
A Web Service-based Process-aware Information
System for Smart Devices

Daniele Battista 
Daniele Graziano
Valerio Franchi
Alessandro Russo
Massimiliano de Leoni
Massimo Mecella

Technical Report n. 5, 2009



A Web Service-based Process-aware Information

System for Smart Devices

Daniele Battista, Daniele Graziano, Valerio Franchi, Alessandro Russo
Faculty of Computer Engineering

SAPIENZA - Università di Roma, Rome, Italy

Massimiliano de Leoni, Massimo Mecella
Dipartimento di Informatica e Sistemistica

SAPIENZA - Università di Roma
{deleoni,mecella}@dis.uniroma1.it

Abstract

Nowadays, process-aware information systems (PAISs) are widely
used for the management of “administrative” processes characterized
by clear and well-defined structures. Besides those scenarios, PAISs
can be used also in mobile and pervasive scenarios, where process par-
ticipants can be only equipped with smart devices, such as PDAs. None
of existing PAISs can be entirely deployed on smart devices, making
unfeasible its usage in highly mobile scenarios. The use of smart de-
vices poses interesting issues, such as reduced power, small screen size
and battery consumption. This paper illustrates a full-fledged opera-
tionalisation of a PAIS, namely ROME4EU, which relies on a mobile
Web service middleware and a BPEL orchestration engine, where both
client applications and server-side components are running on Win-
dows Mobile PDAs.

Keywords: Process Management Systems, MANET, Web-Services,
Services, Adaptability, Human-Computer Interaction

1



1 Introduction

Over the last decade there has been increasing interest in process-aware in-
formation systems (PAIS), also known as Process Management System or
Workflow Management System. A PAIS is, according to the definition in
[5], “a software that manages and executes operational processes involving
people, applications, and information sources on the basis of process mod-
els”. The elementary pieces of work are called tasks, e.g., “Approve travel
request XYZ1234”.

A PAIS is driven by some process model which defines the tasks com-
prised in the processes, their pre- and post-conditions. The process model
defines the control flow, which defines what tasks have to be executed be-
forehand and afterwards. Indeed, tasks cannot be performed in any order;
certain tasks can be executed only when other tasks have been already com-
pleted. Moreover, typically processes defines some variables which somehow
routes the process execution. Indeed, according to the values of such vari-
ables (i.e., the state), some tasks may need to be executed several times,
whereas others may be skipped because they are not required any longer.

At the heart of PAISs there exists an engine that manages the process
routing and decides which tasks are enabled for execution by taking into
account the control flow, the value of variables and other aspects. Once
a task can be assigned, PAISs are also in charge of assigning it to proper
participants; this step is performed by considering the participant “skills”
required by single tasks. Indeed, a task will be assigned to those participants
that provide all of the skills required.

Participants are provided with a client application, often named task list
handler. It is aimed to receive notifications of task assignments. Participants
can, then, use this application to pick from the list of assigned tasks which
one to work on as next.

Nowadays, process-aware information systems (PAISs) are widely used
for the management of “administrative” processes characterized by clear and
well-defined structures. The usual processes in pervasive and mobile scenar-
ios (such as emergency management, healthcare, etc.) are characterized for
being as complex as typical business processes of banks and insurances and
for involving teams of tenths of members. Therefore, the exploitation of
PAISs to support the process enactment seems to be very helpful. For in-
stance, let us consider a typical pervasive scenario: emergency management.
Rescue operators are arranged in teams, which are sent to the affected area
to assess it and to provide first-aid assistance to the involved people. Teams
are headed by a leader coordinating the activity of the other members.

To our knowledge, most of current PAISs comes with engines and task-
list handlers working only on desktop or laptop machines. As widely moti-
vated in Section 2, team members cannot be equipped with laptops. That
would reduce their possibility of moving in the surrounding area to execute

2



the assigned tasks, and the movement is a key requirement in mobile and
pervasive scenarios. Therefore, task-list handlers must be working on smart
devices of all members and the engine must reside a certain device on the
spot.

In the light of the above, we have developed a PAIS, namely ROME4EU
(The Roman Orchestration Mobile Engine for Emergency Units), whose
engine may reside on a MS-Windows PDA. The engine and Task Handlers
are completely decoupled. Task Handlers are supposed to be installed on
the devices of all team members and the engine can be hosted in any of
these devices or even in an extra one. From this moment one we assume the
most realistic case in which the team leader deploys both of components,
being equipped with the most powerful devices. Modern PDAs are becoming
increasingly powerful and, hence, able to execute complex applications.

As better detailed in Section 3, ROME4EU had to overtake interesting
challenges to be actually working on smart devices in pervasive environ-
ments. Firstly, it takes into account that mobile networks provide reduced
communication bandwidth and low reliability. Secondly, smart devices are
battery operating and, thus, the engine has to deal with the issue of minimiz-
ing the power consumption in order to guarantee its continuous functioning
for certain amount of hours. It is worthy mentioning that reduced screen
sizes limit the amount of information which can be visualized at the same
time; therefore, we had to carefully study how to position enough informa-
tion all together on the screen.

Finally, pervasive and dynamic scenarios are characterized by being very
instable. In such scenarios, unexpected events may happen, which break the
initial condition and makes the executing processes unable to be carried on
and terminate successfully. These unforeseen events are quite frequent and,
hence, the process can often be invalidated. Therefore, ROME4EU is flexible
enough to adapt the processes when the condition of the environment where
processes change. ROME4EU is equipped with some sensors which enable to
monitor the status of the surround environments, such as network coverage,
devices’ location, speed, distance or battery level. On the basis of such
monitoring, ROME4EU learns when some exogenous events happen or are
about to happen and adapts the process schema accordingly.

The paper is structured as follows. Section 2 is aimed to give a quick in-
sight of the rationale why current available PAISs are failing when working
in mobile and pervasive environments and, consequently, ROME4EU has
been devised. Section 3 delineates the critical issues we had to consider dur-
ing the design and developed, whereas Section 4 describes the ROME4EU’s
architecture. Section 5 aims at describing how the whole architecture has
been tested. Since we are willing to use the ROME4EU Process-aware Infor-
mation System on Mobile Ad-hoc Networks (MANETs), we had to devise a
MANET layer and test it to learn the actual Quality-of-Service which can
be provided. Indeed, the MANET layer QoS constrains somehow some de-

3



sign ROME4EU choices. Section 7 describes the methodology used to make
sure that ROME4EU is really usable for final users and meets their require-
ments. Section 8 shows the use of ROME4EU for emergency management,
whereas Section 9 discusses related works. Finally, Section 10 concludes the
paper, sketching future work directions.

2 An Overall Insight

The use of Process-Aware Information Systems in pervasive scenarios is
valuable and can be used to improve coordination and communication during
pervasive process executions.

Firstly, these processes are mobile and pervasive, meaning that devices
and operators are located in the area and need to move in the surrounding
area for carrying out the process. If team members were equipped with lap-
tops, their possibility of moving to perform tasks would be seriously reduced.
We may neither assume to deploy on the spot only Task Handlers and leave
the engine in team headquarters. Indeed, the communication between team
members and the headquarter are either too slow (e.g., satellite) or may be-
come unavailable during critical situations (e.g., UMTS antennas overused
or fallen down after an earthquake). Consequently, all components, both at
server and client side, must be available on the spot and connected through
mobile networks, which are partially unreliable.

Secondly, these processes are highly critical and time demanding as well
as they often need to be carried out within strictly specified deadlines; for
instance, in emergency management scenarios, saving minutes could result
in saving people’s life. Therefore, it is unapplicable to use a pull mechanism
for task assignment where PAIS assigns every task to all process participants
qualified for it, letting them decide autonomously what task to execute as
next. Consequently, the ROME4EU engine aims at improving the overall
effectiveness of the process execution by assigning tasks to just one member
and, vice versa, by assigning at most one task to members.

Finally, these processes are created in an ad-hoc manner upon the occur-
rence of certain events. These processes are designed starting from provided
templates or simple textual guidelines on demand. In the light of that, these
processes are used only once for the specific setting for which they were cre-
ated; later, they will not be used anymore. Moreover, teams are sent to the
area only in order to face one situation and, hence, they take part in only
one process simultaneously.

We have developed ROME4EU, taking into account the aforementioned
considerations. In ROME4EU, process schemas are defined in the form of
Activity Diagrams enriched for describing all the different aspects: definition
of tasks in term of pre- and post-conditions, the control and data flow, as
well as the assignment of tasks to appropriate members. Every task gets

4



associated to a set of conditions to hold in order that it can be assigned;
conditions are defined on control and data flow (e.g., a previous task has
to be finished, a variable needs to have values in a specific range, etc.).
Of course, not every member is able to execute every task. Every task
needs to be assigned to a certain member that provides certain capabilities.
We model that by binding each and every task to a set of capabilities; in
addition, every member declares to furnish certain capabilities. Considering
the control and data flow, the ROME4EU engine assigns every task to a
certain member providing all required capabilities.

Every member device (including the leader) deploys a Task Handler,
which allows to join to the team and specify the capability that she can
provide. Then, it stays waiting for notifications of task assignments. The
next task to work on is, then, visualized on the screen; when the member
is ready to start it, she picks it and, possibly, appropriate applications are
started to support the task execution.

In sum, taking into account the considerations above, the ROME4EU
task cycle, depicted in Figure 1, is specialized with respect to those of other
PAIS [18]:

1. When all pre-conditions over data and control flow holds, the
ROME4EU engine assigns the task to the team member that guaran-
tees the highest effectiveness. The task moves to the Assigned state.

2. The Task Handler notifies to ROME4EU, when the corresponding
member is willing to begin executing. The task moves to the Run-
ning state.

3. The member begins executing it, possibly invoking external applica-
tions.

4. When the task is completed, the Task Handler notifies to ROME4EU.
The task move to the final state Completed.

3 Design Issues and ROME4EU Solutions

ROME4EU is aimed at being working on smart devices in very dynamic and
mobile scenarios over a network partially unreliable. Therefore, it copes
with some challenging issues, which can be divided in two groups. The
first group is concerned with grasping mental attentions onto the system as
little as possible since pervasive processes are really mentally stressing for
participants. On the other hand, there exist some technological challenges
which deal with reducing the resource use and consumptions. Indeed, smart
devices are low profile and, hence, are characterized to get very limited
computation powerful.

5



Figure 1: The task cycle in ROME4EU.

3.1 Human-Computer Interaction Issues of Task Handler

The human being receives continually a huge quantity of stimuli from the
environment. Book [20] defines attention as the totality of information cog-
nitively manipulated by a person. The attention allows human being to
consider stimuli in a judicious way, prioritizing them and taking into ac-
count only the most important ones. This judiciousness is used to increase
the probability of a rapid and accurate answer. Activities in critical and
pervasive scenarios are highly-stressing situations for users, who generally
give more priority on the physical stimuli concerning the activities to execute
than on those coming from software applications.

Therefore, we designed the Task Handler interface in order to grasp user
attention only when strictly required. For instance, we have significantly
made use of popups and sonorous alarms to achieve these results.

An aspect worthy to consider is accessibility and ergonomics when using
PDAs in critical pervasive scenarios. Indeed, we have taken into account the
fact that these devices may be used in extreme conditions. So, particular
precautions must be taken when designing the UI. In particular the choice of
colors should be effective and easy-to-read; they should be highly contrasting
in order to be clearly visible in particular light conditions (e.g., in night
missions). Moreover, the interaction with the interface takes mostly place
through fingers, instead of the stylus. Therefore, the user interface elements
should be sized and spaced out in order to avoid users to press on wrong
elements because of the proximity of that users were willing to push.

3.2 Technical Issues

When devising the system we kept in mind to reduce as much as possible
the use of three kinds of resources: the computational power, the commu-
nication bandwidth and the battery. Such resources are quite limited for

6



smart devices in highly mobile and pervasive scenarios.
Smart devices, such as PDAs, are typically equipped with 400 Mhz

CPUs, which are definitely slower than usual desktop machines. Therefore,
ROME4EU avoids as much as possible busy-waiting where devices are con-
tinually listening for the occurrence of certain events. Asynchronous tech-
niques and communication patterns (e.g., event-based or one-way SOAP-
based invocations) are preferable in order to save CPU usage and battery
consumption.

As already stated, in highly mobile and pervasive scenarios, team mem-
bers are connected through mobile networks. Since such networks cannot
rely on underlying infrastructures (because overused or unavailable), a good
choice could be to make communicate members through MANETs, as also
stated in [13]. A MANET is an IEEE 802.11x Wi-Fi technology where
nodes are communicating with each other directly without any fixed ac-
cess points: pairs of neighboring nodes (i.e., at direct communication range)
can communicate directly. Not neighboring nodes can anyhow communi-
cate, provided that there exists a path of nodes that can act as relays for-
warding data packets towards the final destination. We performed some
non-emulated experiments through NRLOLSR1, a specific MANET imple-
mentation developed by U.S. Naval Research Lab (NRL). NRLOLSR is a
research oriented OLSR protocol implementation, evolved from OLSR draft
version 3. It is written in C++ according to an object oriented paradigm,
and built on top of the NRL ProtoLib library 2, which guarantees system
portability and cross-platform support.

ProtoLib supports a variety of platforms, including Linux, Windows,
WinCE/PocketPC, MacOS, OpenZaurus, as well as the NS2 and Opnet
simulation environments; it can also work with IPv6. It provides a system
independent interface: NRLOLSR does not make any direct system calls to
the device operating system. Timers, socket calls, route table management,
address handling are all managed through ProtoLib calls. To work with
WinCE, Protolib uses the RawEther component to handle at low level raw
messages and get access to the network interface cards. The OLSR core
code is used for all supported systems. Porting NRLOLSR to a new system
only requires re-defining existing ProtoLib function calls.

As detailed in Section 6, we obtained a throughput of 70-80 Kbyte/s
that is compatible with a lightweight Web service middleware for enabling
the communication between the ROME4EU engine and the various Task
Handlers.

As far as concerning the communication bandwidth, it is important to
keep Web service invocations as light as possible. Indeed, it is anyhow
limited as regards to modern Internet connections. Therefore, we designed

1http://cs.itd.nrl.navy.mil/work/olsr/
2http://cs.itd.nrl.navy.mil/work/protolib/

7



Figure 2: The overall ROME4EU’s architecture.

the interfaces between Task Handlers and the engine in order to include only
the input and output parameters strictly required. Moreover, whenever
possible, we preferred simple types (e.g, integer, string, etc) rather than
complex data transfer objects.

4 Software Architecture

The architecture of ROME4EU is depicted in Figure 2 and is basically com-
posed by two main components: the ROME4EU Engine, and Task Handler.
Team leader’s device deploys both of components whereas generic members
install only the Task Handler.

The Engine manages and coordinates the execution of complex processes
representing missions to carry out. It performs task assignment and it man-
ages and temporary stores information about team members involved in
process execution, tasks to be completed and variables produced or modi-
fied during tasks execution.

The Process Design Tool is an external component used by the team

8



leader during the initial planning stage. It allows the team leader to design
the process to be executed (i.e. tasks and required capabilities) and to load
it into the Engine.

As already stated, emergency management scenarios are highly dynamic
and the environment is very instable and changing. In order to deal with un-
foreseen events, which may invalidate process execution, ROME4EU adopts
an adaptability approach driven by context- and geo-awareness. Context
data (like the GPS position or the battery status of team members’ devices)
are provided by the Context Management System, an external distributed
application that, by means of some hardware/software sensors, monitors
and retrieves information from the environment and makes them available
through publish/subscribe techniques. In order to use context data to adapt
process execution, ROME4EU is equipped with some specific event handlers,
which are registered as subscribers to the Context Management System. An
Handler is a software component that implements the logic required to man-
age a specific event. When an Handler is notified about the occurrence of an
event (e.g. battery drops below 20%, device disconnects etc.) it performs a
set of activities in order to adapt the process to the unexpected event. Each
Handler is able to query the Engine to get information about process execu-
tion status. On the basis of such information and context data an Handler is
able to restructure the process. Process restructuring is performed applying
to the original process schema a set of adaptation patterns, which mainly
require tasks insertions and/or deletions.

Process adaptation is thus achieved through a plug-in-based architec-
tural approach. Managing a class of exogenous events requires a developer
to implement the adaptation logic in a specific Handler, which receives noti-
cations from the Context Management System and interacts with the Engine
in order to restrucure the process.

ROME4EU has been designed and developed according to Service Ori-
ented Architecture (SOA) principles. Communication relies on an underly-
ing middleware which hides behind Web service calls every critical issue and
aspect concerning the communication.

The Engine provides five interfaces, which are developed as Web service
endpoints and are accessed by Task Handlers, event Handlers, and by the
external Process Design Tool :

ProcessDefinition allows to upload the process schema definition in XML
format and to enact the process. Specifically, only the Task Handler
of the team leader is authorized to start the process.

ProcessOverview is used to retrieve the process information, such as
goals, members involved in the process and the status of the task that
each member has got assigned (i.e., assigned, running, completed).
Specifically, it will be used by Task Handler of the team leader which
is allowed to show information about the status of team members (e.g.,

9



if they are running a certain task or if they have been assigned a task).
The same interface is also used by every member to join to the team
and specify the capabilities he provides.

Notification allows Task Handlers to notify the execution start of a given
task as well as to signal the completion. Upon notification of the start
of a certain task, the engine replies to the Task Handler of the member
executing that task by returning the value and name of the variables
that the member executing the task is authorized to read. Upon a task
completion, the Task Handler of the executor returns to the engine the
variables whose value has been updated by the task itself.

Status is used by the event Handlers to retrieve current process execution
status, i.e. process schema, running tasks, team members’ status and
capabilities. Such information and data are used to determine wich
adaptation patterns should be applied to restructure the process.

Restructure allows event Handlers to modify process schema according to
specific adaptation patterns. Specifically, it allows to temporary stop
process execution, add and/or remove tasks, rollback running tasks
and restart process execution.

Task Handler provides two interfaces, which are also developed as Web
services and accessed by the ROME4EU Engine:

Service Management is in charge of receiving notifications from the En-
gine about task assignments and the process conclusion. This interface
is also used to notify the PAIS requests to roll back a task execution.

Callback is used as callback end point to respond to asynchronous one-way
requests initiated by the Task Handler.

The internal modules of the Task Handler and Engine are communicat-
ing with each other only through further Web service endpoint interfaces in
order to increase the flexibility and modularity of the whole system. For
instance, it is possible to divide the modules of the PAIS Engine in two
groups and to deploy each group on a different PDA in order to balance the
Engine load on different devices.

Implementation details. The ROME4EU Engine and Task Handler
have been developed in Microsoft Visual C# on the .NET Compact Frame-
work for PDAs based on MS Windows Mobile, which is the de-facto standard
for smart devices. The choice of the .NET Compact Framework rather than
Java is motivated by the fact that .NET allows to control and tune more
deeply the devices based on MS Windows Mobile. Moreover, as far as mo-
bile devices, the .NET Compact Framework guarantees better performances
than Java.

10



In order to develop a Web services middleware for hosting Web ser-
vices on mobile devices, we started from a preexisting solution in Mi-
crosoft .NET C# [16], which we extended firstly to handle asynchronous
requests/responses (i.e. one-way Web services invocations) and secondly to
support complex data types. Indeed, allowing asynchronous communica-
tion is quite important in critical scenarios characterized by high mobility,
where it is difficult and battery consuming to keep alive TCP connections
(and, hence, SOAP ones) for long times. Complex data types simplify the
notification to Task Handlers of task assignments and the task completion.
Moreover, we improved the original XML and SOAP parser module, re-
ducing memory consuption in order to manage big data sets (e.g. possible
photos taken on the field) as input or output parameters in Web service
calls.

On top of the Web service middleware we built a lightweight BPEL
execution engine, which represents PAIS’ core component. It is able to
parse, execute and manage BPEL-compliant processes, hiding coordination
overhead.

5 Emulation vs simulation and on-the-field test

In order to develop and test mobile applications, a complete development
environment is required. As part of the development process, it is needed
to study alternatives for design and implementation of software modules,
analyze possible trade-offs and verify whether specific protocols, algorithms
and applications actually work. There exist three way to perform analysis
and tests: (i) simulation, (ii) emulation and (iii) on-the-field drills.

Simulation and emulation allow to perform several experiments in a
cheaper and more manageable fashion than field tests. Simulator and em-
ulator (i.e., hardware and/or software components enabling simulation or
emulation) do not exclude each other. Simulation can be used at an earlier
stage: it enables to test algorithms and evaluate their performance before
starting actually implementing on real devices. Simulators allow for several
kinds of hardware, through appropriate software modules (such as differ-
ent device types, like PDAs or smart phones, or networks, like Ethernet or
WLAN 802.11). Even if the application code written on top of simulators
can be quickly written and performances easily evaluated, such a code must
be throw out and rewritten when developers want to migrate on real devices.

The emulators’ approach is quite different: during emulation, some soft-
ware or hardware pieces are not real whereas others are exactly the ones
on actual systems. All emulators (for instance, MS Virtual PC or device
emulator in MS Visual Studio) share the same idea: software systems are
not aware about working on an emulated layer (at all or partially). On the
other hand, performance levels can be worse: operating systems running on

11



Microsoft Virtual PC work slower than on a real PC with the same charac-
teristics. Anyway, software running on emulators can be deployed on actual
systems with very few or no changes.

On the basis of such considerations, in order to develop a complete re-
search environment for MANETs in emergency scenarios, we have designed
and developed an emulator, named OCTOPUS 3. Our emulator is intended
to emulate small scale MANETs (10-20 nodes). Instead of making the whole
MANET stack virtual, which would require duplication of a large amount
of code, we decided to emulate only the physical MAC layer, leaving the rest
of the stack untouched. OCTOPUS keeps a map of virtual areas that users
can show and design by a GUI. Such a GUI enables users to put in that map
virtual nodes and bind each one to a different real device. Further, users
can add possible existing obstacles in a real scenario: ruins, walls, buildings.

The result is that real devices are unaware of OCTOPUS: they be-
lieve to send packets to destinations. Actually, all broadcasted packets are
captured by OCTOPUS, playing the role of a gateway. The emulator an-
alyzes the sender and the receiver and takes into account the distances of
corresponding virtual nodes, the probability of losses as well as obstacles
screening direct view4. On the basis of such information, it decides whether
to deliver the packet to the receiver.

The virtual map, which OCTOPUS holds, allows users to insert obsta-
cles representing walls, ruins and buildings. Virtual nodes are able to move
into the map by passing around without going over such obstacles. More-
over OCTOPUS supports events which were not scheduled at design-time.
Indeed, destinations of nodes are required to be defined at run-time, accord-
ing to the behavior of client applications. Essentially, movements cannot be
defined in a batch way; conversely, during emulations, nodes have to interac-
tively inform the emulator about the movement towards given destinations.

The advantage of OCTOPUS is that, in any moment, developers can
remove it and perform field MANET tests without any kind of change.
As of our knowledge, OCTOPUS is the first MANET emulator enabling
clients to interactively influence changes in the topology, upon firing of
events which were not defined before the beginning of the emulation. Other
emulators require the specification in batch mode, i.e., when the emulation
is not yet started, of which and when events fire. In addition, OCTOPUS
allows to include whichever kind of device, even PDAs or smartphones,
and applications, whereas other approaches support only some platforms
and applications coded in specific languages. Finally, OCTOPUS supports
packet loss models (such as RayLeigh) and enhanced movement models, like
Voronoi [9].

3Downloadable at: http://www.dis.uniroma1.it/∼deleoni/Octopus. At the URL, the
reader can also download a user manual.

4We assume whenever two nodes are not directly visible, every packet sent from one
node to the other one is dropped.

12



Figure 3: MAC interference among a chain of nodes. The solid-line circle
denotes a node’s valid transmission range. The dotted-line circle denotes a
node’s interference range. Node 1’s transmission will corrupt the node 4’s
transmissions to node 3

6 QoS testing of the MANET layer

The actual feasibility of ROME4EU, the PAIS for smart devices, relies sig-
nificantly on the QoS (e.g., the throughput) provided by the underlying
MANET layer. In the light of that, we made some performance test of our
MANET layer before actually starting devising the PAIS application meant
to be used on top of it. Indeed, the MANET test results have definitely
driven some choices in the design of the ROME4EU Process-aware Infor-
mation System. It is worthy saying that basing QoS measurements only on
simulated/theoretically-calculated values may lead up to build a system un-
able to work in real scenarios. We did not test through simulations, as many
of other approaches do, since it would not return actual results. Conversely
we performed emulation, by letting PDAs really exchange packets. Clearly
on-field tests would be the better solution, but they require many people
moving around in large areas and repeatability of the experiments would
be compromised. Therefore emulation is considered an acceptable trade-off,
in which the mobility is “synthetic” but the devices (and whatever running
onto) are real (to be compared vs. simulation, in which both mobility and
devices are synthetic). Nevertheless, we discovered and proved a relation-
ship between laboratory and on-the-spot results, thus being able to derive
on-the-spot performance levels from those got in the laboratory.

13



6.1 Deriving on-the-field tests from laboratory’s ones

One of the most significant performed tests concerns the throughput in a
chain of n links, when the first node is willing to communicate with the last.

In this chain, every node is placed at a maximum coverage distance from
the previous and the next node in the chain, such as in Figure 3. In the
shared air medium, any 802.11x compliant device cannot receive and/or
send data in presence of an interference caused by another device which is
already transmitting. From other studies (e.g., [12]) we know that every
node is able to communicate only with the previous and the next, whereas
it can interfere also with any other node located at a distance less or equal
to the double of the maximum coverage distance. Therefore, if many devices
are in twice the radio range, only one of them will be able to transmit data
at once.

In our tests for the chain throughput, all devices are in the same labora-
tory room, which means they are in a medium sharing context. The chain
topology is just emulated by OCTOPUS. Of course, having all devices in
the laboratory, the level of interference is much higher than on the field;
hence, the throughput gets a significant decrease. We have achieved a way
to compute a theoretical on-field throughput for a chain from the result
obtained in the laboratory.

Let Qfield(n) be the throughput in a real field for a chain of n links
(i.e., n + 1 nodes). We are willing to define a method in order to compute
it starting from laboratory-measured throughput Qlab(n). Here, we aim at
finding a function Conv(n), such that:

Qfield(n) = Conv(n) ·Qlab(n) (1)

in order to derive on-field performance. We rely on the following assump-
tions:

1. The first node in the chain wishes to communicate with the last one
(e.g, by sending a file). The message is split into several packets, which
pass one by one through all intermediate nodes in the chain.

2. Time is divided in slots. In the beginning of each slot all nodes, but
the last one, try to forward to the following in the chain a packet,
which slot by slot arrives at the last node.

3. Communications happen on the TCP/IP stack. Hence, every node
that has not delivered a packet has to transmit it again.

4. The laboratory throughput Qlab(n) = α
nβ , for some values of α and β.

This assumption is realistic as it complies several theoretical works,
such as [12, 6].

14



We have proved the following statement:5

Statement. Let us consider a chain formed by (n + 1) nodes connected
through n links. On the basis of assumptions above, it holds6:

Conv(n) =
(bn

3
c+ 1

)β
2 (2)

6.2 Tests results

We investigate on two main kinds of tests: the performance of chain topology
and some tests with moving devices.

Performance of the chain topology. The aim of this test is to get
the maximum transfer rate on a chain. To obtain the measurements an
application for Windows CE was built (using the .NET Compact Framework
2.0), which transfers a file from the first to the last node on top of TCP/IP,
reporting the elapsed time.

All the devices run the NRLOLSR protocol implementation and use the
routing protocol with the default settings and HELLO INTERVAL set to 0.5
seconds. OCTOPUS emulates the chain topology and grabs all broadcast
packets. When a node wants to communicate to another node, it sends
packets directly to it if this is in his neighborhood, otherwise it sends them
following the routing path. Both real and emulated devices were used; each
reported value is the mean value of five test runs.

Figure 4 shows the throughput outcomes. The blue curve tracks the
laboratory results; as stated in Section 6.1, we found through interpolation
that the curve follows the trend Qlab(n) = α

nβ where α = 385 and β =
1.21. The green curve is the maximum theoretical throughput computed by
Equation 2. We believe the actual throughput we can trust when developing
applications is between the green and the blue curve.

Tests with moving devices. This kind of test aims to determine
whether or not the NRLOLSR implementation is suitable for a real environ-
ment where nodes are often moving. Indeed, in a real field it is important
not to break the communication among movements of nodes. If a team
member is transmitting information to another team member, and nodes
topology changes, all data must be delivered successfully, provided that the
sender and the receiver are connected at all times through a multi-hop path,
maybe changing over the time.

In order to emulate a setting of moving devices, we investigate three
topologies, as shown in Figure 5, where the dashed line shows the trajectory
followed by a moving device. Such topologies are designed in order to have
(i) the moving node always connected at least another node, and (ii) each

5The proof of this statement is available as appendix of this paper.
6b·c denotes the truncation to the closest lower integer

15



Figure 4: Test results for a chain-MANET, in the laboratory and estimated
on-the-spot results

node is connected in some ways to at least another one, i.e., there are not
disconnected node (no partitions in the MANET).

A WinCE application is used that continually sends 1000-byte longs
TCP/IP packets between node S and node D. We tested every topology five
times and every run was 300-seconds long.

Outcomes are demonstrated to be quite good, for every topology: during
every run all data packets were correctly delivered to the destination. We
experienced only some delays when the topologies were changing for a node
movement. Indeed, while a new path is set up, data transmission incurs in
100% losses since the old path cannot be used for delivering. At application
level, we are using reliable TCP and, hence, packets delivering is delayed
since every single packet has to be transmitted again and again until the
new path is built up.

TCP defines a timeout for retries; if a packet cannot be delivered by a cer-
tain time amount, an error is returned at application level and no attempts
are going to be done anymore. In order not to incur in TCP timeouts, the
node motion speed is crucial: if nodes are moving too fast, topologies are
changing too frequently and, hence, the protocol is not reactive enough to
keep routes updated. In the tested topologies, we have discovered that the
maximum speed is around 18 m/s (65 km/h) such that TCP timers never
expire.

16



Figure 5: Dynamic topologies for testing TCP/IP disconnections

17



7 Evaluation and validation methodology

The ROME4EU system has been devised by keeping always in mind users
and their requirements. Indeed, we use an evaluation and validation method-
ology which is named user-centered software development process [8]. At
the heart of the evaluation there is always the user who is actively involved
throughout the whole software development process.

We adopted a specific user-centered design (UCD) approach, in order to
guarantee the usability of the software. Furthermore, requirements and fol-
lowing validation activities have been conducted by interviewing officers and
generic actors from real emergency management organizations and applying
ROME4EU software to Civil Protection of Calabria7, Italy.

User requirements and any other relevant data related to the needs and
expectations of users have been collected through interviews and question-
naires at the beginning of the design process. For the evaluation activities we
mainly used qualitative usability evaluation methods like feature inspection,
on-site observation of users while they perform different tasks, cooperative
evaluation and questionnaires.

7.1 Usability tests and evaluations

Two usability tests with selected users from the Calabria Homeland Secu-
rity Department have been performed. The results of the user tests were
evaluated using qualitative evaluation methods and improvement recom-
mendations were derived from the evaluation results. The tests took place
with a selected number of users during the design phase of the software de-
velopment process in order to get feedback from the users with regard to
the following points:

• Test whether the requirements were understood correctly

• Test whether the main functionalities meet the users’ demands

• Test whether the mock-up or prototype is easy understandable and
usable

• Test whether specified tasks can be performed easily

In order to perform the user tests we used the following methods: qual-
itative online mock-ups and questionnaires, and cooperative evaluation ac-
companied by a semi-structured interview including a questionnaire.

The first usability test took place by means of mock-ups of the system’s
graphical components, i.e. Task Handlers. The test including the mock-ups
was performed with an online questionnaire. The second usability test was

7http://www.protezionecivilecalabria.it/

18



performed with system’s components prototypes. Cooperative evaluation
test with users was performed with four users under the supervision of an
evaluator guiding the users through the test. The user test was audio-
and video-taped. After the user finished the tasks he was asked to watch
the video and to comment it and the evaluator took notes of the user’s
comments. After looking through the video a semi-structured interview
including a background questionnaire was performed with the users. The
user test results were then analyzed in order to derive recommendation input
for the system’s development process.

7.2 Controlled experiments and on-field drills

Controlled experiments [21] test and compare user interfaces under con-
trolled experimental conditions. In order to evaluate the system we are
performing two identical on-field drills in a realistic setting at a simulated
emergency site with emergency operators. In the first drill, which is going
to take place at the end of 2008 in Calabria, operators will act as of today
(i.e., without the support of the ROME4EU system). In the second drill,
which will take place in April 2009, users (having the same user profile as
the ones in the drill without ROME4EU) will be equipped with PDAs with
the ROME4EU system and will perform the same tasks as the ones per-
formed during the firs drill in order to guarantee comparability. The users’
test activities will be videotaped so that a detailed analysis can be accom-
plished after the test. Test results of the drill with ROME4EU will then
be compared to the ones obtained without the system. By this, conclusions
can be drawn.

User-related evaluation metrics. We use the following evaluation
metrics with regard to the two drills: efficiency, effectiveness, and user opin-
ion.

Efficiency is defined as “doing the things right” [4]. The related measures
are:

- The overall time needed to finish a task

- Mean time-on-task

- Ratio between completion rate and mean time-on-task

- Ratio between productive and unproductive time consumption (con-
tains system response time)

Out of the video record of the usability testing session task time (i.e. how
long it took the user to complete a task) and unproductive time (i.e. the
time that it took the user to perform actions that did not contribute to the
task output) can be measured and compared.

Effectiveness is defined as “doing the right things” [4]. The related mea-
sures are:

19



- Number of errors

- Completion rate

- Number of required assists

- Ratio between provided and required functions

Effectiveness can be measured also by counting and comparing the set
implemented functions with the functions identified through user require-
ments analysis. The user should be provided with neither more nor less
functions than the ones required.

User opinion is defined by measuring

- Satisfaction

- Usefulness

- Ease of use

from the user’s point of view. We are going to measure user satisfaction
with a questionnaire (based on a Likert scale) after the task performance
and with an interview with open questions.

8 A Working Example: Emergency Management

In this section we are going to illustrate a number of features of ROME4EU
by considering a potential scenario from emergency management. This sce-
nario stems from a user requirement analysis conducted in the context of a
European-funded project [1]. Teams are sent to an area to make an assess-
ment of the aftermath of an earthquake. Team members are equipped with
PDAs and their work is coordinated through ROME4EU.

For the scenario we have defined a process schema that can simulate a
real emergency scenario, where several tasks have to be executed. The pro-
cess schema foresees tasks which can be performed concurrently by different
members.

In this example, we are envisioning four PDAs: the one of the team
leader, namely Alessandro, and three generic members, Daniele, Alessio and
Costantino.

The team leader device hosts the Task Handler and the engine where
the generic members install only the former. Some capabilities are bound
to specific external applications; these applications are meant to support
the execution of the tasks requiring those capabilities. That means when a
certain task is assigned to a certain member, since his Task Handler knows
which capabilities are required for its performance, it automatically starts
the proper applications associated to the required capabilities.

20



(a) (b)

(c) (d)

Figure 6: Some screen shots of Task Handler

21



(a) (b)

Figure 7: Some screen shots of Task Handler (continued)

The process execution begins when the team leader loads the process
inside the engine through his Task Handler; only the team leader is allowed
to do that. At this stage, all members, generic and the leader, can join and
select the capabilities they can cover. Figure 6(a) shows the screen shot of
the Task Handler of the team leader while picking the capabilities she can
cover from a check-box list. Indeed a member, in order to take part in a
mission, has to cover some of the capabilities which are specifically defined.

The first process task is Compile questionnaire about disaster area, which
should be assigned to a member providing capability Text Editor. Here, we
assuming that only member Daniele provides this capability; therefore, the
task is assigned to him (Figure 6(b)) and shown on his Task Handler.

When he is ready to start it, Daniele clicks on button Start and that
causes firstly a notification message is sent to the Engine in background.
Secondly, Task Handler starts the application that has been coupled to ca-
pability Text Editor. The Text Editor capability is associate to the applica-
tion shown in Figure 6(d), which is meant to fill in a certain questionnaire
for the assessment.

Generally speaking, when the Task Handler notifies the engine about
the start of a certain task, the engine replies with the variables that can be
read for the task execution. The definition of what variables can be read

22



is given inside the process schema. After receiving the variables from the
engine, Task Handler starts the applications associated to the task execution
passing the received variable as input.

When Daniele completes the questionnaire, he closes the application and
that is recognized as the completion of task Compile Questionnaire. The
questionnaire data are sent back to the engine that stores them as a process
variable (specifically as binary data).

While Daniele was executing that task, no more task has to be assigned
to any member. Indeed, other tasks will be enabled when Compile Ques-
tionnaire is considered as completed. Therefore, the Task Handler of any
other members is similar to 6(c).

After executing Compile questionnaire, the process splits in three con-
current branches. One is concerned with extinguishing a fire and the engine
assigns it to member Alessio. When notified, Alessio may click on Start in
order to begin the execution. This task is associated to no application, since
it requires only a water pump to extinguish the fire occurred.

Figure 7(b) shows the actual implementation of the feature that allows
the team leader to gain an insight of the status of all members. The status
is shown in a table where each row refers to a certain member. Specifically,
such rows show the (possible) task that every member is executing. By
clicking on the INFO button associated to the row of a certain member, the
team leader can obtain the history of tasks which that member executed in
the past.

Space matters avoid us to place every screen shots more concerning the
Task Handler.8

9 Related Work

Most of current Process-aware Information Systems cannot be completely
deployed on smart devices, such as PDAs or smartphones. This holds both
for open source products, e.g., jBPM9 and Together Workflow10, as for
commercial systems, e.g., SAP Netweaver11, Flower12 or TIBCO’s iProcess
Suite13. In any case, a desktop or laptop machine is needed on which the
engine has to be installed. Moreover, they do not consider other critical
issues of mobile and pervasive scenarios, such as the battery consumption,
the intrinsic slowness and unreliability of the mobile network as well as the
reduced power of smart devices.

8A video of a system demonstration with 3 PDAs is available at
http://www.dis.uniroma1.it/∼deleoni/video.wmv

9jBPM web site - http://www.jboss.com/products/jbpm
10Together Workflow web site - http://www.together.at/together/prod/tws/
11Netweaver web site - http://www.sap.com/usa/platform/netweaver
12Flower web site - http://global.pallas-athena.com/products/bpmflower product/
13iProcess Suite web site - http://www.tibco.com/software/business process management/

23



The recent literature provides some interesting developments of PAISs
running on mobile devices. CiAN [19] is a language and middleware sup-
porting collaboration in Mobile Ad-hoc Networks. The system is designed
to run in a completely decentralized fashion with no need for a central coor-
dinating entity. The CiAN middleware is responsible for executing processes
specified using the CiAN language. It has been targeted to mobile networks
and, hence, it addresses some of the typical issues of mobile environments.
CiAN shows two important drawbacks. Firstly, the prototype has been im-
plemented in Java using J2SE 5.0 and, consequently, it does not work on
PDAs. Secondly, it does not provide enough flexibility to handle those ex-
ogenous events which bring the system in situations where processes cannot
carried on and terminate successfully.

Another valuable implementation has been developed by the Nokia
Group in Finland [17] and runs on smart devices. It claims future releases
will be able to handle situations in which some resources disconnect from
the mobile ad-hoc network and become unavailable. That is valuable but
does not cover every possible situation caused by exogenous events. For in-
stance, a device can get (or destined to become) unavailable for many other
reasons, such as it runs out of battery.

WHAM [10] proposes a loosely couple PAIS which allows the off-line ex-
ecution of tasks and the possibility of moving the engine among the available
devices. But, conversely, it does not enable the run-time integration of ar-
bitrary external services and applications. The process logic definition itself
drives somehow how to integrate external services. Consequently, it is de-
fined at design time how services can be orchestrated and what applications
of process participants to invoke in order to perform tasks.

Moreover, there exist many systems for mobile networks and PDAs which
aims at supporting the collaboration among different participants. The lat-
est and most significant is Service-Oriented Mobile Unit (SOMU) [15]. This
tool supports the data exchange and the collaboration to achieve informa-
tion; it works also in a decentralized fashion with no central entities. But
it does not provide the concept of processes to be carried out. As also the
authors claim, it is meant as underlying infrastructure for collaboration on
top of which other systems (like PAISs) provides the coordination. Indeed,
coordination is something more than collaboration implies a plan (i.e., a
process) to achieve such a collaboration. On the contrary, SOMU as well as
other systems leaves freedom to let coordinate participants, and the freedom
in highly dynamic and pervasive scenario is not a good way to proceed.

The BPEL4People and WSHumanTask standards [11] are currently un-
der definition to extend BPEL processes to support activities performed by
humans. As ROME4EU does, BPEL4People models every human as ser-
vice covering some roles and the interaction with each service, including
humans, is modeled as message exchanges using some communication pro-
tocols. Nevertheless BPEL4People is not yet standard and is still under

24



debate [14]. Since its definition is still ongoing, the current implementations
are only partially-fledged prototypes. Moreover, BPEL4People does not ad-
dress explicitly the challenging issues of mobile Process-aware Information
System. The most valuable implementation is VieBOP [7] and is meant to
run only on desktop/laptop machines. BPEL4People has also got the draw-
back which does not describe how to assign tasks to process participants.
Task assignment is a very important topic in many pervasive and mobile
scenarios (such as Healthcare or emergency management) which should be
carefully taken into account.

10 Conclusion

ROME4EU is a Process-aware Information System that can be completely
deployed on smart devices, such as Windows-Mobile PDAs. The fact that it
does not require laptops and desktops make feasible its use in pervasive and
mobile scenarios, such as emergency management, domotics and healthcare.
Indeed, as argued, every component has to be running on the spot and the
possible use of laptops would limit the mobility of team members, which is
a key point in aimed scenarios.

ROME4EU has been devised and developed taking always into account
the user requirements. Indeed, we performed two interactive cycles so far
during which we proposed our solution, they gave feedback on it by inter-
views and questionnaires and we adapted it accordingly. Specifically, in the
context of a European-funded project, namely WORKPAD, we had the op-
portunity of making evaluate ROME4EU by typical operators, such as Civil
Protection. In April 2009, we are going to have the final validation through
a specific on-the-field drill where we will be emulating an earthquake and
give the ROME4EU PAIS to such operators.

The current stable version of ROME4EU is just able to manage prede-
fined sets of exogenous events. By default ROME4EU is equipped with some
specific handlers to adapt the processes schema to the corresponding class of
events. Specifically, we can deal with prediction of node disconnections, with
running out of battery or space storage. But, basically, specific developers
can plug into ROME4EU specific handlers for adapting the process schema
to the corresponding class of exogenous events. On this concern, future work
aims at being able to adapt process after the occurrence of any events, even
those for which no specific handlers exist. The system itself should be able
to understand what significant deviations occurred and what task sequence
is needed to recover the process execution. The schema will be changed in
the form that the recover tasks are put before the remaining part of pro-
cess still to be executed. We have already proposed a general framework to
enable adaptiveness [3] and developed a first prototype of the correspond-
ing module[2]. Currently, we are working on integrating this module in the

25



current ROME4EU version.

Acknowledgement. This work is supported by the European Commis-
sion through the FP6-2005-IST- 5-034749 project WORKPAD.

References

[1] T. Catarci, M. de Leoni, A. Marrella, M. Mecella, B. Salvatore, G. Vet-
ere, S. Dustdar, L. Juszczyk, A. Manzoor, and H. Truong. Pervasive
Software Environments for Supporting Disaster Responses. IEEE In-
ternet Computing, 12:26–37, 2008.

[2] M. de Leoni, A. Marrella, M. Mecella, S. Valentini, and S. Sardina.
Mobile ad hoc networks for collaborative and mission-critical mobile
scenarios: a practical study. In Proceedings of the 2nd IEEE Interna-
tional Workshop on Coordination Models and Applications: Knowledge
in Pervasive Environments (CoMA), 2008.

[3] M. de Leoni, M. Mecella, and G. De Giacomo. Highly dynamic adap-
tation in process management systems through execution monitoring.
In The 5th Internation Conference in Business Process Management
(BPM’07), pages 182–197, 2007.

[4] P. Drucker. The Effective Executive. HarperCollins Publishers, 1993.

[5] M. Dumas, W. van der Aalst, and A. ter Hofstede. Process-Aware
Information Systems: Bridging People and Software Through Process
Technology. Wiley, 2005.

[6] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE
Transactions on Information Theory, IT-46(2):388–404, March 2000.

[7] T. Holmes, M. Vasko, and S. Dustdar. VieBOP: Extending BPEL
Engines with BPEL4People. In Proceedings of the 16th Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing (PDP 2008), pages 547–555, 2008.

[8] International Organization for Standardization. Human-centered De-
sign Processes for Interactive Systems. International Standards Orga-
nization, ISO Standard 13407:1999, 1999.

[9] A. Jardosh, E. BeldingRoyer, K. Almeroth, and S. Suri. Towards re-
alistic mobility models for mobile ad hoc networks. In Proceedings of
MobiCom, 2003.

26



[10] J. Jing, K. E. Huff, B. Hurwitz, H. Sinha, B. Robinson, and
M. Feblowitz. Wham: Supporting mobile workforce and applications
in workflow environments. In Proceedings of the Tenth International
Workshop on Research Issues on Data Engineering: Middleware for
Mobile Business Applications and E-Commerce (RIDE 2000), pages
31–38, 2000.

[11] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von
Riegen, P. Schmidt, and I. Trickovic. WS-BPEL Extension for People
- BPEL4People, 2005.

[12] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, and R. Morris. Capacity of
Ad Hoc Wireless Networks. In Proc. 7th International Conference on
Mobile Computing and Networking (MOBICOM 2001), pages 61–69,
2001.

[13] B. S. Manoj and A. Hubenko Baker. Communication Challenges in
Emergency Response. Communincation of ACM, 50(3):51–53, 2007.

[14] J. McEndrick. BPEL4People Advances toward the Main-
stream. Blog entry prompted on December 4th, 2008 at
http://blogs.zdnet.com/service-oriented/?p=1061., 2 2008.

[15] A. Neyem, S. F. Ochoa, and J. A. Pino. Integrating service-oriented
mobile units to support collaboration in ad-hoc scenarios. Journal of
Universal Computer Science, 14:88–122, 2008.

[16] N. Nicoloudis and D. Pratistha. .NET Compact Framework
Mobile Web Server Architecture. http://msdn2.microsoft.com/en-
us/library/aa446537.aspx, 2003. Prompted on June 8th, 2008.

[17] L. Pajunen and S. Chande. Developing workflow engine for mobile de-
vices. In Proceedings of 11th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2007), pages 279–286, 2007.

[18] N. Russell, W. M. P. van der Aalst, A. H. M. ter Hofstede, and D. Ed-
mond. Workflow resource patterns: Identification, representation and
tool support. In Proceedings of CAiSE, pages 216–232, 2005.

[19] R. Sen, R. Gruia-Catalin, and C. Gill. Cian: A workflow engine for
manets. In Proceedings of the 10th international conference on Coordi-
nation Models and Languages (Coordination’08), pages 280–295, 2008.

[20] R. Sternberg. Cognitive psychology. Wadsworth Publishing, 3rd edition,
2002.

[21] C. Wohlin and M. Höst. Controlled experiments in software engineering.
Information and Software Technology, 43:921–924, 2001.

27



Appendix – Proof of the Statement in Section 6.1

From the first assumption, we can say that, if the i-th node successes in
transmitting, then (i− 1)-th, (i− 2)-th, (i + 1)-th and (i + 2)-th cannot.

Let us name the following events: (i) Dn be the event of delivering a
packet in a chain of n links and (ii) Si

n be the event of delivering at the i-th
attempt.

Let us name Ti,n as the probabilistic event of delivering a packet in a
network of n links (i.e., n + 1 nodes) after i retransmissions 14.

For all n the probability of delivering after one attempt is the same as the
probability of deliver a packet: P (T1,n) = P (Dn). Conversely, probability
P (T2,n) is equal to the probability of not delivering at the first P (¬S1

n) and
of delivering at the second attempt P (S2

n):

P (T2,n) = P (S2
n ∩ ¬S1

n) = P (S2
n) · P (¬S1

n|S2
n) (3)

Since, for all i, events Si
n are independent and P (Si

n) = P (Dn), Equation 3
becomes:

P (T2,n) = P (S2
n) · P (¬S1

n) = P (Dn) · (1− P (Dn))

In general, the probability of delivering a packet to the destination node
after i retransmissions is:

P (Ti,n) = P (Si
n) · P (¬S

(i−1)
n ) · . . . · P (¬S1

n) =
= P (Dn) · (1− P (Dn))i−1 (4)

We can compute the average number of retransmissions, according to
Equation 4 as follows:

Tn =
∑∞

i=1 P (Ti,n) =
=

∑∞
i=1 P (Dn) · (1− P (Dn))i−1 = 1

P (Dn)
(5)

In a laboratory, all nodes are in the same radio range. Therefore, inde-
pendently on the nodes number,

P (Dlab
n ) = 1/n (6)

On the field, we have to distinguish on the basis of the number of links.
Up to 2 links (i.e., 3 nodes), all nodes interfere and, hence, just one node
out of 2 or 3 can deliver a packet in a time slot. So, P (Dfield

1 ) = 1 and
P (Dfield

2 ) = 1/2. For links n = 3, 4, 5, two nodes success: P (Dfield
n ) = 2/n.

For links n = 6, 7, 8, there are 3 nodes delivering: P (Dfield
n ) = 3/n. Hence,

in general we can state:

P (Dfield
n ) =

bn
3 c+ 1

n
(7)

14Please note this is different with respect to Si
n, since Ti,n implies deliver did not

success up to the i− 1-th attempt

28



By applying Equations 6 and 7 to Equation 5, we derive the number of
retransmission needed for delivering a packet:

T field(n) = n
bn

3
c+1

T lab(n) = n
(8)

Fixing the number of packets to be delivered, we can define a function f
that expresses the throughput in function of the number of sent packets.
If we have a chain of n links and we want to deliver a single packet from
the first to the last node in the chain, then we have altogether to send the
number n of links times the expected value for each link Tn. Therefore:

Qlab(n) = f(T lab(n) · n) = f(n2)
Qfield(n) = f(T field(n) · n) = f( n2

bn
3
c+1) (9)

From our laboratory experiments described in Section 6, as well as from
other theoretical results [12]), we can state f(n2) = α

nβ . By considering it
and Equations 9, the following holds:

Qlab(n)
f(n2)

=
Qfield(n)

f( n2

bn
3
c+1)

⇒ Qfield(n) = Qlab(n) · (bn
3
c+ 1

)β
2 (10)

29


