ε) = n · log ε

and (i) is satisfied.
We study the behavior of the i-th function ϕi(xi, ε) in a neighborhood of a feasible point zi. We
can consider three different cases:
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1. zi = dj and dj < xi < dj + ρ: Choosing ρ sufficiently small, and using the mean theorem
we obtain

ϕi(xi, ε)− ϕi(zi, ε) =
1

(x̃i − dj) + ε
|xi − zi| (63)

where x̃i ∈ (dj , xi). Then, we have

ϕi(xi, ε)− ϕi(zi, ε) ≥ 1
ρ + ε

|xi − zi| (64)

Choosing ρ and ε such that

ρ + ε ≤ 1
L̃

, (65)

we obtain
ϕi(xi, ε)− ϕi(zi, ε) ≥ L̃|xi − zi|. (66)

2. zi = dj and dj − ρ < xi < dj : Using the mean theorem we obtain

ϕi(xi, ε)− ϕi(zi, ε) =
1

(dj − x̃i) + ε
|xi − zi|. (67)

Then, repeating the same reasoning as in case 1, we have again that (66) holds when ρ
and ε satisfy (65).

3. zi = xi = dj : We have ϕi(xi, ε)− ϕi(zi, ε) = 0.

We can conclude that, when ρ and ε satisfy (65),

ϕ(x, ε)− ϕ(z, ε) ≥ L̃
n∑

i=1

|xi − zi| = L̃‖x− z‖1 ≥ L̃‖x− z‖∞ (68)

for all z ∈ T and for all x such that ‖x− z‖∞ < ρ.
Now we define S(z) = {x ∈ Rn : ‖x− z‖∞ < ρ} and S =

⋃N
i=1 S(zi), where N is the number of

points z ∈ D ∩ T , and (4) holds.
Let x̄ be a point such that x̄l = dl ± ρ, with dl ∈ Dl and x̄i ∈ Di for all i 6= l. If {εk} is an
infinite sequence such that εk → 0 for k →∞, we can write for each z ∈ D:

lim
k→∞

[ϕ(x̄, εk)− ϕ(z, εk)] = lim
k→∞

{
log(ρ + εk)− log εk

}
= +∞,

and (5) holds.
Then for every x ∈ X \ S, and for every ε > 0 we have

ϕ(x, ε)− ϕ(x̄, ε) =
n∑

i=1

min
dj∈Di

log[|xi − dj |+ ε]−
n∑

i=1

min
dj∈Di

log[|x̄i − dj |+ ε] =

∑

i6=l̃

{
min

dj∈Di

log[|xi − dj |+ ε]
}
− (n− 1) · log ε

+ log[|xl̃ − d̄|+ ε]− log(ρ + ε) ≥ 0,

where |xl̃ − d̄| ≥ ρ and
d̄ = arg min

dj∈Dl̃

log[|xl̃ − dj |+ ε].
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Then (6) holds, and Assumption (ii) is satisfied.2

Remark It is possible to introduce different types of penalty terms for Problem (58) by replacing
in (62) the log function with the functions used in Section 3. Taking inspiration from equation
(21), we have:

ϕ(x, ε) =
n∑

i=1

min
dj∈Di

{
− [|xi − dj |+ ε]−p

}
(69)

In this case, the proof of the equivalence follows by repeating the same arguments used for
proving Propositions 1 and 2.

Remark II Function (69) is equivalent to the following penalty term:

ϕ(x, ε) =
n∑

i=1

min
dj∈Di

{
min{−[xi − dj + ε]−p, −[dj − xi + ε]−p}

}
.

This penalty term should be easier to handle from a computational point of view.
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