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Abstract

In this paper we formulate and solve the mutual localization prob-
lem for a multi-robot system under the assumption of anonymous rela-
tive position measures. The anonymity hypothesis can cause a combi-
natorial ambiguity in the inversion of the measure equation giving more
than one possible solution to the problem. We propose MultiReg, an
innovative algorithm aimed at obtaining sets of possible relative pose
hypotheses, whose output is processed by a data associator and a mul-
tiple EKF to select the best hypothesis. We study the performance
of the developed localization system using both simulations and real
robot experiments.
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1 Introduction

In this paper we formulate and solve mutual localization (ML) problems for a
multi-robot system. ML problems assume great importance in decentralized
tasks that use data fusion, such as decentralized cooperative map-building,
formation control and cooperative tracking. Accuracy of the estimates of
the change of coordinates can significantly affect the quality of the execution
of the task.

We refer to relative mutual localization (RML) as the problem of estimat-
ing the pose of a robot in the frame attached to another robot. Assuming
that each robot has its own fixed frame in which it expresses its configuration
and measures, we can also define absolute mutual localization (AML), i.e.,
the problem of estimating the change of coordinates between fixed frames
of different robots. If each robot is self-localized in its own fixed frame, the
solution of a problem can be obtained from the solution of the other by
simple changes of coordinates.

Previous works usually address the problem of cooperative localization
(CL) of robots in a common1 fixed frame or the RML problem, while, to the
best of our knowledge, no researchers have directly investigated the AML
problem. In these works, two different classes of approaches are used: i)
filter-based approaches, that use Extended Kalman Filters (EKF) or particle
filters to dynamically estimate changes of coordinates from measures; ii)
geometry-based approaches, that use geometric relationships to attempt an
instantaneous inversion of the mapping between changes of coordinates and
measures.

In most of the early filter-based approaches, like in [1, 2, 3, 4], the RML
problem is solved by filtering out the noise from the output of a vision-based
sensor that measures directly the relative poses between robots; at the same
time, the filter is used to solve the CL problem. In other works, the filter
was also used to reconstruct a part of the change of coordinates, like in
[5], where relative range-only measures, obtained by the use of a combined
RF/ultrasonic sensor, is used; in [6], where an extension of [1] was presented
for various sensing equipments; and in [7], where a more detailed analysis is
performed for range-only measurement.

As for geometry-based approaches, some papers investigate the solvabil-
ity of the problem of estimating the relative positions of robots in a formation
by range-only measures [8, 9], or bearing-only measures [10]. For example,
in case of position (bearing plus range) relative measurements, it is possible
to obtain the relative pose of a robot respect to another by simply processing
two bearing and one range measure [11].

An important limitation of all the above methods is their assumption
1 The idea of a common fixed frame presumes a certain degree of centralization, because

it is necessary that robots share some information at the beginning of the task.
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that the relative measures come with the ID of the measured robot, i.e.,
the identity of the measured robots is known. In fact, interesting situations
that may occur in practice are: i) the identities of the measured robots is
not known (anonymous measures), ii) false positives and iii) false negatives
occur in the relative position measurement process. The first and the second
situation fit, for example, robot measurement systems based on a feature ex-
traction module that looks for characteristics that are common to all robots
and may also be found in other objects: for example, this happens when
the robots and some obstacle in the environment have the same size, color,
or shape, either by chance or by hostile camouflage. The third situation
accounts for the fact that robots in sensor range may not be sensed, e.g.,
due to occlusions.

A pioneering work that addresses the anonymous measure RML prob-
lem with a geometry-based approach is [12], in which an algorithm that uses
geometrical properties of triangles is presented to obtain relative pose esti-
mates from anonymous bearing measurements. The omnidirectional sensor
hypothesis, however, can prevent the application to real world environments
because it prevents the use of a wide class of sensors that cannot get mea-
surements behind obstacles, such as range finders.

In this paper we address RML and AML problems with anonymous
measures affected by false positives and negatives, as formalized in Sect. 2.
The localization system architecture is explained in Sect. 3. Our approach
solves the RML problem with a geometry-based algorithm (Sect. 4) whose
output is used to solve the AML problem with a multiple EKF (Sect. 5).
Experimental results are presented in Sect. 6.

2 Problem Setting

We take the following assumptions:

A1. The multi-robot system A includes n robots A1, . . . ,An, where n > 2
is unknown2. The robots move in R2. We denote with I the index set
{1, . . . , n}.

A2. The configuration of robot Ai is xi = (pT
i , θi)T , where pi ∈ R2 and

θ ∈ S1 are respectively the cartesian coordinates of a representative
point of the robot and the robot orientation, expressed in a certain
frame. In particular each Ai has two associated frames: a fixed frame
FI and a moving frame Fi. The latter is attached to the robot: its
origin is at pi and its orientation coincides with θi. Throughout the
paper, we denote by atb, a = i, I, b = j, J the 3-vector describing
the position and orientation of Fb with respect to Fa. From atb, it

2Case n = 2 is trivial because anonymity disappears.
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is immediate to build the change of coordinates from Fb to Fa. Note
that atj = axj , i.e., the configuration of Aj expressed in Fa.

A3. Each Ai comes with an independent self-localization module that pro-
vides an estimate I x̂i of Ixi.

A4. Each Ai is equipped with a robot detector, a sensor device that mea-
sures the relative position ipj of other robots provided that they belong
to a perception set Dp which depends on xi (typically, it is ‘centered’
at pi and ‘oriented’ as θi).

A5. Each Ai has a communication module that can send/receive data
to/from any other robot Aj that belongs to a communication set Dc,
that is a ball centered at pi. Each message sent by Ai contains: i)
the robot ID; ii) the estimate I x̂i as provided by the self-localization
module; iii) the relative position of other robots as measured by the
robot detector. We assume that Dp ⊆ Dc, so that if Ai can measure
the relative position of Aj it can also communicate with it.

The relative position measures provided by the robot detector are anony-
mous, in the sense that they do not include the ID of the detected robot.
This is true, for example, when the robot detection process relies on features
that are identical in the robots of the team. The robot detector is also prone
to false positives, in the sense that it can be deceived by objects that look
like robots. Moreover, false negatives may also occur: this is the case of a
robot belonging to Dp which is not detected, e.g., due to a line-of-sight oc-
clusion. For all these reasons, the measures coming from the robot detector
will be generically referred to as features.

In the above framework, the absolute mutual localization problem for the
i-th robot is the estimation of ItJ for j ∈ I, j 6= i. Note that anonymity of
the relative position measure is a major problem.

3 System Architecture

The mutual localization system running on Ai is shown in Fig. 1. We denote
with Ci[k] ⊂ A the set of robots from which Ai receives data in the time
interval [tk−1, tk). The system is composed by a cascade of two subsystems.
The first is a memoryless registration algorithm called MultiReg. At each
update step k it receives in input a certain number of feature sets: one set is
provided directly by the robot detector, while others come from the robots
in Ci[k] through the communication module. The output of MultiReg is a
sets of hypotheses on the relative pose ixj for each Aj ∈ Ci[k]. The second
subsystem (DAEKF) is a variable-size array of components, one for each
Aj ∈ ∪k

h=1C[h], consisting of a data associator and a multi-EKF (DAEKFj).
The input of DAEKFj at the step k is the set of current hypotheses on
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Figure 1: A scheme of the mutual localization system that runs on Ai.

ixj . At the same time each DAEKFj also receives the estimates I x̂i and
J x̂j , respectively from the self-localization and the communication module.
At each step k the output of the overall localization system is a set of of
hypotheses for ItJ for each Aj ∈ ∪k

h=1Ci[h]. The number of hypotheses in
each set changes as the localization go on.

4 Relative Pose Guessing with MultiReg

MultiReg is restarted at each step k by the generic robot Ai to perform a
multiple registration among the set of features measured, at the same step
k, by Ai and by each robot Aj ∈ Ci[k], in order to estimate the changes
of coordinates between their attached frames. It uses a binary registration
subroutine based on RANSAC paradigm [13], however it works with every
binary registration algorithm.

We call observation a pair O := (F,A), where F is a finite set of features
and A ⊂ F × I is a functional relation on F × I. Given f ∈ F we denote
with A(f) := {i ∈ I| (f, i) ∈ A} and ∀i ∈ I we denote with A(i) := {f ∈
F | (f, i) ∈ A}. Functional means that |A(f)| ≤ 1, where | · | denotes the
cardinality of a set. We denote by A(F ) := ∪f∈F A(f) the set of indexes
of O and by A(I) := ∪i∈IA(i) the set of features of O associated to any
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index. This abuse of notation will be used throughout the paper. A feature
f is called anonymous when A(f) = ∅, i.e., f 6∈ A(I). Two observations
O1 = (F1, A1) and O2 = (F2, A2) are independent if they relate at least
one common feature to two different indexes, that is ∃f ∈ A1(I) ∩ A2(I)
such that A1(f) 6= A2(f), or if two different features are related to the
same index, that is ∃f1 ∈ A1(I), f2 ∈ A2(I), with f1 6= f2, such that
A1(f1) = A2(f2). Given a change of coordinates T and a set of features F
we can write T (F ) = {q ∈ R2|∃f ∈ F : T (f) = q}.

Each robot detector provides an observation in which all features are
anonymous, except for the feature (0, 0) associated to the ID of the measur-
ing robot; this is called raw observation.

4.1 RANSAC-based binary registration

Given two observations O1 = (F1, A1) and O2 = (F2, A2), such that3 A1(F1)∩
A2(F2) = ∅, consider a candidate change of coordinates T between the two
associated frames. A binary relation B ⊂ F1 × F2 is associated to T as fol-
lows: (f1, f2) ∈ B ⇔ ‖f1−T (f2)‖ ≤ δ, where δ is a certain fitting threshold.
The elements of B(F1) and B(F2) are the inliers of F2 and F1 respectively.
The cardinality of B, denoted by |B|, is the number of inliers.

Given δ > 0 and µ > 0, a binary registration of O1, O2 is a complete
algorithm for finding a change of coordinates T such that the associated B
is left- and right-unique, and satisfies: i) |B| ≥ µ and ii) |A(f1) ∪A2(f2)| ∈
{0, 1} ∀(f1, f2) ∈ B. The first condition is a constraint on the minimum
number of inliers (note that |B| = |B(F1)| = |B(F2)|). The second states
that, for any pair of features f1, f2 that are related by B, either f1 or f2 (or
both) must be anonymous. In fact, being A1(F1) ∩ A2(F2) = ∅, a ‘double’
assignment would certainly represent a conflict.

In view of the fact our multiple registration algorithm uses a binary
registration as an essential tool, it is convenient to define a new observation
O12 = (F12, A12) where F12 = F1 ∪ T (F2) and A12 ⊂ F12 × I is such that

A12(f) =


A1(f) if f ∈ A1(I)
A2(f) if f ∈ A2(I)
A1(f) ∪A2(B(f)) if f ∈ B(F2)
A1(B(f)) ∪A2(f) if f ∈ B(F1)
∅ otherwise

for any f ∈ F12. For our purposes, the output of the algorithm (called
solution in the following) is the triple (T,O12, |B|).

Clearly, for a given pair of observation there could exist more than a solu-
tion. Two solution are said independent if their corresponding observations

3As it will be clear in the following, this assumption is always satisfied in our multiple
registration algorithm.
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inputs
O1 = (F1, A1), O2 = (F2, A2) 2 observations
parameters
I max. number of iterations
δ fitting threshold
µ min. number of inliers

variables
T change of coordinates
O12 observation
B relation of inliers
D equidistant pairs of features
(fa

1 , f b
1 , fa

2 , f b
2) pairs of features

output
R(O1, O2) = {. . . , (O12j , Tj , vj), . . .} set of solutions

algorithm

1. R(O1, O2) = ∅

2. D = {(q, r, s, t) ∈ F1 × F1 × F2 × F2 : ‖q − r‖ − ‖s− t‖ ≤ 2δ}

3. while h ≤ I and D 6= ∅

a. extract randomly and without repetitions (fa
1 , f b

1 , fa
2 , f b

2) from D

b. compute the change of coordinates T that aligns the segment fa
2 f b

2 with the
segment fa

1 f b
1 and overlaps their middle points

c. compute relation B from T and δ

d. if |B| ≥ µ then

i. compute observation O12 from B and T

ii. add (T,O12, |B|) to R(O1, O2)

4. return R(O1, O2)

Table 1: RANSAC-based binary registration algorithm

are independent. In the following is assumed that the binary registration
algorithm returns a set of independent solutions.

The combinatorial essence of the problem suggests the use of probabilis-
tic techniques, while the presence of outliers (i.e., features observed by only
one robot) calls for a robust estimation paradigm. We chose RANSAC be-
cause is has both this properties. Our implementation (see Table 4.1) follows
from algorithm presented in [14] for a binary lidar scan registration.

4.2 Multiple registration

At each perception step k, each Ai executes MultiReg on the set Ω com-
posed by its own raw observation Oi and the raw observations of the robots
belonging to Ci[k]. In view of the fact that MultiReg is a memoryless al-
gorithm, for compactness we omit in its description the symbol [k]. Denote
with IC

i the set of indexes of Ci, therefore Ω = {. . . , Oj , . . .}j∈IC
i ∪{i}

, where

7



inputs
Ω = {. . . , Oj , . . .}, with Oj = (Fj , Aj) |Ci|+ 1 raw observations

variables
ix̄jl = (. . . , ix̄jhl, . . .) partial solution at the l-th iteration
Õl partial registered observation at the l-th iteration
Ul ⊆ IC

i indexes of the unregistered observations at the l-th iteration

output
X(Ω) = {. . . , ix̄js, . . .} set of solutions (in shared memory)

algorithm

1. ix̄j0 = (03, . . . ,03), U0 = {1}, X(Ω) = ∅

2. for l=1 to |C|

a. Γ =
⋃

O∈ΩUl−1
R(Õl, O)

b. Γ∗ = {γ = (xγ , oγ , vγ) ∈ Γ | vγ = maxv Γ} ⊆ Γ; this is the subset of Γ of
elements that maximize the number of inliers

c. compute the maximal subset of independent solutions Γ̃ ⊆ Γ∗

d. perform a least square estimation for every γ ∈ Γ̃, substituting xγ with that
minimizing the mean square error among the inliers and recomputing oγ

accordingly

e. fork ∀γ ∈ Γ̃ with

i. Õl = oγ ;
ii. ix̄jh = (ix̄2(l−1), . . . ,

ix̄|C|(l−1))
iii. ix̄hl = xγ

iv. Ul = Ul−1 ∪ {s} where s is the index of the raw observation added in γ

3. X(Ω) = X(Ω) ∪ σn

Table 2: MultiReg algorithm

Oj = (Fj , Aj). As stated before it results |Aj(Fj)| = 1, ∀j ∈ IC
i ∪ {i}, and⋂

j∈IC
i ∪{i}

Aj(Fj) = ∅. We set Ωj = Ω\Oj and, for any C̄ ⊆ Ci ∪ {Ai} with
indexes Ī, we set ΩC̄ =

⋂
j∈Ī Ωj .

MultiReg output is a finite set X(Ω) = {. . . , ix̄j , . . .} where ix̄j =
{. . . , ix̄jh, . . .}j∈IC

i
, whose generic element ix̄jh is a hypothesis on itj . Mul-

tiReg executes |Ci| iterations and at the end of each iteration, if necessary,
it forks (possibly more than one time) copying itself and its own memory,
and executes the next iteration with some different variables.

Step 1 initialize the first iteration (see Table 4.2). At step 2a , during the
l-th iteration, |Ci| − l binary registrations R(ol, O) are performed between
the observation so far obtained, ol, and the raw observations O ∈ ΩUl−1

.
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Their solutions γ are stored in Γ. At step 2b the solutions with the maximum
number of inliers are stored in Γ∗, and at step 2c Γ̃ is computed, that is the
maximal subset of Γ∗ of independent solutions. This is a key step because
it guarantees the algorithm completeness. In fact two independent solution
are always found in two different branches of the algorithm tree. At step 2d
the estimated change of coordinates xγ ∈ γ is tuned, ∀γ ∈ Γ̃, minimizing
the mean square error of the inliers pairs. This is done by the use of the
algorithm in [15]. At step 2e MultiReg forks in |Γ̃| branches, one for each
γ ∈ Γ̃. Variables are consistently updated. Each branch of the algorithm
ends at its n-th iteration queuing its solution to X(Ω), which is the only
variable shared by all branches.

5 Data Association and Extended Kalman Filter

For bta = (bp
T
a , bθa)T define the matrix

S(bta) :=

 R(bθa) 02
bpa

0T
2 1 bθa

0T
2 0 1

 ,

where R(bθa) is the rotation matrix associated to bθa. Since bti = bxi, ItJ
can be expressed as

ItJ = NS(Ixi[k])S(ixj [k])S−1(Jxj [k])(0T
3 1)T (1)

where N = (I3 03) is a selection matrix.
At the step k, the DAEKF subsystem running on robot Ai is composed

by an array of | ∪k
h=1 Ci[h]| components (see Fig. 1). Each component is

associated to a robot Aj ∈ ∪k
h=1Ci[h] and it estimates ItJ . At step k its

inputs are:

1. The estimates provided by the self-localization modules
J x̂j [k] = Jxj [k] + Jwj [k]
I x̂i[k] = Ixi[k] + Iwi[k] ,

where Jwj [k] and Iwi[k] are gaussian noises with zero mean and co-
variances JQ̂j [k] and IQ̂i[k]. Note that J x̂j [k] is available provided
that Aj ∈ Ci[k];

2. The set of hypotheses about the relative pose ixj [k]
ix̄j [k] = {. . . , ix̄jh[k], . . .} ,

provided by MultiReg. Here, ix̄jh[k] is a gaussian random variable
with unknown mean and covariance iQ̄jh[k]. The probability isj [k]
that at least one hypothesis of the set ix̄j [k] has mean ixj [k] is known
also from MultiReg.
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Figure 2: A scheme of the DAEKFj which estimates ItJ .

Each DAEKFj (see Fig. 2) is composed by a data associator (DAj) and a
variable-size multi-EKF EKFj = {. . . , EKFjl, . . .}. The data associator [16]
is a ‘nearest neighbor like’ memoryless algorithm in charge of dispatching
each relative pose hypothesis ix̄jh[k] produced by MultiReg to the appro-
priate EKFjl of the array. This EKFjl, taking as input J x̂j [k], I x̂i[k] and
ix̄jh[k], produces an estimate I t̂Jl[k] of ItJ with its covariance matrix. The
pseudocode of DAEKFj is shown in Table 5.1.

5.1 Data Association

At each step k, DAj also receives, as feedback, the sets

I t̂J [k] = {. . . , I t̂Jl[k], . . .}

of estimates of ItJ produced by the corresponding multi-EKF. For each
ix̄jh[k], using J x̂j [k] and I x̂i[k], DAj computes the following hypothesis on
J tI based on (1):

I t̄Jh[k] = NS(I x̂i[k])S(ix̄jh[k])S−1(J x̂j [k])(0T
3 1)T . (2)

In addition, for each pair (h, l) ∈ {1, . . . , |ix̄j [k]|} × {1, . . . , |I t̂J [k]|} =:
iX j [k]× IT J [k], DAj computes the covariance-weighted distance

idjhl[k] =
√

(I t̄Jh − I t̂Jl)iDjh[k](I t̄Jh − I t̂Jl)T (3)
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where iDjh[k] = iV jh[k]iRjh[k]iV jh[k]T , iV jh[k] is the jacobian matrix of
ItJ with respect to (Ix

T
i

ix
T
j

Jx
T
j )T , computed at (I x̂

T
i [k] ix̄

T
j [k] J x̂

T
j [k])T

whose expression will be showed in (4), and

Rkh[k] =

 IQ̂i[k] 0 0
0 JQ̂j [k] 0
0 0 iQ̄jh[k]

 .

Given a maximum distance dmax the DAj searches for the largest left- and
right-unique relation iR∗

j [k] ⊂ iX j [k]×IT J [k] minimizing
∑

(h,l)∈iR∗j [k]
idjhl[k]

and such that idjhl[k] ≤ dmax, ∀(h, l) ∈ iR∗
j [k]. This relation defines a rule

by which, for each (h, l) ∈ iR∗
j [k], the hypothesis ix̄jh[k] is dispatched to

EKFl. For each hypothesis ix̄jm[k] which is not associated through iR∗
j [k],

a new filter is added to EKFj , initialized with the corresponding triple
{ix̄jm[k], I x̂i[k], J x̂

T
j [k]}. At each step, a mark is associated to each EKFjl,

i.e., the number of hits (steps in which ix̄j [k] 6= ∅ and l ∈ iR∗
j [k](iT j [k]))

in the last L[k] steps. The backward horizon L[k] is chosen so as to guar-
antee that 1 −

∏k
h=k−L[k](1 − isj [k]) ≥ smin, i.e., the probability that in

[k − L[k], k] there is at least a measure with the ‘right’ mean is larger than
smin. An EKFjl whose mark goes below a certain threshold µmin is removed
from the array EKFj . The EKFjl with the highest mark provides the best
current estimate of ItJ .

5.2 Extended Kalman Filter

The generic EKF (omitting for compactness the subscripts jl) is used to
estimate the constant parameter ItJ , with model equation ItJ [k] = ItJ [k−1]
and measurement equation given by 2. Denoting by K[k] the gain and by
P [k] the covariance estimate , the filter equations are:

K[k] = P [k − 1](P [k − 1] + V [k]Rkh[k]V [k]T )−1

I t̂J [k] = I t̂J [k − 1] + K[k](I t̄Jh[k]− I t̂J [k − 1])
P [k] = (I3 −K[k])P [k − 1]

where the jacobian matrix V [k] has the following expression(
I2 R(I θ̄j [k])ip̄j [k]−R∗(Θ[k])J p̂j [k] −R(Θ[k])
0T

2 1 0T
2

R∗(Θ[k])J p̂j [k] R(Iθi[k]) −R∗(Θ[k])J p̂j [k]
−1 0T

2 1

)
(4)

where Θ[k] := I θ̂i[k] + iθ̄j [k]− J θ̂j [k] and

R∗(φ) :=
(
− sinφ − cos φ
cos φ − sinφ

)
.
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inputs
ix̄j [k] set of relative pose hypotheses as provided by MultiReg
I x̂i[k] estimate of Iti[k] as provided by the self-localization
J x̂j [k] estimate of J tj [k] estimate of Iti[k] as provided by the communication

parameters
dmax max. hypo. distance
smin backward horizon prob.
µmin survival mark threshold

output
{. . . , I t̂Jjl[k], . . .} set of estimates of ItJ

algorithm (k-th step)

1. for h = 1 to |ix̄j [k]|

a. compute it̄jh[k] from equation 2

b. for l = 1 to |EKFj [k]| compute idjhl[k] from equation 3

2. compute the routing relation iR∗
j [k]

3. for h = 1 to |ix̄j [k]|

a. if h ∈ iR∗
j [k](iX j [k]) then

i. dispatch ix̄jh[k] to EKFj,iR∗j [k](h)

ii. update the mark µl of EKFj,iR∗j [k](h)

b. else add an EKF and initialize it with ix̄jh[k]

4. for l = 1 to |EKFl[k]|

i. if µl > µ̄ then remove EKFjl from EKFj

ii. else make a step of the EKFjl producing I t̂Jjl[k]

Table 3: DAEKFj algorithm

6 Experiments

We have validated our approach using the software platform described in
[17], both simulating robots with Player/Stage and using a team of 5 Khep-
era III real robots. In the following, we refer to real robot experiments.
Each robot is equipped with a Hukuyo URG-04LX laser scan with a 240◦

angular range, 0.33◦ resolution and range artificially limited up to 2 meters.
Due to its resolution, at this maximum distance the URG can detect only
obstacles of size greater than 1.2 cm. The robot detector is a simple feature
extraction algorithm that looks for a cardboard ‘hat’ placed on top of each
robot around the sensor. In particular, the detector identifies 1÷12 cm wide
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Figure 3: The team of 5 Khepera III used in our experiments. Around the
URG-04LX a cardboard ‘hat’ is mounted to allow the feature extraction.

protrusions and it is thus unable to distinguish among different robots, or
robots and obstacles whose size is in the same range. This variation range
accounts for the fact the ‘hat’ gives a protrusion whose width depends on
the robot orientation.

Accurate measures of the ItJ to be used as ground truth are taken before
the experiments by a human operator. The self-localization is a simple dead
reckoning.

In Fig. 4 we show the early steps of an experiment conducted with 5
robots and 4 deceiving obstacles, starting from a highly symmetric arrange-
ment (that is very ambiguous for MultiReg) moving for 5 minutes. The
mutual localization system runs on robot A4 at 10Hz, which is the fre-
quency of the URG. While at the start the best estimates of A1, A2, A3 are
wrong, due to occlusions and symmetry, in a few steps the correct estimates
prevail.

Figure 5 summarizes the experiments in terms of the errors (cartesian
an angular) and marks of the estimates generated by all the EKFj , for
j = 0, . . . , 3. The timescale is 150 sec. The estimates whose normalized mark
goes below 0.15 are removed. Figures 6 and 7 refer to another experiment,
whose peculiarity is that 2 robots act as deceiving movable obstacles, since
they move but do not broadcast their observations. As we expect, the
estimation system works well also in this case. Videos of the experiments
and more material could be found at http://www.dis.uniroma1.it/~labrob/research/mutLoc.html
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Figure 4: Above: stroboscopic motion of the early step of the first experi-
ment. Below: the best estimate for the same steps (lighter robots indicates
older estimates). Small dots are the features generated by the robot detec-
tors.
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Figure 5: Errors and marks of the estimates generated by the 4 multi-EKFs
in the first experiment. Time step is 100 ms.
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Figure 6: Above: stroboscopic motion of the early step of the second exper-
iment. Below: the best estimate for the same steps (lighter robots indicates
older estimates). Robots A2 and A3 acts as deceiving movable obstacles.
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Figure 7: Errors and marks of the estimates generated by the 2 multi-EKFs
in the second experiment. Time step is 100 ms.
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6.1 Execution times

The MultiReg execution time, which constitutes the major part of the es-
timation system step time, depends on the number of raw observations in
input, say C, and on the ambiguity of the robots arrangement. With unam-
biguous formations C(C−1)

2 binary registrations are needed to reach the solu-
tion. Since each binary registration is performed at most in constant time,
in this case the MultiReg complexity is o(n2). In ambiguous formations,
more than (n − 1)! configurations can be equivalent because of anonymity.
So, if a complete algorithm pretend to generate all of them, time o(n!) is
needed, unless it is accepted not to generate all of them.

In Fig.8 are shown the experimental times of MultiReg execution respect
to C (left) and to the number of solutions found by itself (right) (that in
some way is a quantification of the ambiguousness of the configuration).
All times are reported in milliseconds. In particular lower-bound, upper-
bound and mean are plotted. All these statistical data are extracted from
a pool of 38 experiments of about 4 minutes of duration, which corresponds
to 63898 MultiReg calls. In the plot on the left the upper-bound increases
exponentially, the lower-bound is quite constant and the mean time has a
slightly over-linear increasing rate. Therefore this result matches with the
theoretical prediction. In the plot on the right upper-bounds are greater for
a small number of solutions, even though the mean has a linear increasing
rate. This happens because these cases are more frequent, about 25000
samples against a few dozens in cases with more solutions.

A strategy to reduce execution time could be to generate a maximum
number of relative pose hypotheses at each step, relying on the subsequent
filter to isolate the right estimate even if the right hypothesis is not generated
at each step. In the practice, the assumption of a finite communication range
allows to assume an a priori known upper bound for C at each step.

The experiments suggests that the mutual localization module can run
easily at 10 Hz on each robot for a team of 5 robots. However, it is not
necessary a so high frequency of execution.

7 Conclusions

In this paper, we have presented an innovative system to estimate changes
of coordinates between components of a fully decentralized multi-robot sys-
tem under anonymous measure hypothesis and sensor prone to false positive
and false negative measures. The raw data collected from each robot are
processed by the MultiReg algorithm to obtain a set of possible relative
pose for each robot of the team. The anonymity hypothesis can cause an
ambiguity in the inversion of the measure equation, that is solved using a
multi-hypotheses filter. Good performance has been obtained both in simu-
lations and in real robot experiments, showing that the proposed localization
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Figure 8: Upper-, mean and lower-bound of the time of execution of Multi-
Reg with respect to the number of raw observations (left) and the number of
solution of MultiReg itself (right). Clustering is based on 63898 executions
of MultiReg during 38 real robot experiments.

system is applicable in practice.
One problem with the proposed approach is that the execution time of

MultiReg may increase considerably if the number of its solutions grows. In
future work, we plan to introduce some modifications to improve its perfor-
mance. For example, a theoretical study of the ambiguity introduced by the
anonymity hypothesis can allow to reduce the number of MultiReg solutions,
by generating only one representative for each class of equivalent solutions.
Another improvement can be obtained by considering only solutions that are
close to the estimates generated from the filter, so as to introduce a feedback
mechanism from the filters to MultiReg. On the other hand, the ‘nearest
neighbor’ policy of the data association can be avoided by implementing a
particle filter that samples also on data association, such as that developed
in [18]. Another objective is to apply the developed system to a real world
task as formation control and cooperative exploration. To this end, a better
self-localization module than dead reckoning should be used, for example
based on scan matching.
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