
A kinodynamic approach to task-constrained motion
planning

Giuseppe Oriolo
Pietro Peliti
Marilena Vendittelli

Technical Report n. 4, 2009

A kinodynamic approach
to task-constrained motion planning

Giuseppe Oriolo Pietro Peliti Marilena Vendittelli
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Ariosto 25, 00185 Roma, Italy

{oriolo,vendittelli}@dis.uniroma1.it, pepope@hotmail.it

Abstract

We consider the problem of planning collision-free motions for gen-
eral (i.e., possibly nonholonomic) redundant robots subject to task
space constraints. Previous approaches to the solution are based on the
idea of sampling and inverting the task constraint to build a roadmap
of task-constrained configurations which are then connected by simple
local paths; hence, task tracking is not enforced during the motion
between samples. Here, we present a kinodynamic approach based on
a motion generation scheme that guarantees continued satisfaction of
such constraint. The resulting randomized planner allows to achieve
accurate execution of the desired task without increasing the complex-
ity of the roadmap. Numerical results on a fixed-base manipulator and
a free-fying mobile manipulator are presented to illustrate the perfor-
mance improvement obtained with the proposed technique.

Keywords: redundant robots, kinodynamic planning, task space constraints.

1

1 Introduction

Task space constraints invariably arise in the practical operation of robotic
systems, both in service and industrial applications; examples include open-
ing a door, transporting an object, cooperating with other robots, executing
a given end-effector trajectory for drawing, cutting or welding, tracking a
visual target. Redundant robotic systems, such as humanoids and mobile
manipulators, posses the dexterity for accomplishing these tasks while pur-
suing additional objectives, among which the most important is obstacle
avoidance. A motion planner should be able to generate robot motions
that satisfy the task space constraints while guaranteeing that the robot
body does not collide with workspace obstacles or with parts of itself (self-
collision). In the following, this problem is referred to as Task-Constrained
Motion Planning (TCMP).

Earlier researchers attacked the TCMP problem as a special case of re-
dundancy resolution using either local or global optimization techniques;
see [1, 2, 3] for general reviews of optimization-based redundancy resolu-
tion. Both these approaches to TCMP proved to be unpractical for realistic
motion planning, the first due to the presence of local minima and the second
because it leads to a nonlinear TPBVP whose solution can only be seeked
(without guarantee of success) via numerical techniques.

To overcome these limitations, in [4] we applied the principles of random-
ized planning to develop a solution for the TCMP problem in the special
case of kinematically redundant fixed-base manipulators with end-effector
path constraints. In [5], this approach was extended to the case of non-
holonomic mobile manipulators. Along the same lines are the techniques
presented in [6], where a unified representation of task space constraints is
also proposed, and in [7]. A related problem is motion planning for closed
kinematics chains, in which the closure condition may be considered as a
task constraint; randomized techniques for this problem have been presented
in [8, 9, 10].

All the above randomized planning techniques are based on the idea of
sampling and inverting the task constraint to build a roadmap consisting
of task-constrained configurations; these are then connected by simple local
paths (typically, a linear local planner is used). Hence, task tracking is not
enforced during the motion between samples. A higher sampling rate in
the task space can reduce the tracking error at the price of an increased
complexity of the roadmap and, as a consequence, of the time needed to
solve the planning problem.

In this paper, a solution is proposed to the TCMP problem based on the
principle of kinodynamic planning [11, 12]. While this technique has been
typically used to comply with nonholonomic constraints, we apply it to com-
ply with a parametric holonomic constraint that represents the desired task
constraint. Using a motion generation scheme that guarantees continued

2

satisfaction of such constraint, we develop an RRT-based planner that al-
lows to achieve accurate execution of the desired task without increasing
the complexity of the roadmap. The proposed technique applies to general
robotic systems, that may also be subject to nonholonomic constraints.

The paper is organized as follows. Sect. 2 presents some background
material on task kinematics and redundancy concepts. The TCMP problem
is formulated in Sect. 3, while our motion generation scheme is introduced
in Sect. 4. The kinodynamic planner for solving the TCMP problem is
presented in Sect. 5. Numerical results are given in Sect. 6.

2 Task Kinematics and Redundancy

Consider a robotic system whose configuration q takes value in an nq-
dimensional configuration space Q. For convenience, q is partitioned as
(qT

a qT
b)T , where qa is na-dimensional and qb is nb-dimensional; accord-

ingly, it is Q = Qa × Qb. For the sake of generality, we allow that qa is
subject to nc nonholonomic constraints of the Pfaffian form

A(qa)q̇a = 0,

which may be rewritten in a geometric form [13] as

A(qa)q′a = 0, (1)

where q′a = dqa/ds and s is a path parameter (if s = t, a trajectory is
planned rather than a path). This description fits most robotic systems,
including fixed-base manipulators, wheeled or legged mobile robots, and
mobile manipulators.

The kinematic model of the system is expressed in geometric form as

q′ =

(
q′a
q′b

)
=

(
G(qa)ṽa

ṽb

)
(2)

where G(qa) is an na × (na − nc) matrix whose columns are a basis for the
null space of A(qa), ṽa is (na − nc)-dimensional, and ṽb is nb-dimensional.
This model entails the simple fact that the motion of the qa coordinates in
Qa is locally constrained, whereas the qb coordinates can move in arbitrary
directions of Qb. The tilde over the v’s is a reminder that these inputs
are geometric velocities, i.e., tangent vectors. The driftless system (2) is
controllable in view of the nonholonomy of the constraints (1).

Consider now a set of task coordinates t taking values in an nt-dimensional
space T . The task coordinates are related to the configuration coordinates
by the kinematic map

t = f(q). (3)

3

At the differential level, we have

t′ = Jf (q)q′ =
(

Jf ,a(q) Jf ,b(q)
)(q′a

q′b

)

where Jf (q) = df/dq, and using (2)

t′ =
(

Jf ,a(q)G(qa) Jf ,b(q)
)(ṽa

ṽb

)
= J(q)ṽ. (4)

Let n = nq − nc be the number of degrees of freedom of the robot. The
nt × n matrix J(q), simply called task Jacobian1 in the following, maps the
admissible instantaneous motions of the robot to the geometric velocities of
the task coordinates [14]. Typical tasks concern manipulation (end-effector
position and/or orientation) or perception (sensor pose or even features in
the sensing space, as in visual servoing).

In the presence of nonholonomic constraints, two kinds of redundancy
can be defined:

• static redundancy occurs when nq > nt (the number of configuration
coordinates exceeds the the dimension of the task);

• kinematic redundancy occurs when n > nt (the number of degrees of
freedom exceeds the dimension of the task).

These two concepts collapse in the absence of nonholonomic constraints
(e.g., for fixed-base manipulators), that implies n = nq. In general, kine-
matic redundancy implies static redundancy, whereas the converse is not
true; for example, a mobile manipulator consisting of a unicycle with a
rigidly attached gripper is statically but not kinematically redundant for
planar positioning tasks.

If the robot is statically redundant with respect to the task, the inverse
image q̄ = f−1(t̄) of a certain point t̄ in the task space may be either (a) an
(nq − nt)-dimensional subset of C, consisting of one or more disjoint mani-
folds, or (b) a finite number of configurations [15]. In particular, task points
of the first group include regular points and coregular points (avoidable sin-
gularities), whereas the second group consists of singular points (unavoidable
singularities).

3 The TCMP Problem

Consider a robotic system in the form (2) that is kinematically redundant
for the task of interest, related to the configuration variables by eq. (3).

1Some elements of J , however, are not partial derivatives, due to the embedded non-
holonomic constraint.

4

task constraint

leaves of C
task

L(t
d
(0))

t
d
(0)

t
d
(1)

L(t
d
(1))

Figure 1: The task-constrained configuration space Ctask is a foliation

Assume that a desired path is assigned for the task variables t in the form
td(s), with s ∈ [0, 1] the path parameter, and that td(s) is differentiable.
For the problem to be well-posed, we assume that:

td(s) ∈ Treg, ∀s ∈ [0, 1],

where Treg ⊂ T is the regular task space, defined as the set of regular task
space points (whose inverse image does not contain singular points). The
workspaceW (a subset of IR2 or IR3 depending on whether we are considering
planar or spatial motions) is populated by obstacles.

The Task-Constrained Motion Planning (TCMP) problem consists in
finding a path q(s) in the configuration space such that:

1. t(s) = td(s), ∀s ∈ [0, 1];

2. the robot does not collide with obstacles or with itself.

Note the following points:

• The planning space for the TCMP problem is

Ctask = {q ∈ C : f(q) = td(s), for some s ∈ [0, 1]}.

Ctask, called task-constrained configuration space in the following, has
naturally the structure of a foliation (see Fig. 1), whose generic leaf is
defined as

L(s) = {q ∈ C : f(q) = td(s)}.

5

• A solution to the TCMP problem may exist or not depending on the
obstacle placement, and in particular on the connectivity of Ctask ∩
Cfree, the portion of the free configuration space that is compatible
with the task path constraint.

• Depending on the application, an initial joint configuration q(0) such
that t(0) = td(0) may or may not be assigned. For example, the
first is the case when the task trajectory is planned on the basis of
sensory information gathered at the current robot posture. On the
other hand, the determination of q(0) will be typically left to the
planning algorithm when the task is assigned off-line. The first version
of the problem is clearly more constrained (and thus easier to solve,
provided that a solution exists) than the second. In the rest of the
paper, we assume that q(0) is not assigned.

4 Motion Generation

The kinodynamic planner that is presented in this paper relies on the fol-
lowing motion generation scheme:

q′ =

(
G(qa) 0

0 I

)
ṽ (5)

ṽ = J†(q)(t′d + k et) + (I − J†(q)J(q))w̃, (6)

where J† is the pseudoinverse of J , k is a positive gain, et = td − t is the
task error, I − J†J is the orthogonal projection matrix in the null space of
J , and w̃ is an arbitrary n-vector. Note that J† = JT (JJT)−1, because J
is always full row rank in the hypotheses of the TCMP problem.

Substituting the above expression of ṽ in (4) one obtains e′t = −k et,
i.e., asymptotically stable2 tracking of the desired task path. Therefore, as
w̃ varies, the solution of the differential equation (5–6) initialized on Ctask

provides all configuration paths satisfying the task constraint.
Starting from a generic leaf of Ctask, integration of (5–6) allows to obtain

a configuration path lying on the subsequent leaves. One may also move
backwards in s (i.e., on the previous leaves), by using −t′d in place of t′d,
or move on the same leaf, setting t′d = 0. A numeric solver can be used to
actually perform the integration.

5 TCMP via Kinodynamic Planning

This section describes the strategy used to search the task-constrained con-
figuration space Ctask of the redundant system for a collision-free path. The

2Asymptotic stability is essential in reducing the drift that is invariably associated to
a numerical integration of (5–6).

6

TCMP KINO
1 i← 0;
2 qinit ← INV KIN(t1);
3 T.init(qinit);
4 repeat
5 i← i + 1;
6 qrand ← RAND CONF;
7 (tnew, qnew)← EXTEND(T, qrand);
8 if tnew!=NULL
9 if tnew = tN

10 Lgoal = L1;
11 else
12 Lgoal = LN ;
13 P=SHORTEST PATH(qnew, Lgoal, T);
14 else P=NULL;
15 until P!=NULL or i = MAX IT
16 if P!=NULL return P;
17 else return FAILURE;

Figure 2: The TCMP KINO algorithm.

main ingredient is a randomized kinodynamic planner based on the construc-
tion of a Rapidly-exploring Random Tree (RRT) evolving in Ctask [12, 16, 17].
For the construction of the tree, we make use of samples of the desired task
path td(s); in particular, denoting by {s1 = 0, s2, . . . , sN = 1} an equispaced
sequence of path parameter values, let tk = td(sk) (note that we drop the
d subscript for compactness). The tree edges are collision-free paths ob-
tained by applying the motion generation scheme (5–6) starting from the
tree nodes, that lie on the leaves Lk = L(tk), for k = 1, . . . , N .

A pseudocode description of the algorithm is given in Fig. 2. A collision-
free configuration qinit lying on L1 is first generated by calling the function
INV KIN with argument t1 (line 2). This configuration is then used to ini-
tialize the tree T (line 3). On line 4 the algorithm enters the main cycle
(lines 4–15) in which it tries to extend T so as to connect L1 to LN with a
collision-free path in Ctask. Each iteration proceeds by first generating a ran-
dom configuration qrand (line 6) and then calling the EXTEND procedure
(line 7) to extend the tree towards qrand. If L1 or LN are reached by EX-
TEND, the procedure returns the corresponding configuration. In this case,
T is searched for an optimal path from L1 to LN . The loop is repeated until
either a path is found from L1 to LN or the maximum number of attempts
MAX IT has been reached.

The core of the algorithm is the EXTEND procedure shown in Fig. 3.
Given the current T and the configuration qrand, the procedure determines
the nearest node qnear to qrand in T and the associated leaf index k (line 1).
The tree T is then extended using the motion generation scheme (5–6) from
qnear, that lies on Lk, to perform a forward motion towards Lk+1, a backward

7

EXTEND(T, qrand)
1 (qnear, k)← NEAREST NODE(T, qrand);
2 qfw ← FM(qnear);
3 if VALID(qfw) and FREE PATH(qnear,qfw)
4 T.add node(qfw);
5 T.add edge(qnear, qfw);
6 if tk+1 = tN return tk+1, qfw;
7 qbw ← BM(qnear);
8 if VALID(qbw) and FREE PATH(qnear,qbw)
9 T.add node(qbw);
10 T.add edge(qbw, qnear);
11 if tk−1 = t1 return tk−1, qbw;
12 qself ← SM(qnear);
13 if VALID(qself) and FREE PATH(qnear,qself)
14 T.add node(qself);
15 T.add edge(qnear, qself);
16 return NULL;

Figure 3: The EXTEND procedure.

motion towards Lk−1 and a self-motion on Lk (respectively lines 2, 7, 12). In
particular, the first is obtained by forward integration of (5–6) on the interval
[sk, sk+1] and produces an edge leading to a configuration qfw on Lk+1; the
second is obtained by backward integration on the interval [sk, sk−1] and
produces an an edge leading to a configuration qbw on Lk−1; and the third
is obtained by integrating on [sk, sk+1] with t′ = 0 and produces an edge
leading to a configuration qself on Lk.

Fig. 4 shows the three subpaths generated by the extension of qnear.
Note that the task constraint is satisfied along these paths in view of the
use of the motion generation scheme (5–6). The paths are added as edges to
T if they are not in collision with the obstacles. The dashed arrow from qbw

to qnear indicates that the edge is reversed before storing it in T ; in fact,
the path parameter s should monotonically increase along a valid solution
path3.

Different choices of the vector w̃ are possible in generating forward,
backward and self-motions with (5–6). Among the various possibilities we
mention: (1) a random choice with an upper bound on the vector norm;
(2) a random choice within a finite set of motion primitives; (3) an optimal
choice within a finite set of motion primitives with respect to a predefined
criterion (for example, the distance to qrand, the manipulability index [18]
or the task compatibility index [19]).

The EXTEND procedure terminates if either LN or L1 has been reached
(respectively, lines 6 and 11). If this is not the case, the procedure will be
called again until the maximum numbers of attempts has been reached.

3Here, we are exploiting the fact that system (5–6) is symmetric.

8

L
k!1

L
k+1

t
k

L
k

t
k+1

t
k!1

q
near

q
fw

q
bw

q
self

Figure 4: An extension step.

Note that, particularly in the early stages of planning, L1 can be reached
before a connection to LN has been created. This event causes the EXTEND
procedure to terminate even if a path from LN to L1 does not exist. On the
other hand, when a node belonging to LN is reached, a connection exists
between L1 and LN , but it is not guaranteed that the path parameter s is
monotonically increasing along this path. In these cases, the path search
will simply fail and the planning phase will resume. It is easy to show that,
in view of the structure of the algorithm, path search can be performed by
considering a single start (on either LN or L1) and multiple goals (all the
nodes on either L1 or LN).

6 Results

The algorithm TCMP KINO has been implemented in Move3D [20], a soft-
ware platform developed at LAAS-CNRS and dedicated to motion plan-
ning4. In this section we present preliminary results obtained by applying
the proposed planning method to a fixed-base manipulator and to a robot
with a free-flying base. All the reported experiments have been performed
on a Dual Core Pentium 4 3GHz with 1GB RAM under the Linux Red Hat
8 OS.

The first two experiments have been performed on the DLR Light Weight
Robot, a dextrous manipulator with 7 revolute joints. The task is to follow
an assigned path for the position of the end-effector. In both the experi-
ments, the last three degrees of freedom (the wrist) are blocked; the degree

4Move3D is at the origin of the product KineoWorks currently marketed by the com-
pany Kineo CAM (www.kineocam.com).

9

of redundancy is therefore equal to 1. To better evaluate the practical im-
provement introduced by the proposed strategy, we have solved two planning
problems of increasing difficulty and compared the results obtained by using
the TCMP KINO planner and the RRT LIKE planner developed in [4], an
RRT-based strategy that uses a linear local planner. The reported results
(averaged on ten realizations of the planning process) have been obtained
with a random generation of w̃ and by using a simple Eulero algorithm,
with integration step ∆s = 0.0025, to generate motion with (5–6).

The first planning experiment is illustrated in Fig. 5. The given end-
effector path is a straight segment, of length equal to 120 cm, passing
through the window placed in front of the manipulator. The first two lines
of the table in Fig. 5 report the data obtained by using N = 10 task path
samples for both TCMP KINO and RRT LIKE. With this choice, the dis-
tance between the samples along the path is about 13 cm. Average running
time was less than 1 second for both TCMP KINO and RRT LIKE. The
values of both the mean and the maximum tracking error obtained with
the kinodynamic approach are smaller by almost two orders of magnitude
than those obtained by using an RRT planning strategy with a linear local
planner. This improvement in accuracy is obtained without a significant
increase in the complexity (number of nodes) of the tree.

The performance of the RRT LIKE planner in terms of the tracking error
can be improved by increasing the number of path samples. The third line
of the table in Fig. 5 reports the results obtained with N = 100. These data
show that the limited improvement in the tracking error (that is however
larger than the error obtained by using TCMP KINO with N = 10) is
balanced by a severe degradation of the planner performance in terms of
tree complexity and running time (about 17 sec).

In the second planning problem (see Fig. 6) the path and the window
were moved further right w.r.t. the base of the manipulator. This reduces
the measure of Ctask, generating a narrow passage in Ctask ∩ Cfree that com-
plicates the search of a collision-free path satisfying the task constraint.
The reported results have been obtained by using N = 10 task path sam-
ples for TCMP KINO and N = 100 for RRT LIKE. The path is about
85 cm long, so that the distance between the path samples is about 9 cm
for TCMP KINO and 0.9 cm for RRT LIKE. As in the first experiment,
the kinodynamic strategy gives better results in terms of tracking accuracy,
which is comparable to that of the first experiment. The similar complexity
of the final trees (strictly related to the running time, which was about 15
sec for both planners) is due to the intrinsic difficulty of the problem. Com-
parison with the first experiment shows that the complexity of the tree built
by TCMP KINO depends only on the difficulty of the planning problem. It
is expected, however, that the use of heuristics for choosing w̃ will further
improve the performance of TCMP KINO in terms of tree complexity.

The last experimental scene is reported in Fig. 7. A 4-dof robot on a

10

Planner Mean Error Max Error # nodes
TCMP KINO (N = 10) 0.0168 cm 0.0754 cm 91.7
RRT LIKE (N = 10) 0.6649 cm 2.9790 cm 68.2
RRT LIKE (N = 100) 0.1149 cm 1.5371 cm 1179.2

Figure 5: First planning experiment on the DLR Light Weight Robot:
comparison between TCMP KINO, with N = 10 path samples, and
RRT LIKE [4] with N = 10 and N = 100.

3-dof free-flying base has to follow a 33 m path with its end-point inside
a pipe of variable radius. The averaged results have been obtained with a
random choice of the vector w̃ and a number of path samples N = 10. The
Eulero integration step used to generate motion with (5–6) has been set
to ∆s = 0.01. The mean and maximum errors were equal respectively to
0.0386 cm and 0.3223 cm, while the number of nodes in the tree was 99.6.
The averaged running time was about 2 seconds.

Overall, our numerical results indicate that the TCMP KINO outper-
forms the RRT LIKE algorithm both in terms of tracking error and in terms
of complexity. Even better (in principle, arbitrary) accuracy can be obtained
by using a higher order integration algorithm without increasing the com-
plexity of the tree. Hence, the running time of TCMP KINO nicely scales
with the complexity of the planning problem, independently of the accuracy
required by the task tracking. Videos of the experiments are available at

11

Planner Mean Error Max Error # nodes
TCMP KINO (N = 10) 0.0098 cm 0.0436 cm 834.6
RRT LIKE (N = 100) 0.1479 cm 0.8608 cm 1058.9

Figure 6: Second planning experiment on the DLR Light Weight Robot:
comparison between TCMP KINO with a number of path samples N = 10
and RRT LIKE with N = 100.

http://www.dis.uniroma1.it/labrob/research/TCMP.html.

7 Conclusion

We have presented a randomized kinodynamic technique for solving the
Task-Constrained Motion Planning problem in redundant robotic systems,
possibly subject to nonholonomic constraints. At the core of our method
is a motion generation scheme that guarantees continued satisfaction of the
task constraint, allowing to achieve accurate execution of the desired task
without increasing the complexity of the roadmap. Preliminary results are
very encouraging and confirm the performance improvement obtained with
the proposed technique.

Future work will address several points, among which we mention:

• a careful study of the most convenient heuristics for choosing w̃ in the
motion generation scheme;

12

Figure 7: Third planning experiment: a 7-dof robot with free-flying base
moving its end-point along an inspection path inside a variable radius pipe.

• an optimization of the collision checking procedure, currently per-
formed on each configuration created by the motion generation scheme;

• the application of the planner to more complex robotic structures, such
as humanoids.

Finally, in view of some preliminary analysis as well as of the obtained
results, we conjecture that the probabilistic completeness of the RRT algo-
rithm is preserved in our planning scheme, despite the fact that the con-
struction of the tree takes place in the task constrained space Ctask. Future
work will be aimed at devising a formal proof of this conjecture.

References

[1] B. Siciliano, “Kinematic control of redundant robot manipulators: A
tutorial”, J. of Intelligent and Robotic Systems, vol. 3, pp. 201–212,
1990.

[2] D. P. Martin, J. Baillieul, and J.M. Hollerbach (1989), “Resolution of
kinematic redundancy using optimization techniques,” IEEE Trans. on
Robotics and Automation, vol. 5, pp. 529–533, 1989.

13

[3] S. Chiaverini, G. Oriolo and I. Walker, “Chapter 11: Kinematically re-
dundant manipulators,” in Handbook of Robotics, O. Khatib and B. Si-
ciliano (Eds), Springer, 2009.

[4] G. Oriolo, M. Ottavi, and M. Vendittelli, “Probabilistic motion plan-
ning for redundant robots along given end-effector paths,” 2002 IEEE
Int. Conf. on Intelligent Robots and Systems, vol. 2, pp. 1657–1662,
2002.

[5] G. Oriolo, C. Mongillo, “Motion planning for mobile manipulators along
given end-effector paths,” 2005 IEEE Int. Conf. on Robotics and Au-
tomation, pp. 2166–2172, 2005.

[6] M. Stilman, “Task constrained motion planning in robot joint space,”
2007 IEEE Int. Conf. on Intelligent Robots and Systems, pp. 3074–
3081, 2007.

[7] Z. Yao and K. Gupta, “Path planning with general end-effector con-
straints: Using task space to guide conguration space search,” 2005
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1875–
1880, 2005.

[8] L. Han and N. Amato, “A kinematic-based probabilistic roadmap
method for closed chain systems,” 4th Int. Work. on Algorithmic Foun-
dations of Robotics, pp. 233–246, 2000.

[9] J. Yakey, S. M. LaValle and L. E. Kavraki, “Randomized path
planning for linkages with closed kinematic chains,” IEEE Trans. on
Robotics and Automation, vol. 17, no. 6, pp. 951–958, 2001.

[10] J. Cortes, T. Simèon, and J. P. Laumond, “A random loop generator for
planning the motions of closed kinematic chains using PRM methods,”
2002 IEEE Int. Conf. on Robotics and Automation, pp. 2141–2146,
2002.

[11] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM, vol. 40, no. 5, pp. 1048–1066, 1993.

[12] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, 2001.

[13] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modeling,
Planning and Control, Springer, London, 2009.

[14] A. De Luca, G. Oriolo, P. Robuffo Giordano, “Image-based visual ser-
voing schemes for nonholonomic mobile manipulators,” Robotica, vol.
25, no. 2, pp. 129–145, 2007.

14

[15] J. Burdick, “On the inverse kinematics of redundant manipulators:
Characterization of the self motion manifolds,” 1989 IEEE Int. Conf.
on Robotics and Automation, pp. 264–270, 1989.

[16] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., Computer Science Dept., Iowa State University,
1998.

[17] S. M. LaValle, Planning Algorithms, Cambridge University Press, 2006.

[18] Y. Nakamura, Advanced Robotics: Redundancy and Optimization,
Addison-Wesley, 1991.

[19] S. Chiu, “Task compatibility of manipulator postures,” The Interna-
tional Journal of Robotics Research, vol. 7, no. 5, pp. 13-21, 1988.

[20] T. Simeon, J.-P. Laumond, and F. Lamiraux, “Move3d: A generic plat-
form for path planning,” 4th Int. Symp. on Assembly and Task Plan-
ning, pp. 25–30, 2001.

15

