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Abstract
In this work, we consider a class of nonlinear optimization problems with convex constraints with the aim
of computing sparse solutions. This is an important task arising in various fields such as machine learning,
signal processing, data analysis. We adopt a concave optimization-based approach, we define an effective
version of the Frank-Wolfe algorithm, and we prove the global convergence of the method. Finally, we
report numerical results on test problems showing both the effectiveness of the concave approach and the
efficiency of the implemented algorithm.
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1 Introduction

We consider a class of constrained nonsmooth optimization problems of the form:

min
x∈Rn

g(x) + λ‖x‖0

x ∈ C

(1)

where λ > 0, C is a compact convex set, g is a continuously differentiable function, and ‖x‖0 is
the zero-norm of x defined as

‖x‖0 = card{xi : xi 6= 0}.

The problem (1) is quite general and includes as special cases a wide variety of problems arising
from different fields (e.g. machine learning, signal processing, data analysis).
In machine learning, for instance, an interesting problem that can be formulated as in (1) is
the Sparse Linear Discriminant Analysis (SLDA) (see, e.g., [10]). Given a pair of symmetric
matrices:

(i) between-class covariance matrix: A positive semi-definite;

(ii) within-class covariance matrix: B positive definite;

in SLDA, we want to find a sparse vector x which maximizes a class-separability criterion defined
by the generalized Rayleigh quotient:

R(x;A,B) =
xT Ax

xT Bx
.

Namely, we want to solve the following optimization problem:

min
x∈Rn

−
1

2
xT Ax + λ‖x‖0

xT Bx ≤ 1.

(2)

Sparse Principal Component Analysis (SPCA) is a well-known problem in data analysis (see,
e.g., [4, 6, 14]). In SPCA, given a (symmetric positive semi-definite) covariance matrix C, the
goal is finding a sparse vector x which explains the maximum amount of variance. The zero-norm
formulation related to this problem is:

min
x∈Rn

−
1

2
xT Cx + λ‖x‖0

xT x ≤ 1.

(3)

In signal analysis, a widely-studied problem is the sparse representation of noisy signals (see,
e.g., [3, 5]). Given a dictionary A ∈ Rm×n of elementary signals and a real noisy signal b the
goal is finding a sparse representation x of signal b in terms of the dictionary A. This problem
can be formulated as follows:

min
x∈Rn

‖x‖0

‖Ax − b‖2 ≤ δ

(4)

2



where δ is a fixed error tolerance.
In order to make problem (1) tractable, a simple approach can be that of replacing the zero-
norm, which is a nonconvex discontinuous function, with the ℓ1 norm (see, e.g., [3, 13, 14]) thus
obtaining the problem:

min
x∈Rn

g(x) + λ‖x‖1

x ∈ C

(5)

which can be efficiently solved even when the dimension of the problem is large. However, some
experiments reported in [2, 11] show that a concave optimization-based approach, for the special
case of a polyhedral feasible set, performs better than the ℓ1 norm-based one. In this paper,
inspired by the idea developed in [9, 11, 12], we propose a concave programming approach for
solving problem (1). We replace the zero-norm with a separable concave function thus obtaining
the following formulation:

min
x∈Rn

g(x) + λ
n

∑

j=1

hj(xj , u)

x ∈ C

(6)

where hj : R → R, for j = 1, . . . , n are concave, continuously differentiable functions depending
on a vector u ∈ Rm of parameters. Then, in order to solve problem (6), we use a new suitably
developed version of the Frank-Wolfe algorithm.
The paper is organized as follows. In Section 2, we describe various smooth concave functions
that can be used in place of the zero-norm when searching for sparse solutions to problems with
convex constraints. In Section 3, we state some well-known optimality conditions for constrained
problems based on Lagrange multipliers. In Section 4, we report a result related to a Big-M
method for convex programming problems. In Section 5, after a brief review of the well-known
Frank-Wolfe method, we derive some new theoretical results which have an important impact on
the computational efficiency of the method. These results suggest the definition of a version of
the method that eliminates the variables set to zero, thus allowing for a dimensionality reduction
which greatly increments the speed of the procedure. We formally prove, by means of the results
reported in Section 4, the global convergence of this modified version of the Frank-Wolfe method.
In section 6, we describe a version of the reduced Frank-Wolfe algorithm with unitary stepsize
that can be used when the problem we want to solve has a concave objective function. Finally,
in section 7, we report the numerical results on test problems showing both the usefulness of the
new concave formulations and the efficiency in terms of computational time of the implemented
minimization algorithm.

2 Concave formulations for finding a sparse vector over a convex

set

Consider the general problem of finding a vector belonging to a compact convex set C and
having the minimum number of nonzero components, that is

min
x∈Rn

‖x‖0

x ∈ C.

(7)
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Since the objective function in (7) is discontinuous, we can use a continuously differentiable,
concave function that somehow approximates the behaviour of the zero-norm function. A similar
approach has already been proposed in [9, 11, 12] for finding sparse solutions to linear systems.
In order to illustrate the idea underlying the concave approach, we observe that the objective
function of problem (7) can be written as follows

‖x‖0 =
n

∑

i=1

s(|xi|)

where s : R → R+ is the step function such that s(t) = 1 for t > 0 and s(t) = 0 for t ≤
0. Following the approach described in [9], we replace the discontinuous step function by a
continuously differentiable concave function v(t) = 1 − e−αt, with α > 0, thus obtaining a
problem of the form

min
x,y∈Rn

n
∑

i=1

(1 − e−αyi)

x ∈ C

−yi ≤ xi ≤ yi i = 1, . . . , n.

(8)

The approach is well-motivated from a theoretical point of view. In fact, it is easy to see that

lim
α→∞

n
∑

i=1

(1 − e−αyi) = ‖y‖0,

and the objective function is a smooth approximation of the zero-norm. Another way to solve
problem (7) can be that of using the logarithm function instead of the step function [12], and
this leads to a concave smooth problem of the form

min
x,y∈Rn

n
∑

i=1

ln(ǫ + yi)

x ∈ P

−yi ≤ xi ≤ yi i = 1, . . . , n,

(9)

with 0 < ǫ ≪ 1. Formulation (9) is practically motivated by the fact that, due to the form of
the logarithm function, it is better to increase one variable yi while setting to zero another one
rather than doing some compromise between both, and this should facilitate the computation
of a sparse solution. The following two concave formulations, related to the ideas underlying (8)
and (9) respectively, have been proposed in [11] for finding a sparse solution to a linear system:

min
x∈Rn,y∈Rn

n
∑

i=1

(yi + ǫ)p

x ∈ C

−yi ≤ xi ≤ yi i = 1, . . . , n

(10)
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with 0 < p < 1, and 0 < ǫ;

min
x∈Rn,y∈Rn

−
n

∑

i=1

(yi + ǫ)−p

x ∈ C

−yi ≤ xi ≤ yi i = 1, . . . , n

(11)

with 1 ≤ p, and 0 < ǫ.

3 Optimality Conditions for Constrained Problems based on La-

grange Multipliers

In this section we state some well-known optimality conditions for constrained problems based
on Lagrange multipliers, namely Karush-Kuhn-Tuker conditions (see [1] for further details).
We consider the problem:

min f(x)
g(x) ≤ 0
h(x) = 0

(12)

where f : Rn → R, g : Rn → Rm, and h : Rn → Rp are continuously differentiable function.

Definition 1 a feasible vector x is said to be regular if the equality constraints gradients ∇hi(x),
i = 1, . . . ,m, and the active inequality constraint gradients ∇gi(x), i ∈ A(x) = {i : gi(x) = 0},
are linearly independent.

We now state necessary conditions for optimality:

Proposition 1 Let x⋆ be a local minimum of the problem 12. Assume that x⋆ is regular. Then
there exists Lagrange multipliers λ⋆ ∈ Rm and µ⋆ ∈ Rp satisfying the following conditions:

∇f(x⋆) + ∇g(x⋆)λ⋆ −∇h(x⋆)µ⋆ = 0

λ⋆T g(x⋆) = 0

λ⋆ ≥ 0.

(13)

There are are a number of conditions (so called constraint qualifications) that guarantee the
existence of Lagrange multipliers. The following proposition is due to Slater:

Proposition 2 Let x⋆ be a local minimum of the problem 12. Assume that gi are convex
functions and that there exists a feasible vector x̄ satisfying the following condition:

gj(x̄) < 0 ∀ j ∈ A(x⋆). (14)

Then x⋆ satisfies the necessary conditions of proposition 1.

Under some suitable convexity assumptions we can state sufficient conditions for optimality:
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Proposition 3 Let f and gi i = 1, . . . ,m be convex continuously differentiable functions, and
let equality constraints hi(x) i = 1, . . . , p be affine functions. If there exists Lagrange multipliers
λ⋆ ∈ Rm and µ⋆ ∈ Rp satisfying the following conditions:

∇f(x⋆) + ∇g(x⋆)λ⋆ −∇h(x⋆)µ⋆ = 0

g(x⋆) ≤ 0, h(x⋆) = 0

λ⋆T g(x⋆) = 0

λ⋆ ≥ 0,

(15)

then x⋆ is a global minimum of the problem (12).

4 Big-M for convex programming problems

We report a result (and its proof) that we will use to derive some new convergence results of a
modified Frank-Wolfe method we will present.

Proposition 4 Consider the convex programming problems

min f(x)
g(x) ≤ 0
Ax = b

(16)

min f(x) + MeT z
g(x) + h(z) ≤ 0
Ax + Qz = b
z ≥ 0

(17)

where

1) e ∈ Rnz is a vector of ones, b ∈ Rp, A ∈ Rp×n, Q ∈ Rp×nz ;

2) f : Rn → R is a convex, continuously differentiable function;

3) g : Rn → Rm is a convex, continuously differentiable function;

4) h : Rnz → Rm is a convex, continuously differentiable function such that h(0) = 0.

Assume that problem (16) admits a solution x⋆, and that there exists a feasible vector x̄ satisfying
the following condition:

g(x̄) < 0. (18)

Then there exists a value M0 such that for all M ≥ M0 we have that

(i) the vector (x⋆, 0)T is a solution of (17);

(ii) if (x̄, z̄)T is a solution of (17), then z̄ = 0 and x̄ is a solution of (16).
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Proof. (i) Since x⋆ is a solution of problem (16) we have from Proposition 2 that there exist
Lagrange multipliers λ⋆ ∈ Rm and µ⋆ ∈ Rp satisfying conditions (15).
Now consider problem (17) and the KKT system related to it

∇f(x) + ∇g(x)λ − AT µ = 0
Me + ∇h(z)λ − QT µ − τ = 0
λT [g(x) + h(z)] = 0
τT z = 0
z, λ, τ ≥ 0.

(19)

Since h(0) = 0, the vector (x⋆, 0)T is a feasible point for (17), and, as for M sufficiently large
we have

−∇h(0)λ⋆ + QT µ⋆ ≤ Me,

it is possible to find a value τ⋆ ≥ 0 such that the vector (x⋆, 0, λ⋆, µ⋆, τ⋆)T is a solution of
(19). Thus, from Proposition 3 we have that (x⋆, 0) is a global optimum of problem 17 and the
assertion is proved.

(ii) By contradiction let us assume that there exist a sequence of positive scalars {Mk}, with
Mk → ∞ for k → ∞, and a corresponding sequence of vectors {(xk, zk)T } such that zk 6= 0,
and (xk, zk)T is solution of (17) when M = Mk. We can then define an infinite subset K such
that, for all k ∈ K we have zk

i > 0 for some index i ∈ {1, . . . , nz}. Using (18) and the fact that
h(0) = 0, we have

g(x̄) + h(0) < 0.

By Proposition 2, there exist Lagrange multipliers λ⋆, µ⋆, τ⋆ such that (x⋆, z⋆, λ⋆, µ⋆, τ⋆)T is a
solution of (19) when M = Mk. Then, using the complementarity condition

τkT
zk = 0,

we obtain τk
i = 0. Hence, we can write

(

M + eT
i ∇h(z⋆)λ⋆ − eT

i QT µ⋆
)

= 0 ∀k ∈ K,

which contradicts the fact that Mk → ∞. 2

We notice that problem (16) includes as special case the following convex programming problem:

min cT x
g(x) ≤ 0
Ax = b.

(20)

5 The Frank-Wolfe - Reduced Dimension algorithm

The FrankWolfe algorithm is a well-known algorithm in operations research. It was originally
proposed by Marguerite Frank and Phil Wolfe in 1956 as a procedure for solving quadratic
programming problems with linear constraints [8].
In this section, we first describe the algorithm and give some results about its convergence to
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a stationary point. Then we propose a new efficient version of the Frank-Wolfe algorithm for
solving problems of the following form:

min f(x) = g(x) + h(x) = g(x) +
n

∑

j=1

hj(xj)

x ∈ C
xi ≥ 0, i ∈ I ⊆ {1, . . . , n}

(21)

where:

(i) C is a compact set having the following form:

C = {x ∈ Rn : wl(xĪ) +
∑

i∈I

sli(xi) ≤ 0, l = 1, . . . ,m; Ax = b} (22)

where A ∈ Rp×n, xĪ = {xi : i /∈ I}, wl : Rn−|I| → R, and sli : R → R, for l = 1, . . . ,m
and i ∈ I, are convex, continuously differentiable functions;

(ii) g : Rn → R is a continuously differentiable function;

(ii) hj : R → R, for j = 1, . . . , n are concave, continuously differentiable functions.

We further assume that sli(0) = 0 for l = 1, . . . ,m and i ∈ I.

Herein, we report the original version of the Frank-Wolfe Algorithm:

Frank-Wolfe Algorithm

1. Let x0 ∈ C be the starting point;

2. For k = 0, 1, . . .

obtain solution xk by solving the following problem:

xk = arg min
x∈C

∇f(xk)T (x − xk) (23)

3. if ∇f(xk)T (xk − xk) = 0 then STOP

4. Otherwise, define a feasible descent direction

dk = xk − xk

and generate a new feasible vector

xk+1 = xk + αkdk

with αk ∈ (0, 1] determined by means of an Armijo-like rule.

The following result, proved in [1], provides an analysis of convergence behavior of the Frank-
Wolfe Algorithm.

8



Proposition 5 Let {xk} be a sequence generated by the Frank-Wolfe Algorithm

xk+1 = xk + αkdk.

Assume that method used for choosing stepsize αk satisfies the following conditions:

(i) f(xk+1) < f(xk), with ∇f(xk) 6= 0;

(ii) if ∇f(xk) 6= 0 ∀ k, then we have

lim
k→∞

∇f(xk)T dk = 0 .

Then every limit point x̄ of {xk} is a stationary point.

The next proposition shows that, under suitable conditions on the concave functions hj , the
Frank-Wolfe algorithm does not change a nonnegative variable once that it has been fixed to
zero.

Proposition 6 Let {xk} be any sequence generated by the Frank-Wolfe algorithm. There exists
a value M such that, if i ∈ I and

h
′

i(0) ≥ M

then we have that
xk

i = 0 implies xk+1
i = 0.

Proof. At each iteration k of the Frank-Wolfe algorithm the problem to be solved is

min
n

∑

j=1

∇gj(x
k)xj +

∑

j:xk
j
6=0

h′
j(x

k
j ) xj +

∑

j /∈I:xk
j
=0

h′
j(0)xj +

∑

j∈I:xk
j
=0

h′
j(0)xj

x ∈ C
xi ≥ 0, i ∈ I ⊆ {1, . . . , n}

(24)

Let x̄k be a solution of (24). As g is continuously differentiable and C is compact, there exists
a value L < ∞ such that

‖∇g(x)‖∞ ≤ L ∀ x ∈ C. (25)

For any i ∈ I such that xk
i = 0, by (ii) of Proposition 4 it follows that there exists a value S such

that if ∇gi(x
k)+h

′

i(0) ≥ S then we have x̄k
i = 0. Thus, if i ∈ I, xk

i = 0 and h
′

i(0) ≥ M = S +L,
then we obtain

xk+1
i = xk

i + αk(x̄k
i − xk

i ) = 0.

2

On the basis of Proposition 6 we can define the following version of the Frank-Wolfe algorithm,
where the convex problems to be solved are of reduced dimension. We denote by Ω the feasible
set of problem (21), i.e.,

Ω = {x ∈ Rn : x ∈ C, xi ≥ 0, i ∈ I}.

Frank-Wolfe - Reduced Dimension (FW-RD) Algorithm
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1. Let x0 ∈ C be the starting point;

2. For k = 0, 1, . . ., let Ixk

= {i ∈ I : xk
i = 0} and Cxk

= {x ∈ Ω : xi = 0,∀ i ∈ Ixk

}

obtain solution xk by solving the following problem:

xk = arg min
x∈Cxk

∇f(xk)T (x − xk) (26)

3. if ∇f(xk)T (xk − xk) = 0 then STOP

4. Otherwise, define a feasible descent direction

dk = xk − xk

and generate a new feasible vector

xk+1 = xk + αkdk

with αk ∈ (0, 1] determined by means of an Armijo-like rule.

Note that the convex programming problem (26) is equivalent to a convex problem of dimension

n − |Ixk

|, and that Ixk

⊆ Ixk+1

, so that the problems to be solved are of nonincreasing dimen-
sions. This yields obvious advantages in terms of computational time.

In order to show the convergence of the algorithm, we report here some definitions about corre-
spondences (see [7] for further details):

Definition 2 Let Θ and S be subsets of Rl and Rn, respectively. A correspondence Φ from Θ
to S is a map that associates with each element θ ∈ Θ a (nonempty) subset Φ(θ) ⊂ S.

We denote a correspondence as follows

Φ : Θ → P (S)

where P(S) denotes the power set of S, i.e. the set of all nonempty subsets of S.

Definition 3 A correspondence is said to be upper-semicontinuous at a point θ ∈ Θ if for any
sequence {θk} converging to θ, and for any sequence {sk} converging to s, with sk ∈ Φ(θk), we
have s ∈ Φ(θ). Φ is upper-semicontinuous on Θ if is upper-semicontinuous at each θ ∈ Θ.

Definition 4 A correspondence is said to be lower-semicontinuous at a point θ ∈ Θ if for any
sequence {θk} converging to θ, and for any s ∈ Φ(θ) there exists a sequence {sk} converging to
s, with sk ∈ Φ(θk). Φ is lower-semicontinuous on Θ if is lower-semicontinuous at each θ ∈ Θ.

Definition 5 A correspondence Φ : Θ → P (S) is said to be continuous at a point θ ∈ Θ if
is lower-semicontinuous and upper-semicontinuous at θ. Φ is continuous on Θ if is lower and
upper-semicontiuous at each θ ∈ Θ.
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It is easy to see that the correspondence Cx is lower-semicontinuous. Now we can formally prove
the convergence of the proposed algorithm to a stationary point.

Proposition 7 Let {xk} be a sequence generated by the FW-RD Algorithm

xk+1 = xk + αkdk.

Assume that method used for choosing stepsize αk satisfies the following conditions:

(i) f(xk+1) < f(xk), with ∇f(xk) 6= 0;

(ii) if ∇f(xk) 6= 0 ∀ k, then we have

lim
k→∞

∇f(xk)T dk = 0 .

Suppose there exists a value S such that h
′

i(0) ≥ S ∀ xi = 0 with i ∈ I, then every limit point x̄
of {xk} is a stationary point.

Proof. As we assumed compactness of C, a limit point x̄ ∈ P exists and the norm of vector dk

is bounded above
‖dk‖ = ‖x̄k − xk‖ ≤ ‖x̄k‖ + ‖xk‖ .

We can now define a subsequence {xk}K such that

lim
k→∞,k∈K

xk = x̄, lim
k→∞,k∈K

dk = d̄ .

By using hypothesis (ii), we obtain
∇f(x̄)T d̄ = 0.

Let dk be a direction generated by the Frank-Wolfe method; we have

∇f(xk)T dk ≤ ∇f(xk)T (x − xk), ∀ x ∈ Cxk

. (27)

We want to show that, by taking the limit as k ∈ K, k → ∞, we obtain

0 = ∇f(x̄)T d̄ ≤ ∇f(x̄)T (x − x̄), ∀ x ∈ C x̄.

By contradiction, let us assume there exists a point s̃ ∈ C x̄ satisfying the following inequality

∇f(x̄)T d̄ > ∇f(x̄)T (s̃ − x̄). (28)

By lower-semicontinuity of the correspondence Cx, as s̃ ∈ C x̄, there exists a subsequence {sk}K

converging to s̃, with sk ∈ Cxk

. For k sufficiently large we have from inequality (28)

∇f(xk)T dk > ∇f(xk)T (sk − xk),

but this contradicts (27).

Now we prove that x̄ is a stationary point. Indeed, x̄ is a solution of
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min∇f(x̄)T x = min
∑

j:x̄j 6=0

(∇gj(x̄) + h′
j(x̄j)) xj +

∑

j /∈I x̄:x̄j=0

(∇gj(x̄) + h′
j(0)) xj

x ∈ Ω
xi = 0, i ∈ I x̄.

(29)

As g is continuously differentiable and C is compact, there exists a value L < ∞ such that

‖∇g(x̄)‖∞ ≤ L (30)

and by (i) of Proposition 4 it follows that there exists a value S such that, if h
′

j(0) ≥ S = M +L
then x̄ is a solution of

min
∑

j:x̄j 6=0

(∇gj(x̄) + h′
j(x̄j)) xj +

∑

j /∈Ix̄:x̄j=0

(∇gj(x̄) + h′
j(0)) xj +

∑

j∈Ix̄:x̄j=0

(∇gj(x̄) + h′
j(0)) xj

x ∈ Ω

(31)

Therefore we have
∇f(x̄)T x̄ ≤ ∇f(x̄)T x ∀x ∈ Ω,

and this proves that x̄ is a stationary point of problem (21). 2

Concerning the separable concave functions used in problems (8), (9), (10), (11), we have for
j = 1, . . . , n

- hj(yj ;α) = 1 − e−αyj and h
′

j(0) = α;

- hj(yj ; ǫ) = ln(yj + ǫ) and h
′

j(0) = 1/ǫ;

- hj(yj ; ǫ, p) = (yj + ǫ)p and h
′

j(0) = p(ǫ)p−1 with 0 < p < 1;

- hj(yj ; ǫ, p) = −(yj + ǫ)−p and h
′

j(0) = p(ǫ)−p−1 with 1 ≤ p;

Therefore, the assumption of Proposition 7 holds for suitable values of the parameters of the
above concave functions, so that Algorithm FW-RD can be applied.

6 The Frank-Wolfe - Reduced Dimension algorithm with uni-

tary stepsize

When the function f of Problem (21) is concave, we can use a constant stepsize α = 1 and
still be sure the algorithm converges to a stationary point. The following proposition shows
convergence of the Frank-Wolfe algorithm with stepsize αk = s and s ∈ (0, 1] when a concave
function is minimized over a compact convex set:

Proposition 8 Let f be a continuously differentiable, concave function. Let {xk} be a sequence
generated by the Frank-Wolfe algorithm

xk+1 = xk + αkdk ,

where a constant stepsize is chosen

αk = s, k = 0, 1, . . .

with s ∈ (0, 1]. Then every limit point x̄ of {xk} is a stationary point.
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Proof. we have from concavity of f :

f(xk+1) ≤ f(xk) + ∇f(xk)T (xk+1 − xk) < h(xk) .

Note that since {f(xk)} is monotonically decreasing, {f(xk)} either converges to a finite value
or diverges to −∞.
Let x̄ be a limit point of {xk}; since f is continuous f(x̄) is a limit point of {f(xk)}, so it follows
that the entire sequence converges to f(x̄). Therefore, we obtain

f(xk) − f(xk+1) → 0

From concavity of f :
f(xk) − f(xk+1) ≥ −αk∇f(xk)T dk .

Since αk is a constant stepsize, we have that

∇f(xk)T dk → 0 .

By Proposition 5 it follows that every limit point x̄ of {xk} is a stationary point. 2

Here is a version of the modified Frank-Wolfe Algorithm, with unitary stepsize, for concave
functions:

Frank-Wolfe - Reduced Dimension Algorithm with Unitary Stepsize (FW-RDUS)

1. Let x0 ∈ C be the starting point;

2. For k = 0, 1, . . ., let Ixk

= {i ∈ I : xk
i = 0} and Cxk

= {x ∈ Ω : xi = 0,∀ i ∈ Ixk

}

obtain solution xk by solving the following problem:

xk = arg min
x∈Cxk

∇f(xk)T (x − xk) (32)

3. if ∇f(xk)T (xk − xk) = 0 then STOP

4. Otherwise
xk+1 = x̄k.

The following result about the convergence of the FW-RDUS algorithm is an immediate conse-
quence of Proposition 7.

Corollary 1 Let {xk} be a sequence generated by the FW-RDUS Algorithm. Suppose there
exists a value S such that h

′

i(0) ≥ S ∀ xi = 0 with i ∈ I, then every limit point x̄ of {xk} is a
stationary point.

The assumption of Corollary 1 holds for suitable values of the parameters of the concave functions
presented in Section 2, so that Algorithm FW-RDUS can be applied when using those functions.
The results obtained on computational experiments will be presented in the next section.

13



7 Computational experiments

In our computational experiments we have considered problem (4). We remark that the aim of
experiments has been that of evaluating the effectiveness of the various formulations in finding
sparse vectors (possibly the sparsest vectors) belonging to a convex set.

Test problems

For several values of n and m we randomly generated the matrix A, the vector b, and a value
of the tolerance δ1. Then we obtained two more values of the tolerance as follows: δ2 = 2δ1;
δ3 = 4δ1. For each problem we performed experiments using:

- formulation (8), denoted by exp, with α = 5;

- formulation (9), denoted by log, with ǫ = 10−5;

- formulation (10), denoted Formulation II, with ǫ = 10−7 and p = 0.1;

- formulation (11), denoted by Formulation II, with ǫ = 10−5 and p = 1.

We also report the results obtained using the ℓ1 norm formulation:

min
x∈Rn

‖x‖1

‖Ax − b‖2 ≤ δ

(33)

denoted by ℓ1.

Implementation details

Algorithms FW and FW-RDUS were implemented in C using CPLEX (10.0) as solver of the
quadratic programming problems. The experiments were carried out on Intel Pentium 4 3.2
GHz 1.0 GB RAM.

Results

The results obtained on the randomly generated problems are shown in Table 1, where we report

- the number n of variables, the number m of constraints;

- for formulation ℓ1, the zero-norm of the optimal solution attained;

- for each nonlinear concave formulation:

• the average of the zero-norm value of the stationary points determined;

• the best zero-norm value of those stationary points;

• percentage of runs where the best zero-norm value was attained.
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From Table 1 we can see that Formulation I gives the best results among all the formulations.
We further note that the results obtained by means of the concave formulations are clearly better
than those corresponding to the ℓ1 formulation.
Summarizing, the computational experiments confirm the effectiveness of the concave-based
approach for finding sparse solutions to problems with convex constraints, and show that the
concave formulations here proposed represent good alternatives to the ℓ1 formulation. We remark
that a wider availability of efficient formulations is important as it can make easier the search
of sparse solutions for different classes of problems.
Finally, in order to assess the differences in terms of computational time between the standard
Frank-Wolfe (FW) algorithm and a new version of the algorithm presented in the preceding
section and denoted by Algorithm FW-RDUS, we report in Table 2 the results obtained by
the two algorithms using log formulation. As we might expect, the differences are noticeable
and show the usefulness of Algorithm FW-RDUS. Further experiments not here reported and
performed using the other concave formulations point out the same differences between the two
algorithms in terms of computational time. In all the tests we detected no difference between
the two algorithms in terms of computed solution.

Problem n m δ l1 exp log Form. I Form. II

1 100 20 0.93 8 7.6/4/12 4.4/4/58 4.4/4/58 5.2/4/30
2 100 20 1.86 5 5.0/2/25 2.1/2/92 2.0/2/97 3.0/2/52
3 100 20 3.71 3 3.0/1/43 1.1/1/99 1.0/1/100 1.6/1/80

4 200 40 3.00 19 14.6/6/18 6.7/6/39 6.7/6/42 8.1/6/18
5 200 40 6.00 10 10.0/3/10 3.8/3/18 3.3/3/17 4.7/3/18
6 200 40 12.01 4 6.2/2/26 2.0/2/100 2.0/2/100 3.0/2/72

7 400 80 13.24 36 29.5/16/1 13.7/12/4 13.6/12/5 17.0/13/10
8 400 80 26.49 30 20.7/7/1 6.1/6/94 6.1/6/95 8.9/6/34
9 400 80 52.99 5 11.7/4/10 4.0/4/100 4.0/4/100 5.5/4/52

10 800 160 58.77 80 57.1/43/1 26.6/23/2 26.0/23/3 38.3/24/1
11 800 160 117.54 42 39.7/22/1 11.9/11/21 11.8/11/24 20.8/11/1
12 800 160 235.08 16 21.9/7/1 7.0/7/100 7.0/7/100 10.0/7/46

13 1600 320 263.96 147 109.5/75/1 48.4/45/5 48.1/44/1 92.0/48/1
14 1600 320 527.92 82 73.1/29/1 20.2/20/77 20.2/20/81 56.3/21/1
15 1600 320 1055.80 22 37.7/14/2 12.2/12/75 12.6/12/37 19.7/12/15

Table 1: Comparison on Test problems.
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Problem FW FW-RDUS

1 0.453 0.094
2 0.141 0.047
3 0.140 0.032

4 1.000 0.188
5 0.890 0.141
6 0.625 0.109

7 8.219 1.015
8 7.515 1.563
9 6.579 1.359

10 73.015 6.391
11 81.656 7.437
12 76.391 4.141

13 767.657 93.094
14 866.719 51.89
15 812.609 46.32

Table 2: Comparison using log Formulation between the two versions of the Frank-Wolfe algo-
rithm in terms of CPU-time (seconds).

8 Conclusions and future work

In this work, we have considered the problem of finding a sparse solution to a problem with
convex constraints, which arises in different important fields, such as signal processing and data
analysis. We have proposed a concave optimization-based approach for dealing with this issue.
Furthermore, we described a new efficient version of the Frank-Wolfe algorithm and we proved
its convergence to a stationary point.
The computational experiments evidenced that the concave formulations can be valid alterna-
tives to the ℓ1 formulation, as in most cases they get sparser solutions. The results we report also
show a considerable speed-up when using the variable fixing variant of the Franke-Wolfe method
in place of the traditional one. This speed-up might be extremely beneficial when multiple runs
of the algorithm are performed, e.g. in a Multistart method.
Future work will be devoted to the development of global optimization algorithms for finding
sparse solutions to problems having convex constraints and to the definition of suitable tech-
niques for SLDA, SPCA and sparse representation of noisy signals.
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