
Switching tasks and flexible reasoning in the Situation 
Calculus

Alberto Finzi
Fiora Pirri

Technical Report n. 7, 2010



Switching tasks and flexible reasoning in the Situation Calculus

Alberto Finzi and Fiora Pirri
{finzi}@na.infn.it {pirri}@dis.uniroma1.it

March 25, 2010

Abstract

In this paper we present a new framework for modelling switching tasks and adaptive, flexible behaviours
for cognitive robots. The framework is constructed on a suitable extension of the Situation Calculus, the Tem-
poral Flexible Situation Calculus (TFSC), accommodating Allen temporal intervals, multiple timelines and
concurrent situations. We introduce a constructive method to define pattern rules for temporal constraint, in a
language of macros. The language of macros intermediates between Situation Calculus formulae and temporal
constraint Networks. The programming language for the TFSC is TFGolog, a new Golog interpreter in the
Golog family languages, that models concurrent plans with flexible and adaptive behaviours with switching
modes. Finally, we show an implementation of a cognitive robot performing different tasks while attentively
exploring a rescue environment.

Keywords: Cognitive robotics, executive control, cognitive control, switching
tasks, adaptive and flexible behaviours, Situation Calculus, action perception and
change, temporal planning.

1



1 INTRODUCTION 2

1 Introduction
Several approaches have been recently taken for the advances of cognitive robotics. These different viewpoints
are foraged by new breakthroughs in different research areas correlated to cognitive control and, mainly, by
new experimental settings that have encouraged a better understanding of the cognitive functioning of executive
processes. In real-world domains robots have to perform several activities requiring a suitably designed cognitive
control, to select and coordinate the operation of multiple tasks.

The ability to establish the proper mappings between inputs, internal states, and outputs needed to perform
a given tasks [48] is called ”cognitive control” or ”executive function” in neuroscience studies and it is often
analysed with the aid of the concept of inhibition (see e.g. [48, 3]), explaining how a subject in the presence of
several stimuli responds selectively and is able to resist inappropriate urges (see [77]). Cognitive control, as a
general function, explains flexibly switching between tasks, when reconfiguration of memory and perception is
required, by disengaging from previous goals or task sets (see [45][55]).

The role of task switching in robot cognitive control is highlighted in many biologically inspired architectures,
such as the ISAC architecture [34], ALEC architecture based on state changes induced by homeostatic variables
[25], Hammer [15] and the GWT (Global Workspace Theory) [71].

Studies on cognitive control, and mainly on human adaptive behaviours, investigated within the task-switching
paradigm, have strongly influenced cognitive robotics architectures since the eighties, as for example the Norman
and Shallice [54] ATA schema, the FLE model of Duncan [16] and the principles of goal directed behaviours in
Newell [53] (for a review on these architectures in the framework of the task switching paradigm see [67]).

Also the approaches to model based executive robot control, such as Williams [8] and earlier [33, 80], de-
vise runtime systems managing backward inhibition via real-time selection, execution and actions guiding, by
hacking behaviours. This model-based view postulates the existence of a declarative (symbolic) model of the
executive which can be used by the cognitive control to switch between processes within a reactive control loop.
Here, the executive model provides a local and detailed representation of the system and monitors the processes
engagement and disengagement. In this context, the flexible temporal planning approach (e.g. Constraint-based
Interval Planning framework [33]), proposed by the planning community, has shown a strong practical impact in
real world applications based on deliberation and execution integration (see e.g. RAX [33], IxTeT [27], INOVA
[74], and RMPL [80]). These approaches amalgamate planning, scheduling and resource optimisation for man-
aging all the competing activities involved in many robot tasks. Important examples are the flexible concurrent
plan concepts of Jonsson and colleagues [33, 12] and Ghallab and colleagues [27]. The flexible temporal plan-
ning approach, underpinning temporal constraint networks, provides a good model for behaviours interaction and
temporal switching between different events and processes. However, the extremely complex structure required
by the executive robot control has strongly affected the coherence of the whole framework, especially because
implementation issues have prevailed in the flexible temporal planning approach over the semantic modelling of
the different components integration.

On the other hand, from a different perspective, high level executive control has been introduced in the qual-
itative Cognitive Robotics1 community, within the realm of theories of actions and change, such as the Situation
Calculus [46, 61, 41, 65], Fluent Calculus [68, 17, 76], Event Calculus [72, 73, 22], the Action language [26]
and their built-in agents programming languages such as the Golog family (ConGolog, INDIGolog, Readylog,
etc. see [38, 64, 11, 30]), FLUX [75], and similarly APL [1]. In the theory of action and change framework the
problem of executive control has been regarded mainly in terms of action properties, their effects on the world
(e.g. the frame problem) and the agent’s ability to decide on a successful action sequence basing on its desire,
intentions and knowledge [40, 4, 29, 42]. These both for off-line and online action execution. In this sense high
level executive control is intended as the reasoning process underlying the choice of actions.

Nonetheless reactive behaviours have been considered from the view point of the interleaving properties
of the agent’s actions and external exogenous actions, induced by nature [63]. Reiter grasped the concept of

1The term has been earliest introduced by Reiter IJCAI 93, see also [39]



1 INTRODUCTION 3

inhibition through that of “bad situations” [65]. Bad situations, however, were proposed in the perspective of
actions effects achievements, although his considerations where more deeply immersed in the human behaviour
and also concerned with task switching. Analogously, in Decision Theoretic Golog the stochastic structure of
actions served to achieve the most successful plan in uncertain domains [9].

Real world robot applications are increasingly concerned not just (and not only) with properties of actions
but also with the system reaction to a huge amount of stimuli, requiring to handle response timing. Therefore,
the need to negotiate the multiplicity of reactions in tasks switching (for vision, localisation, manipulation, ex-
ploration, etc.) is bearing a different perspective on action theories. An example is the increasing emphasis on
agents programming languages or on multiple forms of interactions leading to the extraordinary explosion of
multi agent systems.

Indeed, the control of many sources of information, incoming from the environment, likewise arbitration of
resource allocation for perceptual-motor and selection processes, had become the core challenge in actions and
behaviours modelling.

The complexity of executive control under the view of adaptive, flexible and switching behaviours, in our
opinion, requires the design of a grounded and interpretative framework that can be accomplished only within a
coherent and strong qualitative model of action, perception and interaction. This with the proviso to offer sound
transformations of the underlying constructs into structures that can be treated quantitatively (e.g. temporal
networks, Bayes networks, graphical models, etc.).

The main contributions of this paper can be briefly summarised as follows:

• we extend the framework of the Situation Calculus to represent heterogeneous, concurrent, and interleaving
flexible behaviours, subject to switching-time criteria. This leads to a new integration paradigm in which
multiple parallel timelines assimilate temporal constraints among the activities.

• Temporal constraints and rules for their definition (the compatibilities) implement adaptation and inhibition
of behaviours. This is made possible via a specific term that we call bag of timelines (also bag of situations),
actually a set of concurrent, temporal situations formalising processes on multiple timelines. On the basis
of this term we are able to introduce a constructive method for declaring temporal compatibilities, based
on a meta-language.

• The compatibilities are rules with a double facet, they are formulae of the Situation Calculus but also the
logical counterpart of a temporal network. We show, indeed, that compatibilities can be transformed into
temporal constraint networks. We show therefore that, under specific circumstances, logic-based reasoning
and constraints propagation can be treated independently still in the same logical framework.

• As usual within the Situation Calculus, the extended framework provides the semantics for specifying a
Golog interpreter. We introduce the Temporal Flexible Golog (TFGolog) programming language suitable
for representing high-level agent programs for concurrent and temporal switching processes. We show
how the TFGolog interpreter transforms high-level programs into temporally flexible plans.

• We prove consistency results about the TFSC and prove several properties of the system.

• We provide several examples that illustrate our approach and show its usefulness. In particular, we show
that the framework can foster attention driven exploration. The example has also been used for testing this
framework, as reported in [10].

The rest of the paper is organised as follows. In the next section we give an intuition of the proposed work
with an example about cognitive robot control. In Section 3 we recall some preliminaries properties of the
Situation Calculus and Golog and we introduce the Temporal Flexible Situation Calculus (TFSC). The TFSC as
an extension of the Situation Calculus, including timelines and bag of timelines, is used also to define processes
and constraints between processes, these issues are discussed in Section 4 and in Section 5. The language for the



2 WHY FLEXIBLE PLANNING AND WHY MODELLING MULTIPLE BEHAVIOURS 4

construction of constraints and flexible behaviours is presented in Section 5 and it is shown, in Section 6, how
it maps to a Constraint Temporal Network. In Section 7 we introduce the Temporal Flexible Golog interpreter
showing several results and examples. In Section 8 we illustrate the example of an attentive robot controller
based on the Temporal Flexible Golog interpreter. Finally we dedicate Section 9 to the related works and to hint
future works. All the proofs are collected in the Appendices A and B at the end of the paper.

2 Why Flexible Planning and why modelling multiple behaviours
Robotic systems, whether they are mobile robots, camera networks or sensor networks, are composed of several
heterogeneous hardware and software components operating concurrently and smoothly interacting with the
external world. In these systems, complexity increases exponentially with the number of possible interactions
among components. Each component can perform a set of activities whose duration might be controllable or not,
as exogenous events can disturb allocated time lags. The range and variety of components possible interactions
is quite extended, although limited by both structural temporal constraints (such as timeouts, time priorities, time
windows), and resource constraints, such as terrain features for locomotion, light features for vision, and speed
time for sensor networks.

A control plan suitable for these systems should be flexible, in order to be robust and avoid deadlocks. In
other words it should be able to make available, at any time, a set of possible behaviours, so that the actual
behaviour can be decided on-line.

Figure 1: Planned activities for the rescue mobile robot (see the robot looking at a victim hand waving from a
hole, in the wall, on the right). Each component is represented by a timeline where the planned activities are
sequenced. Starting and ending time of these activities are bound just at the execution time.

Example 1 (Cognitive Robot) A mobile robotic system performs some basic tasks such as exploring the en-
vironment (possible a rescue environment). The robot control system is composed of several functional com-
ponents, some typical are: Mapping and Localisation, Navigation (for path-planning), Pan-tilt unit (for head
and gaze control), Camera (for vergence, zooming, etc.), Locomotion (low level engine controllers), Sound pro-
cessing, Visual processing, Attentional system, Exploration (taking care of search strategies), and possible other
components related to other sensors and other adaptation needs. These concurrent activities may have several
causal, temporal, and resource constraints. For example, the Pan-tilt should look ahead while the robot is mov-
ing. The Camera should be continuously pointed in the correct direction that might be earlier detected by sound
and, at the same time, the robot engine vibrations should be compensated by some stabilisation process, like-
wise ego-motion for suitable tracking. Camera and Pan-tilt components might start a tracking activity during



3 BASICS FOR THE TEMPORAL FLEXIBLE SITUATION CALCULUS 5

a task requiring to explore and search for something, or to follow someone. However while the starting time
of the ptuScan process is controllable, the ending time of this process is nondeterministic, as it depends on the
response of the scanned object/person. In turn, the ending time of the tracking process affects the starting and
ending times of other activities, for example to pinpoint where exactly to go, operating the necessary strategies
to achieve that. Figure 1 illustrates on the left a flexible temporal plan for a rescue robot (on the right looking
at a hand waving from a hole in a wall). The plan stipulates that the explore process, given that it ends within
an interval of [10, 20], should commit the the end-time of the stop process to be greater than 8, but less than 25
seconds, while ptuReset should end between 15 and 22 seconds. Now, ptuReset can be active just during the
locomotion component process stop; the stop process, in turn, can end only after the end of ptuReset. On the
other hand explore is not directly affected by ptuReset and stop, hence it can end before, after or during these
activities, and its ending time can switch w.r.t. the ending times of ptuReset and stop. Whenever a set of planned
activities is executed, the associated activation times are actually bound; hence, the enforced constraints can be
suitably propagated.

In the next sections we show how these problems can be addressed and solved in the Situation Calculus and
Golog providing a clear and sound framework for designing a complex system.

3 Basics for the Temporal Flexible Situation Calculus
In this section, we present the basic ideas and formal structure of the Temporal Flexible Situation Calculus
(TFSC). The TFSC is conceived for describing a complex dynamic system with a finite number of components,
to which a certain amount of resources and processes are assigned. The system should be able to execute inter-
leaving processes, allowing switching between processes threads of different components, by inhibiting active
tasks of less demanding components.

3.1 Preliminaries
The Situation Calculus [46, 65] (SC) is a sorted first order language with equality, augmented with a second order
induction axiom. The underlying signature of the sorted language is specified by three sorts: Act for actions, S it
for situation and Ob j for objects. To simplify reading we usually refer to these sorts as actions, situations and
objects.

The terms of sort actions are either constants or functions mapping elements of sort objects and possibly of
sort actions into elements of sort actions, e.g. move(x, y).

Terms of sort situation are either the constant symbol S 0 or terms of the form do(a, s), where a is a term of
sort action and s is a term of sort situation. The term S 0 denotes the initial situation, where no action has yet
occurred, while do(a, s) encodes the sequence of actions obtained from executing the action a after the sequence
of actions encoded in s.

Properties of objects and their dynamics are described by fluents. Thus fluents denote properties that may
change when executing an action, and are specified by either predicates or function symbols whose last argument
is a situation. A basic action theory is defined by the following set of axioms

BAT=(Σ,DS0 ,Dssa,Duna,Dap). (1)

Here

• Σ is the set of domain independent foundational axioms for the domain of situations, see Table 1. Situations
are kept countably infinite by a second order axiom (see Table 1) assessing that there are no unintended
models of the language, in which situations can be strange objects.



3 BASICS FOR THE TEMPORAL FLEXIBLE SITUATION CALCULUS 6

• Duna is the set of unique name axioms for actions, which expresses that different action terms, namely
different names, stand for different actions:

A(x1, . . . , xn) , B(y1, . . . , yn),

and identical action terms have the same arguments

A(x1, . . . , xn) = A(y1, . . . , yn)→ x1 = y1 ∧ · · · ∧ xn = yn.

• DS0 is a set of first-order formulas describing the initial state of the domain (represented by S 0).

• Dssa is the set of successor state axioms [62, 65], one for each fluent symbol F(~x, s), in the language. A
successor state axiom is an explicit definition of a fluent in a successor state do(a, s) as follows:

F(~x, do(a, s)) ≡ ΦF(~x, a, s).

A successor state axiom provides both a definition of action effects and a solution to the frame problem
(assuming deterministic actions).

Given a basic action theory, it is possible to infer the properties of the theory just appealing to the initial theory
DS 0 . This is done by regressing any formula, taking as argument a situation of the form do(am, . . . , do(a1, S 0)),
into an equivalent formula taking as argument the initial situation S 0 and not mentioning other situations different
from S 0.

The regression of a formula φ(do(am, . . . , do(a1, S 0))) is defined via a regression operator R by induction
using the definitional structure of the successor state axioms and the properties of R as follows:

R(F(~x, do(a, s))) = ΦF(~x, a, s)
R(¬φ) = ¬R(φ)
R(φ1 ∧ φ2) = R(φ1) ∧ R(φ2)
R(∃x.φ) = ∃x.R(φ).

(2)

The simplicity and elegance of making inference and prove properties of situations is, indeed, due to the structure
of the axioms, based on explicit definitions of the successor state. This structure would be prejudiced if state
constraints are added to the theory, i.e. formulas mentioning situations neither uniform in S 0

2 nor in the form of
successor state axioms. For example the followings state constraints:

∀s.Raise(sun, s).
∀sOn(x, y, s) ∧ On(y, z, s)→On(x, z, s). (3)

lacking a definitional structure, would compromise the inference based on regressing sentences to the initial
databaseDS 0 .

Golog, was earlier introduced in [38], is an agent programming language formally based on the SC and
usually implemented in Eclipse Prolog. Golog uses Algol-like control constructs to define complex actions from
the primitive actions, which are those of a basic action theory BAT , see (1):

1. Action sequences: p1; p2.

2. Tests: φ?.

3. Nondeterministic action choices: p1|p2.
2Formulas uniforms in σ = do(a1, . . . , do(am, S 0)),m ≥ 0, are formulas either not mentioning situation terms or formulas not mentioning

Poss nor @ nor any other situation term than σ [61].



3 BASICS FOR THE TEMPORAL FLEXIBLE SITUATION CALCULUS 7

4. Nondeterministic choices of action argument: (πx).p(x).

5. Conditionals: if φ then p1 else p2.

6. While loops: while φ do p.

7. Nondeterministic iteration: p1
∗.

8. Procedure calls: {proc P1(~x1) p1 end; . . . proc Pn(~xn) pn; p }

An example of a Golog program is

while ¬At(1, 2) do (πx, y)moveTo(x, y).

Intuitively, the nondeterministic choice (πx, y)moveTo(x, y) is iterated until the atom At(1, 2) is verified.
The Golog declarative semantics is defined in the language of SC. Given a complex action δ (a Golog pro-

gram), the abbreviation Do(δ, s, s′) says that situation s′ can be reached from situation s by executing some
complex action specified by the program δ.

The construct definitions are the following:

1. Primitive actions:

Do(a, s, s′)
def
= Poss(a, s) ∧ s′ = do(a, s).

2. Test actions:

Do(φ?, s, s′)
def
= φ[s] ∧ s = s′.

3. Sequence:

Do(p1; p2, s, s′)
def
= ∃s′′Do(p1, s, s′′) ∧ Do(p1, s′′, s′).

4. Non-deterministic choice of two actions:

Do(p1|p2, s, s′)
def
= Do(p1, s, s′) ∨ Do(p2, s, s′).

5. Non-deterministic choice of arguments:

Do(π(x, p(x)), s, s′)
def
= ∃x Do(p(x), s, s′).

6. Non-deterministic iteration:

Do(p∗, s, s′)
def
= ∀P.{P(s1, s1)∧

∀s1, s2, s3.P(s1, s2) ∧ Do(p, s2, s3)]} → P(s1, s3).

For procedure call expansion and other important constructs we refer the reader to [38, 29, 28, 65, 31].



3 BASICS FOR THE TEMPORAL FLEXIBLE SITUATION CALCULUS 8

3.2 Extensions of the SC
Among several languages for action theories (like the Fluent Calculus [68, 17, 76] the Event Calculus [72, 73, 22]
and the Action language [26]) the SC is particularly simple to be extended and adapted to specific domains, such
as, for example, cognitive robotics domains.

In fact, being an axiomatic theory, an extension of the SC, requires two simple steps:

1. extend the set of foundational axioms Σ to account for more rich domains;

2. show that the new extension respects the fundamental constraints required to do inference within the sys-
tem.

The flexibility of both the successor state axiomsDss and the action precondition axiomsDap allows the user to
define any domain.

This is the reason why there have been many contributions to extensions of the Situation Calculus such as
([42, 58, 40, 66, 61, 4, 59, 21, 9, 65]). All these contributions, further, have coped with the constraints required
by the regression inference, including the specification of the Golog programming language (see Section 7) such
as ([38, 11, 64, 30]), requiring axioms to be based on the construction of explicit definition. In particular, macro
definitions (see also [65] for a paragraph on “Why Macros?”) are explicit definitions of predicates that are not
added to the language, therefore they stand also for abbreviations of the formulas defining them (the definiens).

We refer the reader to [65, 61] for a complete introduction to the inference mechanisms in the Situation
Calculus.

In this paper we extend the Situation Calculus by adding a new set of axioms to the set of its foundational
axioms, and by introducing macro definitions. In order to ensure that all the constraints are satisfied we need to
go into details that are rather boring, although often straightforward, therefore many details are postponed and
described in the Appendix. In particular, all proofs, likewise lemmas, for this section are given in Appendix A
and Appendix B.

3.3 Time, types and bag of timelines
The set of foundational axioms of the Situation Calculus, together with the set of new axioms are reported in
Table 1. We introduce three kind of extensions. The first extension, concerning time, is essentially the same as
the one introduced by Reiter in [65] and [63, 56], but making explicit the definition of start [65]. With the second
kind of extension we introduce name types as objects, i.e. specific elements of sort object, denoted by constants:
these are used in the perspective of describing a system with several components that can be each named by a
specific constant. Note that because a robot system is composed of a finite set of parts we assume that the set
of components is bound to be finite, although what a component can do might be described by an infinite set of
actions. Each name type is extensively defined by a collection of actions that the component can execute.

Name types are used to classify actions according to the actuating agent, for example often this has been
implicitly assumed in the presence of different agents, by naming each agent specifically, here we do the same
but in a systematic way. The third extension deals with set of situations, with some specific properties which are
obtained by types and time. These kind of situations are called timelines and a set of timelines is here specified
by what we call bag of timelines.

Notation: in the following sections LX denotes the language specified by the axioms X. More precisely
we assume that the signature includes all the symbols (functions and predicates) mentioned in X, equality, the
quantifiers and connectives of FOL. Thus, for example, LΣ is the language of the axioms Σ. Also, we shall
use the ordering relation s v s′ between situations s and s′, that abbreviates s @ s′ ∨ s = s′ (see foundational



3 BASICS FOR THE TEMPORAL FLEXIBLE SITUATION CALCULUS 9

Foundational Axioms of SC, Σ

¬(s @ S 0) s @ do(a, s′) ≡ s v s′ do(a, s) = do(a′, s′) ≡ s = s′ ∧ a = a′

∀P.P(S 0) ∧ ∀as.P(s)→P(do(a, s))→∀sP(s)

Flexible Time SC extension axioms
A+ = Σ ∪ Ax0 ∪ Ax1 ∪ Ax2 ∪ Ax3

Time axioms, Ax0 Type axioms, Ax1-Ax2 Timelines axioms Ax3 and
Σtime = Σ ∪ Ax0 ΣH = Σtime ∪ Ax1, Σ=ν = ΣH ∪ Ax2 Bag of timelines axioms, Ax4

Σ=ν = ΣH ∪ Σtime = Σ ∪ Ax0 ∪ Ax1 ∪ Ax2 A+ = Σ=ν ∪ Ax3 ∪ Ax4

T1. H1 G1.

time(S 0) = t0 ∀a.
n∨

i=1

(H(i, a)∧
{
∀s, s j1, . . . s jk. s ∈S B(〈s j1, . . . , s jk〉 j) ≡

n∧
i=1

(H(i, a)→
n∧

j=1
j,i

¬H( j, a)))
∨

1≤p≤k

s = s jp ∧
(
s jp = S 0 ∨

∨
i

T (i, s jp)
)}

k∈N

T2 H2 G2.
∀~x, t.time(A(~x, t)) = ∀a, a′.a=νa′ ≡ ∃i. H(i, a) ∧ H(i, a′)) ∀s∀s, s′ . (s ∈S s ≡ s ∈S s′) ≡ (s =S s′)

t→t > t0
T3. E1. G3.

∀~x, t, s. time(do(A(~x, t), s)) = ∀s, s′(s = s′→s=νs′)∧ ∃s.s = B0
time(A(~x, t)) (s A S 0→¬(s=νS 0 ∨ S 0=νs))

E2. G4.
∀a¬(a=νS 0) ∀s ∀s∀i.s = S 0 ∨T (i, s)→

∃s′ (s′ =S s ∪S B(s))
E3. G5. for all sentences φ

∀a, a′, s′(a =ν do(a′, s′)) ≡ ϕ(B0) ∧ (∀s∀s.ϕ(s) ∧ ϕ(B(s))→
(a =ν a′) ∧ (s′ A S 0→(s′ =ν a)) ϕ(s ∪S B(s)))→∀tϕ(t)

E4. W1.

∀a′, s, s′(s=νdo(a′, s′)) ≡ ∀a, s.
n∧

i=1

T (i, do(a, s)) ≡ (s = S 0 ∧ H(i, a))∨

(s=νa′) ∧ (s′ A S 0→s′=νs) (s A S 0 ∧ a=νs ∧T (i, s))
E5.

∀a, s(s=νa) ≡ (a=νs)

Table 1: The foundational axioms Σ, of the basic Situation Calculus, the axiomsA+ = Σ∪Ax0∪Ax1∪Ax2∪Ax3∪

Ax4 of the Flexible time Situation Calculus, extending Σ with time, types and bag o f timelines. The extension
of the foundational axioms Σ is incremental. Four sets are built: first the set Σtime, extending Σ with time; then
the set ΣH , extending Σtime with types; then the set Σ=ν extending ΣH with equivalence relations over actions and
situations; finally the setA+ extending Σ=ν with timelines and bag of timelines.



3 BASICS FOR THE TEMPORAL FLEXIBLE SITUATION CALCULUS 10

axioms Σ in Table 1). We shall use ~x to denote a tuple of variables, a to denote variables of sort action, A(~x) to
denote action functions with arguments ~x. When a situation mentions only actions in the form A(~x) then its only
variables are variables of sort object, thus we use the symbol α to denote actions which are either ground or in
the form A(~x). We use the symbol s to denote variables of sort situations, σ to denote histories of actions, such
as σ = do(am, . . . , do(a1, S 0)), that is, a sequence of actions of length m, m >= 1 and S 0 to denote the initial
situation, S 0 is a constant. As we shall extend the signature the new symbols will be contextually introduced.

�

3.4 Representing Time in TFSC
Time has been extensively introduced in the Situation Calculus in [58, 63, 60], where actions are instantaneous,
and their time is selected by the function time(.). Durative actions are considered as processes [58, 65], rep-
resented by fluents, and durationless actions start and terminate these processes. For example, going(hill, s) is
started by the action startGo(hill, t) and it is ended by endGo(hill, t′).

Analogously as in [63, 56], primitive actions are instantaneous and are represented by the term A(~x, t) where
t is a special argument representing the execution time. For example, moveTo(room4, 0.5) means that moveTo
was executed at time 0.5.

We use time selection functions to extract the time of both actions and action sequences. In particular, we
introduce a function time : S it ∪ Act → R+, mapping both situation and actions into the positive real line, thus
we implicitly assume that the reals are axiomatised (see the Appendix page 45). We also introduce the relation
< and ≤ defined as < ∨ = ranging over the reals R+. This is a common assumption in the Situation Calculus (see
[65]), thus we leave it like this.

We denote with Ax0 the set of axioms T1-T3 and Σtime = Σ ∪ Ax0, see Table 1. Axiom T1 says that the time
of the initial situation S 0 is the initial time t0, axiom T2 says that the time of an action is the time of its time
argument which has to be a positive real number successive to the initial time. Finally the third axiom T3 says
that the time of a situation do(a, s) is the time of the action a. The set Σtime is a conservative extension of the
axioms Σ, of the basic Situation Calculus (see Lemma 1 in the Appendix). Here by conservative extension we
mean that Σtime is obtained by extending the original language LΣ to the new language LΣtime without changing
the initial theory Σ and its deductive closure, when only the original language is considered.

The set Ax0, however, does not ensure that the ordering v on situations is coherent with time. In other words
s v s′→time(s) ≤ time(s′) does not hold, in general, in a modelM in which Σtime∪Duna is verified. Nevertheless
it is always possible to build a model of Σtime ∪ Duna in which the above condition is verified (see Lemma 2 in
the Appendix). Thus, to add coherence between situations and time we need to add a further axiom

T4. s v s′→time(s) ≤ time(s′) (4)

This new axiom will restrict the set of models to time coherent situations. In this models, although s v
s′→time(s) ≤ time(s′) will be verified, the inverse implication (time(s) ≤ time(s′))→s v s′ in general will not
hold.

3.5 Typed Actions and Situations
The second column of Table 1 illustrates the axiomatisations for name types. The distinction between sorts
and name types is that sorts induce a partition on the domain, while name types are defined in the language
via constant symbols involving only the sort Ob j, still inducing a partition on actions hence on situations. In
particular, axioms Ax1 = {H1,H2} regulate name types, and the set Ax2 = {E1, E2, E3, E4, E5} extend types to
situations via the relation =ν that is defined by Axiom (H2). Axiom (H1) settles the required specifications for
name types to be coherent with respect to actions. The disjunction of components mentioned in the first conjunct
of (H1) states that each action is ascribed to some component i. On the other hand the second conjunct of (H1)



3 BASICS FOR THE TEMPORAL FLEXIBLE SITUATION CALCULUS 11

states that, whenever an action is ascribed to a component with name type i, it cannot be ascribed to any other
component. Note that (H1) does not affect the set Duna of inequalities for actions and, clearly, in a basic action
theory, with a single component, (H1) is always satisfied.

The axioms (H1) and (H2) can be safely added to Σtime, forming the theory ΣH = Σtime ∪ Ax1, and the theory
ΣH maintains satisfiability, see Lemma 3, in the Appendix page 46.

The partition of actions, according to name types, is equipped with the relation =ν, defined by (H2), see Table
1. We show that =ν is an equivalence relation on the set of actions in Lemma 4, see the Appendix, page 47.

Axioms E1-E5 (see Table 1, from row nine, second column) are, thus, needed to extend the relation =ν,
defined by axiom (H2) for actions, to the set of situations. Axiom (E1) states that if two situations are equal then
they must be also of the same type, but no situation is of the same type as S 0. Axiom (E2) states that no action
can be of the same type of S 0. Axiom (E3) states recursively that an action is of the same type of a situation
do(a′, s′) if it is of the same type of the action a′ and it is of the same type as s′, whenever s′ is not S 0. Finally,
axiom (E4) says that two situations are of the same type if they mention actions and situations of the same type,
and (E5) states symmetry between actions and situations.

Also these axioms can be safely added to the theory built so far. Lemma 5, in the Appendix B, page 47, shows
that adding axioms Ax2 = E1-E5 to the theory ΣH , in so obtaining the new theory Σ=ν = ΣH ∪ Ax2, can be done
consistently, also if the axioms set Duna is included. Furthermore we show in Lemma 6 (see the Appendix page
48), that =ν is an equivalence relation both on actions and on situations. This fact will be used to form timelines
(see Section 3.6)

Theorem 1 Let Σ be the set of foundational axioms of the Situation Calculus, and let Duna be the set of unique
name for actions, then the set of axioms Σ=ν = Σ ∪ Ax0 ∪ Ax1 ∪ Ax2 is a sound axiomatisation of the temporal
flexible Situation Calculus, that is, the set of axioms andDuna together form a satisfiable theory.

�
Now, with H1-H2 a new predicate H is introduced in the language, and it is defined for each component i.

Let i1, i2, . . . , in be a finite set of constants denoting the components of a system, each ik is a name type. Each
H(i, a) can be introduced by an extensional definition as follows:

∀a.H(i, a) ≡ φ(i, a) (5)

When the action names for a specific component is a finite set then the extensional description of the component
might be done as follows:

∀a.H(i, a) ≡ ∃~x1, . . . , ~xn.

n∨
i=1

Ai(~xi) = a (6)

Example 2 If we want to define the actions for the robot component Pan-tilt we would introduce the constant
pan-tilt and define it by its actions as follows:

∀a.H(pan-tilt, a) ≡ ∃ t θ.a = pan(θ, t) ∨ ∃ t γ.a = tilt(γ, t) ∨ ∃ t x y. a = scan(x, y, t). (7)

�
This set of definitions for H is added to DS 0 , as they are all uniform in S 0. The easiest way to ensure

consistency is to ascribe each action to a single type; in Lemma 7 (see the Appendix page 50) we show the
conditions to ensure consistency of the type definitions with the axiom H1. As usual with typed languages
there are drawbacks, if we consider a generic action name, such as run, that could be ascribed to more than one
component for all its arguments, then we need either to specialise it to each type or to create a single component
gathering all those subscribing the action run.



3 BASICS FOR THE TEMPORAL FLEXIBLE SITUATION CALCULUS 12

Figure 2: Timelines on a tree of situations. For this representation H(i, a1) ∧ H(i, a2) and H( j, a3) are possible
types, T (i, do(a1, S 0)) ∧ . . .T (i, do(a2, S 0)), and T ( j, do(a3, S 0) are timelines. By the SSA for timeline, these
extend along the situations as indicated by the thick black lines.

3.6 Timelines and bag of timelines
We introduce in this section the concept of a timeline. This concept is particularly useful for flexible planning
because it makes possible to describe the interaction between processes performed by different components of
the system. This concept makes it also possible to deal with the time at which a process starts and ends in a
flexible way, according to the way processes interact.

A timeline is denoted by a fluent T (i, s) and it is defined by an improper successor state axiom as follows,
see Table 1 axiom (W1):

(W1)
n∧

i=1

T (i, do(a, s)) ≡ (s A S 0 ∧ a=νs ∧T (i, s)) ∨ (s = S 0 ∧ H(i, a)). (8)

Note that (8) is not uniform in s3 as it mentions S 0. Nevertheless the disjunction is obviously exclusive and
thus the right hand side never diverges, indeed (8) is regressable as it is shown in Lemma 11, in the Appendix B.

Example 3 The timeline for the pan-tilt unit can be defined as follows:

∀a s.T (pan-tilt, do(a, s)) ≡ s A S 0 ∧ a=νs ∧T (pan-tilt, s) ∨ s = S 0 ∧ H(pan-tilt, a).

Which, by the previous Example 2, are all the histories built up by the actions pan(θ, t), tilt(γ, t) and scan(x, y, t).

Note that, given the extended set Σ=ν the introduction of timelines does not affect the set of successor state
axioms and action precondition axioms, thus:

3The typical form of a successor state axiom requires the right hand side to mention only the situation s named in the left hand side, being
thus uniform in s, to ensure that the regression via the right hand side ends in S 0, in so not diverging into two, or more, different situations.



3 BASICS FOR THE TEMPORAL FLEXIBLE SITUATION CALCULUS 13

Corollary 1 LetDss∪Dap be the set of successor state axioms mentioning also timelines and action precondition
axioms. LetDS 0 be the set of formulas, uniform in S 0

4. Σ=ν ∪Duna ∪DS 0 is satisfiable iff Σ=ν ∪Duna ∪DS 0 ∪

Dap ∪Dss is satisfiable.

The characteristics properties of timelines are stated below.

Theorem 2 A timeline represents the =ν-equivalence class of situations of the same type.

The above theorem (see B.4 for the proof) states that all actions in a timeline are of the same type, and
whenever a set of actions are of the same type they form a timeline, thus not all situations form timelines.

In Section 4 we show that, under precise conditions, the set of timelines form the set of situations executable
by the system components.

Example 4 Timelines are sequences (histories) of actions indicated in thick black in Figure 2. The histories of
actions not belonging to the set of timelines are represented in light gray, that is, histories of actions leading to
situations, that do not belong to timelines, are depicted by thin gray lines.

So a timeline represents the equivalence class of histories of the same type, yet how to ensure a meaningful
interaction between timelines that can support switching tasks, is not proven. Suppose that we need to say that
while the robot is exploring a given environment to correctly scan the surrounding it should stop or decelerate.
The system component controlling the exploration actions should suitably synchronise with the component con-
trolling the pan-tilt and the camera. To treat the interleaving between these two processes we have to ensure that
at each time step of the operation loop all timelines are available for choice and switching decisions.

To this end we introduce a new concept that can support set of timelines. This new concept comes with a new
sort, we call this new sort the sort of bag of timelines.

Intuitively, a bag of timelines is interpreted as a set of lists of actions, where each list of actions is a timeline.
We require a bag of timelines to be a finite set and to mention only situations which are timelines, and possibly
S 0.

First we have to introduce the sort S standing for bag of timelines. This is defined as the codomain of a
countable set of function symbols B : (S n 7→ S n) 7→ S mapping a permutation of a tuple of situations into an
element of the sorted domain, whose intended interpretation is a bag of timelines.

Equality on these terms should account for idempotence and commutativity. Therefore we shall extend
equality to account for permutations and repetitions of equal arguments.

An S -term s is defined as B(〈s j1, . . . , s jm〉 j). Here, if m = 0 we obtain the empty bag of timelines, and we
denote the empty bag with the constant B0. With 〈s j1, . . . , s jm〉 j we denote a permutation of {1, . . . ,m}.

To formalise these ideas we adapt the finite set axiomatisation, from the system F of Brown and Wang [79], to
add bags of timelines to the language together with the specific symbols ∈S ,=S and empty bag, here identified
with the constant term B0. The axioms, listed in Table 1 are here reported again, where all variables appearing
without quantifiers are implicitly universally quantified outside.

(G1)
{
∀s.s ∈S B(〈s j1, . . . , s jk〉 j) ≡

∨
1≤p≤k s = s jp ∧

(
s jp = S 0 ∨

∨
i T (i, s jp)

)}
k∈N

Here i ranges over the finite set of name types.
(G2) ∀s. (s ∈S s ≡ s ∈S s′) ≡ (s =S s′)
(G3) ∃s.s = B0
(G4) ∀s∀i. s = S 0 ∨T (i, s)→∃s′. (s′ =S s ∪S B(s))
(G5) For every sentence ϕ :

ϕ(B0) ∧ (∀s∀s.ϕ(s) ∧ ϕ(B(s))→ϕ(s ∪S B(s)))→∀tϕ(t)

(9)

4See for the definition of uniform formulas Section 3.1 and [61]. HereDS 0 mentions also all the definitions H(i, a) for each name type i.



3 BASICS FOR THE TEMPORAL FLEXIBLE SITUATION CALCULUS 14

The above axiom set (G1) defines the symbol ∈S . Note that axiom (G1) could be bound by a n ∈ N and
transformed into a single axiom, otherwise there is an axiom for each k ∈ N. The set of axioms (G1) says that a
situation s can belong to a bag of timelines, if s is equal to some of the timelines specified in the bag and each
situation in the bag of timelines is either S 0 or it is, indeed, a timeline. Note that, following Theorem 2, although
S 0 is not a timeline it can belong to a bag of timelines. Axiom (G2) is the extensionality axiom limited to bags
of timelines. Axiom (G3) is the unconditional existence axiom, provided that the empty bag is the constant term
B0. Axiom (G4) is the conditional existence for finite bags of timelines, provided that s and B(s) are finite bags.
Axiom (G4) too tells us that a bag of timelines can include S 0. This axiom would allow bags unbound in size.
To get bags bound in size whenever axiom (G1) requires so for some n then (G4) is changed accordingly. Note
that, in (G4), ∪S is derivable from (G1), see the set operations as obtained in Example 6.

Finally the last axiom (G5) is the inductive characterisation of finite sets, it tells that whenever sentences
specify terms denoting bags of timelines these terms will denote finite bags.

Example 5 Let us consider the two timelines T (pan tilt, do(pan(θ), do(tilt(γ), S 0))) and T (laser, do(acquire, S 0)),
then:

a. B(〈do(pan(θ), do(tilt(γ), S 0))p1, do(acquire, S 0)p2〉p) is a bag of timelines, by (G1)
b. B(〈do(pan(θ), do(tilt(γ), S 0))p1, do(acquire, S 0)p2〉p) =S

B(〈do(acquire, S 0)q1, do(pan(θ), do(tilt(γ), S 0))q2〉q) by (G1,G2)
c. B(〈do(tilt(γ), S 0)p1, do(tilt(γ), S 0)p2, S 0p3 , S 0p,4〉p) =S

B(〈do(tilt(γ), S 0)p1, S 0p3 , 〉p). by (G1,G2)

�
The other usual symbols for sets can be extended to bag of timelines, using definitions or, more generally,

the induction axiom.

Example 6 The operators ⊆S , ∪S and ∩S can be defined as follows:

x. (s ⊆S t)
de f
= ∀s.s ∈S s→s ∈S t

xx. (s ∪S s′ =S t)
de f
= ∀s.s ∈S t ≡ (s ∈S s ∨ s ∈S s′)

xxx. (s ∩S s′ =S t)
de f
= ∀s.s ∈S t ≡ (s ∈S s ∧ s ∈S s′)

(10)

On the other hand it is possible to use induction to prove properties of bag of timelines. For example the following
simple property:

∀s, s′, s′′.s ⊆S s
′ ∧ s′ ⊆S s

′′→s ⊆S s
′′. (11)

can be proved by induction as follows:

Let:
1. ϕ(B0) = ∀s′, s′′.B0 ⊆S s′ ∧ s′ ⊆S s′′→B0 ⊆S s′′.
2. ϕ(s) = ∀s′, s′′.s ⊆S s′ ∧ s′ ⊆S s′′→s ⊆S s′′.
3. s◦ = B(s)
4. ϕ(s ∪ s◦) = ∀s′, s′′.(s ∪ s◦) ⊆S s′ ∧ s′ ⊆S s′′→(s ∪ s◦) ⊆S s′′.

(12)



3 BASICS FOR THE TEMPORAL FLEXIBLE SITUATION CALCULUS 15

Then :
a. φ(B0) ≡ > By (G1) and (G2)
b. (s ∪S s◦) ⊆S s′ ∧ s′ ⊆S s′′→s ⊆S s′ ∧ s′ ⊆S s′′ by (G2), (x) and (xx) of Ex. 6 and Taut.
c. (s ∪S s◦) ⊆S s′ ∧ s′ ⊆S s′′→s◦ ⊆S s′ ∧ s′ ⊆S s′′ by (G2), (x) and (xx) of Ex. 6 and Taut.
d. (s ⊆S s′) ∧ s′ ⊆S s′′→s ⊆S s′′ by Ind. Hyp.
e. (s◦ ⊆S s′) ∧ s′ ⊆S s′′→s◦ ⊆S s′′ by Ind. Hyp.
f . (s ⊆S s′) ∧ (s′ ⊆S s′′) ∧ (s◦ ⊆S s′)→s◦ ⊆S s′′ ∧ s ⊆S s′′ by d,e and Taut.
g. s ⊆S s′′ ∧ s◦ ⊆S s′′→(s ∪S s◦) ⊆S s′′ by f, (G2), (x) and (xx) of Ex. 6
h. (s ∪S s◦) ⊆S s′ ∧ s′ ⊆S s′′→s ∪S s◦ ⊆S s′′ by b, g and Taut.
i. ϕ(B0) ∧ (∀ss′∀s.ϕ(s) ∧ ϕ(B(s))→ϕ(s ∪S s◦)) by a, d, e, and g
j. ∀t ϕ(t) by i and (G5)

(13)

A precedence relation �S between two bags of timelines can be defined as follows:

s �S t ≡ ∀s ∃s′.s ∈S s→s′ ∈S t ∧ s v s′ ∧ ∀s′∃s.s′ ∈S t→s ∈S s ∧ s′ w s (14)

�
The axiomatisation of bags of timelines is sound. Let Ax3 = G1-G5 andA+ = Σ=ν ∪ Ax3 then:

Theorem 3 A+ ∪Duna is satisfiable.

�
So far we have extended the language of a basic theory of actions in the Situation Calculus to include time,

types, a new equality symbol =ν and bag of timelines, the final language is thus LT FS C . The extended language
in particular includes all the formulas inductively defined using also the following set of atoms which, in turn,
can be defined using the symbols =S and ∈S :

Definition 1 If s and t are terms of sort bag of timelines and s is a term of sort situation, then s ∈S s, s =S t,
s =S t ∪S t′, s =S t ∩S t′, s =S t\S t′, s ⊆S t, s �S t are atoms of the extended language.

In [65] sets are often implicitly assumed, for example to define sets of actions with concurrent processes.
Here the definition of sets of situations through bag of timelines is more involved. Indeed, we shall use them in
Section 5 to build macro definitions of temporal compatibilities, from which we shall obtain the temporal network
specifying time constraints and temporal relations. Macro definitions will then be reduced to sentences of the
TFSC, therefore to prove properties about these sentence we shall often use regression, a central computational
mechanism in the Situation Calculus.

We introduce here the theorem ensuring that sentences mentioning bag of timelines are regressable, under
analogous restriction conditions given in [61] and we refer the reader to the Appendix, page 54, for the details.
Here by a regressable sentence and a k-uniform term we mean, respectively, a sentence and a term that satisfy
the conditions specified in [61] and suitably extended to bag of timelines (see the Appendix, Definition 4 and
Definition 5, page 55). LetD+ be a basic action theory with Σ extended toA+ (see the above Theorem 3), then:

Theorem 4 Let φ(s1, . . . , sk) be a regressable sentence mentioning terms of sort bag of timelines. There exists a
formula R(φ(s1, . . . , sk)) uniform in S 0 such that;

D+ |= R(φ(s1, . . . , sk)) ≡ φ(s1, . . . , sk) (15)



4 THE SYSTEM AT WORK: PROCESSES IN TFSC 16

4 The system at work: processes in TFSC
For each type Hi, encoding a system component, we assume that there exists a set of processes and a set of
fluents describing the behaviours of the component. It follows that also these actions need to be specified for the
type H(i, a) of each component i. Processes span the subtree of situations, over a single interval between a start
and end action: for each process there are two actions, starting and ending the process, abbreviated by startπ,
meaning starts process π and endπ, meaning ends process π. To simplify the presentation we shall add to the
start and end actions the type which, in general, given the H and the =ν is not needed.

A process is denoted by a fluent π(i, ~x, t−, s), where i is for the type and t− for its start time. Successor state
axioms for processes (Dπ) extend the setDss of successor state axioms for fluents and are defined as follows:

π(i, ~x, t−, do(a, s)) ≡ a = startπ(i, ~x, t−) ∨ π(i, ~x, t−, s) ∧ ∀t.a , endπ(i, ~x, t). (16)

For example the process for the component nav moving towards θ, can be defined as:

move(nav, θ, t−, do(a, s)) ≡ a=startmove(nav, θ, t−) ∨ move(nav, θ, t−, s) ∧ ¬∃t′.a = endmove(nav, θ, t′).

As usual (see [65]) a situation is defined to be executable as follows:

executable(s)
de f
= ∀a, s′.s = d(a, s′) v s→Poss(a, s′) (17)

On the other hand, given a set of processes related to a timeline T (i, s), their distribution on the timeline is
controlled by the fluent Idle(i, s) telling whether a process, of type i, is being executed at the situation s. The
successor state axiom for Idle is defined as follows:

Idle(i, do(a, s)) ≡ (s = S 0 ∧ H(i, a) ∨T (i, s) ∧ a=νs)∧(∨
π∈Π ∃~x t.a = endπ(i, ~x, t)

)
∨

(∧
π∈Π ¬∃~x t.a = startπ(i, ~x, t) ∧ Idle(i, s)

)
.

(18)

That is, Idle(i, s) lasts up to the process starting and after its end. We can then break down the processes
along a timeline using the preconditions axioms (Dap) as follows:

Poss(startπ(i, ~x, t), s) ≡ (s = S 0 ∨ s=νstartπ(i, ~x, t)) ∧ Idle(i, s) ∧ time(s) ≤ t ∧ Φstart(i, ~x, s);
Poss(endπ(i, ~x, t), s) ≡ (s = S 0 ∨ s=νendπ(i, ~x, t)) ∧ ∃t−π(i, ~x, t−, s) ∧ time(s) < t ∧ Φend(i, ~x, s). (19)

Here Φstart(i, ~x, s) and Φend(i, ~x, t, s) are the precondition formulas for the execution of startπ and endπ respec-
tively. These can possibly refer to other timelines, hence to other components. We do not further investigate
here this possibility, instead we follow the approach in [43], where global constraints like e.g. Poss(a, s) →
time(s) ≤ time(a) are specified by action preconditions of the form Poss(A(~x, t), s) ≡ Φ(~x, t, s) ∧ time(s) ≤ t.
Indeed, here, time(s) < t is required for the endπ(i, ~x, t), to filter out durationless processes.

If a process of a component i is already active in S 0 all other processes of the same components cannot be
active. This proviso is intuitive, each component of the complex system can execute a process at a time and
the component is idling only if none of its processes are active. This requirement is expressed by the following
property, for all types i:

Idle(i, S 0) ∨

∃~x.π(i, ~x, t0, S 0)→ ¬Idle(i, S 0) ∧ ∀~y
∧
π′∈Π
π,π′

¬π′(i, ~y, t0, S 0)

 (processes consistency). (20)

If π(i, ~x, t0, S 0) holds for some ~x in S 0, then this is the only active process of type i, hence ¬Idle(i, S 0) holds
too, because the i-component has an active process and so it is not idling. Note that there is no need to have
a complete description of the initial situation DS 0 . Let us define Dπ to be the set of successor state axioms



5 TEMPORAL INTERVALS AND CONSTRAINTS 17

for processes, the set of action precondition axioms for processes and the successor state axiom for Idle, let
Dss ∪ Dap be the set of successor state axioms and action precondition for fluents, and let DS 0 be the set of
formulas uniform in S 0, such that the above requirement (20) is satisfied in DS 0 . Let DT be the theory formed
byDss ∪Dap ∪Dπ ∪DS 0 ∪A

+ ∪Duna, then

Theorem 5 DT is satisfiable iffDS 0 ∪A
+ ∪Duna is.

�
Given the successor state axioms (16) and (18) along with the preconditions (19) the processes consistency

property (20) holds for each executable timeline (see 17). We first show that any executable situation is a timeline.
For this we may assume that the action preconditions for fluents (not processes) must be of the form:

Poss(A(~x, t), s) ≡ (s = S 0 ∨ s=νA(~x, t)) ∧ Φ(A(~x, t), s) (21)

with A any action, possibly different from startπ and endπ.

Proposition 1 LetDT = Dss ∪Dap ∪Dπ ∪DS 0 ∪A
+ ∪Duna, then, any executable situation σ is a timeline.

�
Using the above result we can state:

Proposition 2 LetDT be as in Theorem 5 such that (20) holds inDS 0 , and let σ be an executable situation, then
for any process π and type i:

DT |= Idle(i, σ) ∨
(
∃~x t.π(i, ~x, t, σ)→ ¬Idle(i, σ) ∧ ∀~y

∧π,π′

π′∈Π ¬π
′(i, ~y, t, σ)

)
. (22)

�

The precondition axioms in (19) compel executability only on timelines. This requirement does not impose
that preconditions of actions are unaffected by other timelines as, in fact, they might be specified in the ΦQ, but
simply that there exists a component able to execute an action sequence. This notion is useful for the generation
of executable flexible plans. On the other hand, hybrid executability both for processes and fluents, would
require to introduce a distinction between: executability within the component (based on the preconditions (19))
and executability within the system. With two notions of executability at hands one could exploit non-timeline
situations to reason about the system. For example a situation like σ = do([startgo(nav, pos1, 1), startscan(pan, 2),
endscan(pan, 3), endgo(nav, pos1, 5)], S 0) could be used as a system log and exploited to infer properties about the
overall system behaviour. Here we derive only the first notion of executability and we do not develop the latter.

5 Temporal Intervals and Constraints
So far we have given the basic formalism to model parallel processes that can be executed on timelines specified
by different components. The way these processes interact in terms of time can be expressed by time constraints
taken from the classical relations [2, 47, 6] between time intervals, see Figure 3.

Notation: In this section we shall denote process and fluent symbols with uppercase letters as P,Q, . . . to treat
them uniformly, while in the example names of processes are all indicated by lowercase letters. All the defined
predicates are macros, hence they are not added to the language and all the fluents appearing on the right hand
side of the definition, that is, in the definiens, are defined by a successor state axiom. This fact ensures that
macros cannot be reduced to state constraints. A temporal interval is denoted by [t−, t+]. Temporal interval
relations before, meets, overlaps, during, starts, finishes, equals are denoted by b, m, o, d, s, f, e respectively.



5 TEMPORAL INTERVALS AND CONSTRAINTS 18

We represent the free temporal variables using the notation t to indicate that a temporal variable t occurs free;
when necessary, we use τ to represent either a temporal variable that occurs free or a ground term instantiating
a temporal variable. Further, we introduce the notation σ[ω] (s[ω] for bags of timelines) to explicitly denote a
tuple ω = 〈t1, t2 . . . , tn〉 of free temporal variables mentioned in a situation σ(bag of timelines s).

Example 7 Consider the usual temporal interval relations: b, m, o, d, s, f, e, as defined in the temporal intervals
literature, started in [2]. Let pan-tilt and nav (for navigation) be two components of the system, with the processes
scan belonging to the pan-tilt component and stop belonging to the nav component. To express that the process
scan can be performed while nav is stopped we would like to say: scan d stop, this constraint should be encoded
in a suitable TFSC formula mentioning the fluents scan(pan−tilt, t, s) and stop(nav, t, s).

�
We, thus, begin by defining two predicates S tarted and Ended taking as arguments the processes/fluents

arguments together with the starting time and the ending time, respectively. For each process/fluent P, these
predicates are defined as follows:

S tartedP(i, ~x, t−, a, s)
de f
= P(i, ~x, do(a, s)) ∧ ¬P(i, ~x, s) ∧ time(a) = t−

EndedP(i, ~x, t+, a, s)
de f
= P(i, ~x, s) ∧ ¬P(i, ~x, do(a, s)) ∧ time(a) = t+

(23)

The meaning of S tartedP is the following: a process P which does not hold in s is started by action a at time
t− in so becoming active. On the other hand, the meaning of EndedP is: a process P which is currently holding
in s is ended by action a at time t+ in so becoming elapsed.

We can now define explicitly the temporal characterisation of a process in a time lapse.

ActiveP(i, ~x, t−, do(a, s))
de f
=

T (i, do(a, s)) ∧ S tartedP(i, ~x, t−, a, s) ∨ ActiveP(i, ~x, t−, s) ∧ ¬∃t+ Ended(i, ~x, t+, a, s)

Elapsed(i, ~x, t−, t+, do(a, s))
de f
=

T (i, do(a, s)) ∧ Elapsed(i, ~x, t−, t+, s) ∨ Ended(i, ~x, t+, a, s) ∧ ActiveP(i, ~x, t−, s)

(24)

The meaning of Active and Elapsed is intuitive: a process is active if it started at some time t− before the current
time and it is still holding, while it is elapsed if it was active at some time before but is no more active.

We assume that at time t0, the time of S 0, there is no record of past processes but there might be active
processes just started at time t0. This is expressed in the following definitions:

ActiveP(i, ~x, t−, S 0)
de f
= P(i, ~x, S 0) ∧ time(S 0) = t−

ElapsedP(i, ~x, t−, t+, S 0)
de f
= ⊥

(25)

Example 8 For example, the interval during which the fluent predicate at(nav, o, x, s) lasts (nav is for the nav-
igation component) can be described by Elapsedat(nav, o, x, t−, t+, s) and Activeat(nav, o, x, t−, s) described as
follows.

Elapsedat(nav, o, x, t−, t+, do(a, s))
de f
= T (i, do(a, s)) ∧ (Elapsedat(nav, o, x, t−, t+, s)∨

Endedat(nav, t+, o, x, a, s) ∧ Activeat(nav, o, x, t−, s)) ;

Activeat(nav, o, x, t−, do(a, s))
de f
= T (i, do(a, s)) ∧ (S tartedat(nav, t−, o, x, a, s)∨

Activeat(nav, o, x, t−, s) ∧ ¬(∃t+ Endedat(nav, t+, o, x, a, s))) .

�



5 TEMPORAL INTERVALS AND CONSTRAINTS 19

With the aid of ElapsedP and ActiveP we can represent the above interval relations between processes, and
fluents, specified in DT according to a TFSC formula Fop suitably built up from a combination of ElapsedX ,
ActiveX (where X denotes the fluent or process they refer to). Let op denote an interval relation:

P(i, ~x, t−i , t
+
i ) op Q( j, ~y, t−j , t

+
j )[s, s′]

def
= Fop(i, j, ~x, ~y, t−i , t

+
i , t
−
j , t

+
j , s, s

′). (26)

In particular, we focus on the interval relations op ∈ {b,m, o,d, s, f, e}. Here, P(i, ~x, t−i , t
+
i ) op Q( j, ~y, t−j , t

+
j ) is

a situation-suppressed expression that represents the interval relation between P and Q independently from the
situations’ instances, while the expression [s, s′] restores the situations in the formula.

In the following example, we show how some of these relations can be represented in TFSC using the form
(26).

Example 9 The interval relations m, f, s, and d can be macro-defined as follows.

i. Relation P(~x) m Q(~y):

P(i, ~x, t−i , t
+
i ) m Q( j, ~y, t−j , t

+
j )[s, s′]

def
= ElapsedP(i, ~x, t−i , t

+
i , s)→(

(ActiveQ( j, ~y, t−j , s
′) ∨ ElapsedQ( j, ~y, t−i , t

+
j , s
′)) ∧ (t+i = t−j )

)
.

P(i, ~x, t−i , t
+
i ) m Q( j, ~y, t−j , t

+
j ) holds over the timelines s and s′, with T (i, s) and T ( j, s′) if, whenever P

ends at t+i , Q starts at t−j with t+i = t−j .

ii. Relation P(~x) f Q(~y):

P(i, ~x, t−i , t
+
i ) f Q( j, ~y, t−j , t

+
j )[s, s′]

def
= ElapsedP(i, ~x, t−i , t

+
i , s)→(

ElapsedQ( j, ~y, t+i , t
+
j , s
′) ∧ (t+i = t+j )

)
.

P(i, ~x, t−i , t
+
i ) f Q( j, ~y, t−j , t

+
j ) holds over the timelines T (i, s) and T ( j, s′) if, whenever P ends at t+i , Q ends

at t+j with t+i = t+j .

iii. Relation P(~x) s Q(~y):

P(i, ~x, t−i , t
+
i ) s Q( j, ~y, t−j , t

+
j )[s, s′]

def
= (ElapsedP(i, ~x, t−i , t

+
i , s)→

(ActiveQ( j, ~y, t−j , s
′) ∨ ElapsedQ( j, ~y, t−i , t

+
j , s
′)) ∧ (t−i = t−j ))

∨

(ActiveP(i, ~x, t−i , s)→
(ActiveQ( j, ~y, t−j , s

′) ∨ ElapsedQ( j, ~y, t−i , t
+
j , s
′)) ∧ (t−i = t−j )).

P(i, ~x, t−i , t
+
i ) s Q( j, ~y, t−j , t

+
j ) holds over the timelines T (i, s) and T ( j, s′) if, whenever P starts at t−i with

argument ~x along s, then Q starts at t−j = t−i , with argument ~y, along s′.

iv. Relation P(~x) d Q(~y):

P(i, ~x, t−i , t
+
i ) d Q( j, ~y, t−j , t

+
j )[s, s′]

def
= (ElapsedP(i, ~x, t−i , t

+
i , s)→

(ActiveQ( j, ~y, t−j , s
′) ∨ ElapsedQ( j, ~y, t−i , t

+
j , s
′))∧

(t−j ≤ t−i ∧ t+i ≤ t+j ))
∨

(ActiveP(i, ~x, t−i , s)→
(ActiveQ( j, ~y, t−j , s

′) ∨ ElapsedQ( j, ~y, t−i , t
+
j , s
′)) ∧ (t−j ≤ t−i )).



5 TEMPORAL INTERVALS AND CONSTRAINTS 20

x before y
y after x
x meets y
y met by x

x overlaps y
y overlapped by x
x starts y
y started by x
x during y
y contains x

x finishes y
y finished by x

x equals y

x

y

yx

x

x

x

x

x

Figure 3: Allen Interval Relations

P(i, ~x, t−i , t
+
i ) d Q( j, ~y, t−j , t

+
j ) holds over the timelines T (i, s) and T ( j, s′) if, whenever P starts at t−i (and

ends at t+i ) with argument ~x along s, then Q started at t−j ≤ t−i (and ends at t+i ≤ t−i ), with argument ~y, along
s′.

�

5.1 Temporal Compatibilities: Syntax
Given the abbreviations described in the previous section, as P(.) op Q(.), we can construct what we call com-
patibilities that regulate how each process (or fluent) Pi behaves along the timelines. We denote compatibilities
by comp(Pi, LLists), where Pi is, indeed, either a process or a fluent symbol, and LList is a list of lists, named
List, of pairs (op, P j) composed of an interval relation op and a process or fluent symbol P j. The set of temporal
compatibilities for a given action theoryDT in TFSC is denoted Tc, and the syntax for their construction is given
below:

Tc ::= [ ] | [comp(Pi, LLists) | Tc];
LLists ::= [ ] | [List | LLists];
List ::= [ ] | [(op, P j) | List].

Example 10 A set of two compatibilities mentioning the interval relations m,d,b, e binding the interaction
between the processes P1, P2, P3 and P4 is defined as follows:

Tc = [ comp(P1, [[(m, P2), (d, P3)], [(b, P4), (e, P3)]]),
comp(P2, [[(s, P1), (m, P4)], [(d, P3)]]) ].

Here the compatibilities state that either (1) the process P1 meets P2 and is during P3, or (2) P1 is before P4 and
ends P3; moreover, either (3) P2 starts P1 and meets P4 or (4) it is during P3.

5.2 Temporal Compatibilities: Semantics
Temporal compatibilities Tc, similarly as in Golog, are not first class citizens of the language, thus their semantics
is defined through TFSC macros. The time variables mentioned in the compatibilities (see previous paragraph)



5 TEMPORAL INTERVALS AND CONSTRAINTS 21

play an important role in their construction because tasks switching might not be defined in advance, that is, con-
straints might be qualitatively but not metrically fixed. For example, we know that event A has to occur before
B, without knowing the precise duration or timing. We show in Section 6 that this flexibility can be managed by
temporal variables whose values are constrained by the temporal network associated with the described compat-
ibilities. We recall that we indicate the free temporal variable using the notation t and the notation s[ω] to denote
the occurrence of free temporal variables ω = 〈t1, t2 . . . , tn〉 in a situation s. For example, the situation σ1 =

do(endπ(i, t1), do(startπ(i, 1.5), S 0)) represents a process started at time 1.5 with the ending time denoted by the
free variable t1.

The semantics of the above defined temporal compatibilities is specified by a predicate I(Tc, s[ω]) denoting
the constraints associated with a bag of situations s given the Tc compatibilities. The predicate I(Tc, s[ω]) is
obtained by eliciting the time constraints of the variables ω, according to the tail recursive construction illustrated
below, using two further predicates I1 and I2:

I([ ], s)
def
= > .

I([comp(P(i, ~x), LLists) | Tc], s)
def
= I1(comp(P(i, ~x), LLists), s) ∧ I(Tc, s) .

(27)

Here the induction is defined with respect to LLists: if LLists is empty then I is true; otherwise I is the conjunction
of the predicate I1 taking as argument, to be expanded, the compatibility comp(P(i, ~x), LLists) and the predicate
I taking as argument the remaining compatibilities Tc. The macro expansion construction proceeds as follows.

I1(comp(P(i, ~x), [ ]), s)
def
= ⊥ .

I1(comp(P(i, ~x), [List | LLists]), s)
def
= I2(P(i, ~x), List, s) ∨ I1(comp(P(i, ~x), LLists), s) .

(28)

The I1 macro denotes the compatibilities of P(i, ~x) and it is defined by a disjunction with the I2 macros de-
scribed below. Each I2(P(i, ~x), List, s) macro collects the set of temporal constraints specified by the compatibil-
ity comp(P(i, ~x), [List]) over the timelines mentioned in the bag of situations s.

I2(P(i, ~x), List, s)
def
= ∃s( s ∈ s ∧T (i, s)∧

(
∧
{(op,Q( j,~y))∈List} ∃s′(s′ ∈ s ∧T ( j, s′)∧

∀~x, t−i , t
+
i ∃~y, t

−
j , t

+
j (P(i, ~x, t−i , t

+
i ) op Q( j, ~y, t−j , t

+
j )[s, s′])))).

(29)

So the predicate I2 is the bottom of the expansion as it reduces to a conjunction of statements P(i, ~x, t−i , t
+
i )

op Q( j, ~y, t−j , t
+
j )[s, s′]) that we already know how to transform into a formula of TFSC, see Section 5. Note,

in particular, that the bag of timelines mentioned in I2, serves to pick up a pair of situations for each temporal
constraint, according to its type i. That is, the expansion of I2(P(i, ~x), List, s) says that each element (op,Q( j, ~y)) ∈
List specifying a temporal relation op with the processes P(i, ~x), holding over the timeline s ∈ s, holds over the
timeline s′ ∈ s compatibly with the constraint op.

Example 11 Consider the timelines for the two components nav(for navigation) and eng (for engine) depicted
in Figure 4. The involved compatibilities are represented by the following Tc term

Tc = [ comp(at(nav, x), [[(d stop(eng)) ] ]),
comp(go(nav, x, x′), [[(e run(eng)) ] ]) ],

Here Tc states that: at(nav, x) d stop(eng), that is, the agent navigation can be at a specified position x only
while the engines are stopped. On the other hand the temporal constraint go(nav, x, x′) e run(eng) tells us that
the processes go(nav, x, x′) and running(eng) start and stop at the same time.



5 TEMPORAL INTERVALS AND CONSTRAINTS 22

at go at

stop run stop

S0

S0

do(startgo,S0) do([startgo,endgo],S0)

do(startrun,S0) do([startrun,endrun],S0)

Elapsedat(nav,p1,t0,t-1) Elapsedgo(nav,p1,p2,t-1,t+1)

Elapsedstop(eng,t0,t-2) Elapsedrun(eng,t-2,t+2) Activestop(eng,t+2)

Activeat(nav,p2, t+1)
nav

eng

t-1 <= t-2 t-1 = t-2, t+1 = t+2 t+2 <= t+1

Figure 4: Timelines represented by s[t−1 , t
+
1 , t
−
2 , t

+
2 ] = B({ do([startgo(nav, p1, p2, t−1 ), endgo(nav, p1, p2, t+

1 )], S 0),
do([startrun(eng, t−2 ), endrun(eng, t+

2 )], S 0)}), and temporal constraints defined by the macro I(Tc, s[ω]), with ω
= 〈t−1 , t+

1 , t−2 , t+
2 〉. Note that each relation Elapsed and Active labelling the timeline nav implies the temporal

constraint labelling the arrow.

The timelines in Figure 4 are designated by the following bag of situations:

s[ω] = B({ do([startgo(nav, p1, p2, t−1 ), endgo(nav, p1, p2, t+
1 )], S 0),

do([startrun(eng, t−2 ), endrun(eng, t+
2 )], S 0)}),

where ω = 〈t−1 , t+
1 , t−2 , t+

2 〉 are time variables.
To establish the temporal constraints that hold over the timelines in s[ω] using the compatibilities Tc (see

Figure 5), we can built the predicate I(Tc, s[ω]) on s, with time variables ω, according to definition (28), as
follows:

I(Tc, s)
def
= I1(comp(at(nav, x), [[(d stop(eng)) ] ]), s)∧
I1(comp(go(nav, x, x′), [[(e run(eng)) ] ]), s),

that is, macro expanding I1 in terms of I2 (by (28)),

I(Tc, s)
def
= I2(at(nav, x), [(d stop(eng))], s) ∧ I2(go(nav, x, x′), [(e run(eng))], s),

According to the above I2 expansion, we obtain:

I2(at(nav, x), [(d stop(eng))], s)
def
= ∃s(s ∈ s ∧T (nav, s)∧

∃s′(s′ ∈ s ∧T (eng, s′) ∧ ∀x, t1, t2∃t3, t4(at(nav, x, t1, t2) d stop(eng, t3, t4)[s, s′]))) ;

I2(go(nav, x, x′), [(e run(nav))], τ2, s)
def
= ∃s(s ∈ s ∧T (nav, s)∧

∃s′(s′ ∈ s ∧T (nav, s′) ∧ ∀x, y, t1, t2∃t3, t4(go(nav, x, y, t1, t2) e run(eng, t3, t4)[s, s′]))).

Collecting everything together we obtain that I(Tc, s) reduces to the following TFSC formula denoting the tem-



5 TEMPORAL INTERVALS AND CONSTRAINTS 23

S0

stop stoprun

at atgo

{d} {e}
{d}

{(0,0)} {(0,0)}

{(0,0)} {(0,0)}

{(0,0)}

{(0,0)}

Figure 5: Temporal constraint network associated with the compatibilities Tc = [comp(at(nav, x), [[(d stop(eng))
] ]), comp(go(nav, x, x′), [[(e run(eng))]])] and the timelines represented by s[t−1 , t

+
1 , t
−
2 , t

+
2 ] = B({ do([startgo(nav,

p1, p2, t−1 ), endgo(nav, p1, p2, t+
1 )], S 0), do([startrun(eng, t−2 ), endrun(eng, t+

2 )], S 0)}).

poral constraints relative to s and Tc (see Figure 4).

I(Tc, s)
def
= ∃s(s ∈ s ∧T (nav, s)∧

∃s′(s′ ∈ s ∧T (eng, s′) ∧ ∀x, t1, t2∃t3, t4(
Elapsedat(nav, x, t1, t2, s)→

(Activestop(eng, y, t3, s′) ∨ Elapsedstop(eng, y, t3, t4, s′)) ∧ (t1 = t3 ∧ t2 = t4)∨
Activeat(nav, x, t1, s)→

(Activestop(eng, y, t3, s′) ∨ Elapsedstop(eng, y, t3, t4, s′)) ∧ (t1 = t3)))∧
∃s′(s′ ∈ s ∧T (eng, s′) ∧ ∀x, t1, t2∃t3, t4(

Elapsedgo(nav, x, t1, t2, s)→
(Activerun(eng, y, t3, s′) ∨ Elapsedrun(eng, y, t3, t4, s′)) ∧ (t3 ≤ t1 ∧ t2 ≤ t4)∨

Activego(nav, x, t1, s)→
(Activerun(eng, y, t3, s′) ∨ Elapsedrun(eng, y, t3, t4, s′)) ∧ (t3 ≤ t1)))).

Discussion In the TFSC framework, parallel timelines are associated with their sets of processes and fluents,
therefore, processes and fluents belonging to different timelines influence each other mainly through temporal
constraints. This proves that loosely coupled components and temporal constraints are necessary to allow and
capture flexible temporal behaviours. Indeed, in the TFSC framework, starting and ending points of the pro-
cesses are not fixed and events associated with different components are not sequenced, hence only temporal
constraints can be forced. This approach allows us to (1) represent temporally flexible behaviours in their gen-
erality (2) keep the simple structure of the basic theory of actions for each component. Notice also that, fluents
belonging to two separated components can be easily related through temporal compatibilities, e.g. specifying
P(i, ~x, t−1 , t

+
1 ) e Q( j, ~y, t−2 , t

+
2 ), implies that whenever P(·) is on timeline i, Q(·) must be on timeline j. Furthermore,

since the temporal compatibilities are expressed by a TFSC formula, it is possible to infer properties associated
with parallel timelines and their constraints. E.g. it is possible to ask whether DT |= ∃t, p[at(nav, p, t, σ2) ∧
stop(eng, t, σ1)∧ σ1 ∈ s∧ σ2 ∈ s] ∧ I(Tc, s), with s defined as specified in Example 11. This formula combines
parallel processes and temporal constraints. In the next sections, we shall show how it is possible to decouple
logical and temporal reasoning in TFSC.



6 MAPPING TFSC TO TEMPORAL CONSTRAINT NETWORKS 24

6 Mapping TFSC to Temporal Constraint Networks
In this section, we introduce the construction of a transformation from the compatibility formula I(Tc, s), having a
macro definition (see (26)) within a background theoryDT of TFSC, into a general temporal constraint networks
(TCN) [47]. More specifically, we show that, given a domain theory DT , a set of temporal compatibilities Tc,
and a bag of timelines s[ω], it is possible to build a temporal network as a disjunction of conjunctions of algebraic
relations µop over time.

6.1 Temporal Constraint Network
A Temporal Constraint Network (TCN) is a formal structure for handling metric information, the general concept
was early introduced by Dechter, Meiri and Pearl in [13] and then further extended in [14] and in [47] to handle
both quantitative and qualitative information. Temporal knowledge represented by propositions, can be associ-
ated with intervals, and relationships between events timing can be represented by constraints. For example the
statement the robot was close to the door before it could see it, but it was still there after it had processed the
images, can be represented as:

(a) closeTo(r, d, t−1 , t
+
1 ) b see(r, d, t−2 , t

+
2 ) (b) closeTo(r, d, t−1 , t

+
1 ) a scan(r, d, t−2 , t

+
2 )

A TCN offers a simple representation schema for temporal statements, exploiting a temporal algebra of
relations that can be expressed by a direct constraint graph, where each node is labelled by a an event associated
with a temporal interval, and directed edges between nodes denote the temporal constraints.

Essentially a TCN involves a set of variables {t−1 , t
+
1 . . . , t

−
n , t

+
n }, with time intervals [t−, t+] representing the

duration of specific events (e.g. closeTo), and a set R of binary constraints coming from the 13 possible relation-
ships that can be stated between any pair of intervals [2], these are illustrated in Figure 3. Note that constraints
can be expressed disjunctively, for example if we consider the events at(r, P1) and moveTo(r, P2), then in the
TCN we could express the statement at(r, P1) {m, s} moveTo(r, P2), saying that the event at(r, P1) can either
start or meet the event moveTo(r, P2).

According to the underlying temporal algebra, TCNs can express different forms of reasoning; among the
most well known are the Point Algebra [78], and the metric point algebra [14], an extensive overview can be
found in [6].

Let {t−1 , t
+
1 , . . . , t

−
n , t

+
n }, n ∈ N be a set of time variables, where each couple of variables t−i , t

+
i denotes an interval

[t−i , t
+
i ] possibly associated with some event; let TCN involve a set of binary constraints R = {op1, . . . , opm},

m ∈ M. The temporal constraint network TCN represented with a labelled direct graph can be described using
conjunctions and disjunctions of constraints as follows:∨

z∈Z
∧

i, j∈Jz
[t−i,z, t

+
i,z] opi,z [t−j,z, t

+
j,z]. (30)

The assignment V = {〈v−i , v+
i 〉 | v

+
i (t+i ) = si and v−i (t−i ) = ei with si, ei ∈ R

+, si < ei} to the variables is called a
solution if it satisfies all the constraints in R, defining the TCN. The network is consistent if at least one solution
exists (see [14]). A classification of complexity for satisfiability problems (specifically for the Allen’s interval
algebra), has been given in [35], following previous results of [52].

6.2 Mapping compatibilities to temporal constraints
Consider the macro definition (26) and the definitions of the temporal operators {m, b, f, d, s, e} as given in
Example 9. We have that:

P(i, ~x, t−i , t
+
i ) op Q( j, ~y, t−j , t

+
j )[s, s′]

de f
= Fop(i, j, ~x, ~y, t−i , t

+
i , t
−
j , t

+
j , s, s

′)



6 MAPPING TFSC TO TEMPORAL CONSTRAINT NETWORKS 25

where Fop(·) is a formula of LT FS C (definiens) while P(·) op Q(·) is a macro of the pseudo language (definien-
dum). Clearly, byM, v |= P(·) op Q(·) we meanM, v |= Fop(·). Furthermore, we can note that each op can be
given an algebraic interpretation γop of a temporal constraint á la Allen as follows. Let op ∈ {b,m, o,d, s, f, e},
there is an algebraic relation interpreting op, say γop, defined as follows:

γb(t−i , t
+
i , t
−
j , t

+
j )

def
= (t+i ≤ t−j ) γm(t−i , t

+
i , t
−
j , t

+
j )

def
= (t+i = t−j )

γo(t−i , t
+
i , t
−
j , t

+
j )

def
= (t−i ≤ t−j ∧ t+i ≤ t+j ) γd(t−i , t

+
i , t
−
j , t

+
j )

def
= (t−j ≤ t−i ∧ t+i ≤ t+j )

γs(t−i , t
+
i , t
−
j , t

+
j )

def
= (t−i = t−j ) γf(t−i , t

+
i , t
−
j , t

+
j )

def
= (t+i = t+j )

γe(t−i , t
+
i , t
−
j , t

+
j )

def
= (t−i = t−j ∧ t+i = t+j )

(31)

Within the TFSC approach, the definiens Fop(·) is interpreted into structures of the TFSC, letting the assignments
to temporal variables ω to freely vary on these structures. However we shall show that the TCN, that we obtain
from the predicate I(Tc, s[ω]), will make it possible to suitably specify these variables values.

The following theorem states that the predicate I(Tc, s[ω]) can be transformed into a normal form, given a
suitable indexing of the time variables with respect to the processes and the interval relations op.

Theorem 6 Let s[ω] be a bag of timelines mentioning a set of timelines {σ1, . . . , σn}, where each σi is a timeline
term and where ω collects all the free variables in s.

Then the predicate I(Tc, s[ω]) can be reduced to the following form:∨
z∈Z

∧
〈q1,q2,q3,q4〉∈Jz

∀~x∃~y.Pz,q1 (iz,q1 , ~x, τ
−
z,q2
, τ+

z,q2
) opz,q3

Qz,q3 ( jz,q3 , ~y, τ
−
z,q4
, τ+

z,q4
)[σiz,q1

, σ jz,q3
]. (32)

Here, Z and Jz are finite sets of indexes and the τi, js are either free variables or ground terms mentioned in ω.

�
Theorem 6 allows to eliminate temporal quantifiers in I(Tc, s[ω]) obtaining a normal form where temporal terms
τi, j can be are either temporal variables or ground terms. Here, the index z ranges on the disjunctions, while the
other indexes q1, . . . , q4 range on the possible conjuncts Pz,q1 , on the associated temporal variables τz,q2 , on the
relations opz,q3

Qz,q3 , and on their variables τz,q4 .
To put in evidence the interval relations, when i, j, σi, σ j can be extrapolated from the context, we use the

abbreviation ϕop(τ−k , τ
+
k , τ−g , τ

+
g ) to denote the interval relation:

∀~x∃~yP(i, ~x, τ−k , τ
+
k ) op Q( j, ~y, τ−g , τ

+
g )[σi, σ j]. (33)

Now, given the disjunction of conjunctions of interval relations as defined in (32), we need to make explicit the
underlying algebraic relations. The algebraic interval relations associated with ϕop(τ−k , τ

+
k , τ−g , τ

+
g ) depends also

on the associated domain theory DT . In fact, the left hand side P(·) of the interval relation P(·) op Q(·) works as
the enabler of the interval constraint: if no process (or fluent) P(·) is either active or elapsed along the timelines,
then the associated interval relation op is not applicable; otherwise, if P(·) is active or elapsed, the algebraic
relation for op depends whether P(·) is still active or is elapsed. More precisely, we distinguish the following
three cases:

EP : DT |= ∃~x, t−, t+ElapsedP(i, ~x, t−, t+, σi) ∧ σi ∈ s,
AP : DT |= ∃~x, t−ActiveP(~x, t−, σi) ∧ σi ∈ s,
NP : neither EP nor AP hold.

(34)

Given these cases, we can introduce the algebric relation µop(t−k , t+k , t−g , t+g ) associated with ϕop(t−k , t+k , t−g , t+g ) as
follows:

m1 If NP holds then, for the given op, no temporal constraint is imposed;
m2 if EP holds then, for the given op, µop = γop;
m3 if AP holds then we have that, for op ∈ {m, f} no temporal constraint is imposed, as for the remaining cases:

(35)



6 MAPPING TFSC TO TEMPORAL CONSTRAINT NETWORKS 26

µb = γb, µe = (t−k = t−g ), µo = (t−k ≤ t−g ), µd = (t−g ≤ t−k ).

The following theorem shows the relation between µop and ϕop.

Theorem 7 Let µop be any of the algebraic interval relations defined above, and letM = (D, I) be a structure
of LT FS C such thatM is a model of DT and suppose that for some assignment v to the free temporal variables
the following holds:

(i) M, v |= ∀~x∃~y.P(i, ~x, τ−p , τ
+
p) op Q( j, ~y, τ−q , τ

+
q )[σi, σ j],

(ii) M, v |= ∃~x ElapsedP(i, ~x, τ−p , τ
+
p , σi) orM, v |= ∃~x ActiveP(~x, τ−p , σi).

Here σi, σ j are ground timelines of type i and j, with τ+
p

(I,v) = d+
p , τ

−
p

(I,v)
= d−p , τ

+
q

(I,v) = d+
q , τ

−
q

(I,v)
= d−q with d+

p ,
d−p , d−q , d+

q elements of the domain D canonically interpreted in R+.
Then, the algebraic relation µop holds on 〈d−p , d+

p , d−q , d+
q 〉.

�
The theorem says that, given the conditions (i) and (ii) for a temporal relation ∀~x∃~yP(·) op Q(·), the algebraic

relation µop holds on the same time values. Note that, the condition (i) of Theorem 7 states that the temporal
relation ∀~x∃~yP(·) op Q(·) is consistent with respect to the theory DT and the bag of timelines s. Instead, the
conditions (ii) play the role of the conditions m2 and m3.

6.3 Compatibilities without logical constraints
We now want to introduce a notion of consistency which depends only on the logical structure independently
of the temporal constraints. Considering again the macro definition (26) and the definitions of the temporal
operators as given in Example 9, by {P(i, ~x, τ−k , τ

+
k ) op Q( j, ~y, τ−g , τ

+
g )[σi, σ j]}Λ we indicate the formula obtained

from P(i, ~x, τ−k , τ
+
k ) op Q( j, ~y, τ−g , τ

+
g )[σi, σ j] excluding its temporal constraints. For example, for op = m

{P(i, ~x, t−i , t
+
i ) m Q( j, ~y, t−j , t

+
j )[s, s′]}Λ = ElapsedP(i, ~x, t−i , t

+
i , s)→

((ActiveQ( j, ~y, t−j , s
′) ∨ ElapsedQ( j, ~y, t−i , t

+
j , s
′)).

We can now introduce the notion of partially consistent interval relation.

Definition 2 Given a TFSC theoryDT and a bag of timelines s, the interval relation P(i, ~x, τ−k , τ
+
k ) op Q( j, ~y, τ−g , τ

+
g )[σi, σ j]

is partially consistent with respect toDT if there exists a modelM ofDT and an assignment v to the free temporal
variables such that

M, v |= {P(i, ~x, τ−k , τ
+
k ) op Q( j, ~y, τ−g , τ

+
g )[σi, σ j]}Λ

�
This notion allows us to separate the temporal and logical structure associated to the compatibilities and will

be exploited in the construction of the network illustrated in the next subsection. We are now ready, reversing
the process and using the results of Theorem 6 and Theorem 7, to show how from the compatibility constraint
predicate I(Tc, s[ω]) the temporal constraint network can be built.

6.4 Network Construction
The network construction proceeds as follows.



6 MAPPING TFSC TO TEMPORAL CONSTRAINT NETWORKS 27

Temporal Network
Temporal relations µop(τ−p , τ

+
p , τ
−
q , τ

+
q )

Temporal constraint network
∨∧

µop(τ−p , τ
+
p , τ
−
q , τ

+
q )

Assignment V solution of the network V = {〈v−i , v+
i 〉 | v

+
i (t+i ) = si, v−i (t−i ) = ei with si, ei ∈ R

+, si < ei}

Compatibilities and constraints in TFSC
Temporal variables ω=〈t−1 , t

+
1 , . . . t

−
n , t+

n 〉, n ∈ N
Compatibility term Tc

Constraint formula for s with free variables in ω I(Tc, s[ω])
Between TFSC and TCN mapping

Mapping Temporal Constraints ζ : (DT ,Tc, s[ω])→ TCN
Mapping Ordering Constraints Ord : s[ω]→ TCN

Table 2: Notation for TFSC and TCN mapping.

(a) Transform the predicate I(Tc, s[ω]) into a disjunctive normal form, as indicated in Theorem 6, obtaining
the form (32):∨

z∈Z
∧
〈q1,q2,q3,q4〉∈Jz

∀~x∃~y.Pz,q1 (iz,q1 , ~x, τ
−
z,q2
, τ+

z,q2
) opz,q3

Qz,q3 ( jz,q3 , ~y, τ
−
z,q4
, τ+

z,q4
)[σiz,q1

, σ jz,q3
].

(b) Let τ−1,1, τ
+
1,1, . . . , τ

−
n,m, τ

+
n,m be time variables or instances thereof mentioned in each of the conjuncts

∀~x∃~y.P(·) op Q(·) as in (32).

(c) For each conjunct

∀~x∃~y.Pz,q1 (iz,q1 , ~x, τ
−
z,q2
, τ+

z,q2
) opz,q3

Qz,q3 ( jz,q3 , ~y, τ
−
z,q4
, τ+

z,q4
)[σiz,q1

, σ jz,q3
],

if this is partially consistent with DT then, given the EP, AP, and NP as specified in (34), we can define
the corresponding µq1

opz,q3
as specified by the rules (m1)-(m3) in (35). Otherwise, if not partially consistent

inDT , the associated index z is collected in a set of indexes Z∗, that is, z ∈ Z∗.

(d) From the above disjunctive normal form (32), we can obtain the algebraic relations:∨
z∈Z′

∧
(q1,q2,q3,q4)∈Jz

µ
q1
opz,q3

(τ−z,q2
, τ+

z,q2
, τ−z,q4

, τ+
z,q4

).

Here, Z′ is for Z \ Z∗ and collects only the indexes not excluded at the step (c) (i.e. Z′ collects only
consistent disjuncts).

Here, µq1
opz,q3

is the algebraic temporal relation indexed by z, q3 - as the opz,q3
in the form (32) - and q1 be-

cause depending on Pz,q1 according to the rules (m1)-(m3). That is, given the domain theory DT and the bag of
timelines s, the above algebraic relation can be obtained from the form (32) once we substitute each conjunct
∀~x∃~y.P(·) op Qz, j(·) as specified in the step (c).

∨∧
µ

q1
opz,q3

(·, ·, ·, ·) is, indeed, the temporal constraint network
implicitly represented by I(Tc, s[ω]) given DT . In other words, this network is a labelled direct graph which
can be described using conjunctions and disjunctions of temporal constraints. Therefore, following the notation
introduced in Section 6.1, we can denote this temporal network as ζ(DT ,Tc, s[ω]) because it depends onDT , Tc,
and s[ω].

Notice that in the temporal network ζ(DT ,Tc, s[ω]) obtained by the (a)-(d) transformation, the time ordering
constraints, enforced by the situations mentioned in the bag of timelines s[ω], are not made explicit, although



7 FLEXIBLE HIGH LEVEL PROGRAMMING IN TFGOLOG 28

they hold in force of Lemma 2, (see Section 3). Therefore, to obtain the complete set of time constraints implicit
in s[ω], given Tc and DT , we have to consider also the temporal ordering defined by the structure of the bag
of timelines s[ω]. That is, for any situation σ[ω′] ∈ s[ω] (where ω′ are the variables mentioned in σ), if
σ1[ω1] v σ2[ω2] v σ[ω′], then time(σ1[ω1]) ≤ time(σ2[ω2]) ≤ time(σ[ω′]). Given the time variables t−1 ,
t+
1 , . . . , t

−
m, t+

m used for the time variables ω, we call this set of ordering constraints Ord(s[ω]). For example,
considering again the bag of timelines depicted in Figure 4, Ord(s[ω]) = (t0 ≤ t+

1 ∧ t−1 ≤ t+
1 ) ∧ (t0 ≤ t−2 ∧ t−2 ≤ t+

2 )
collecting the ordering constraints associated with the two timelines in s[ω].

Corollary 2 Let ζ(DT ,Tc, s[ω]) be a temporal constraint network obtained by I(Tc, s[ω]), according to steps
(a-d) of the network construction and letM be a structure of TSFC which is a model forDT .

Let V = {〈v−i , v+
i 〉 | v

+
i (t+i ) = si and v−i (t−i ) = ei with si, ei ∈ R

+, si < ei} be an assignment to the time variables.
Then V is a solution for the network iff for any assignment v to the free temporal variables of s[ω], which is

like V,M, v |= I(Tc, s[ω]).

�
The corollary says that we can use the temporal constraint network as a service for the theory of actions to fix
the temporal constraints between processes and fluents. Given the compatibility constraints and the Ord order-
ing constraints introduced above, we can express with network(DT ,Tc, s[ω]) the conjunction of the temporal
constraint network and the ordering constraints as follows:

network(DT ,Tc, s[ω]) = ζ(DT ,Tc, s[ω]) ∧ Ord(s[ω]). (36)

We shall not discuss in this paper methods of simplification of the constraints nor for computing a satisfiable set
of time values for a temporal network.

7 Flexible High Level Programming in TFGolog
In this section, we introduce the syntax and the semantics of a TFGolog interpreter that can be used to generate
a temporal constraint network and the related flexible temporal plan.

7.1 TFGolog Syntax
Given the extended action theory presented above, the following constructs inductively build Golog programs:

1. Primitive action: α.

2. Nondeterministic choice: α|β. Do α or β.

3. Test action: φ?. Test if φ is true in the current bag of timelines.

4. Nondeterministic argument choice: choose ~x for p(~x).

5. Action sequence: p1; p2. Do p1 followed by p2.

6. Partial order action choice: p1 ≺ p2. Do p1 before p2.

7. Parallel execution: p1‖p2. Do p1 concurrently with p2.

8. Conditionals: if φ then p1 else p2.

9. Nondeterministic iteration: p∗. Do p n times, with n ≥ 0.



7 FLEXIBLE HIGH LEVEL PROGRAMMING IN TFGOLOG 29

10. While loops: while φ do p1.

11. Procedures, including recursion.

Hence, compared to Golog, here we also have the parallel execution and partial order operator that can be defined
over parallel timelines.

Example 12 Considering again the two components nav (for navigation) and eng (for engine), depicted in
Figure 4, a possible TFGolog program encoding the robot task approaching position pos, within the time interval
d, can be written as follows:

proc(approach(d, pos), π(t1, π(t2, π(t3,
[π(x, startgo(nav, x, pos, t1)) ≺ (at(nav, pos)?) ‖ startrun(eng, t3) ; endrun(eng, t2) ; (t2 − t1<d)?])))

).

Here, we are stating that, the robot starts to go to pos at time t1, meanwhile the engine starts to work at time t3
and it is switched off, at the arrival to pos, at time t2. Notice that endgo is not explicitly specified, but should be
inferred by the interpreter because needed to satisfy at(nav, pos).

7.2 TFGolog Semantics
The semantics of a TFGolog program p with respect toDT can be defined in the TFSC.

Given an initial bag of timelines s, an interval (hs, he) specifying the time horizon over which the program is
to be instantiated from hs to he, the execution trace s′ of a program p is recursively defined through the macro
DoT F(p, s, s′, (hs, he)).

First we shall introduce some further notation that extends Golog abbreviations to bag of timelines:

s
′ = ddo(a, s, s)

def
= (s ∈ s ∧ a=νs) ∧ (s′ = (s\S B({s})) ∪S B({do(a, s)})). (37)

Here, the two operations of difference and union are the one already defined for bag of timelines, as shown in
Example 6 and Definition 1. Notice that for a = A(~x, t) with t free variable, s equals to ddo(A(~x, t), σ, s) with s

mentioning the free variable t.
Furthermore, we extend the function time to bags of timelines as follows:

ttime(s)
def
= max{time(σ)|σ ∈ s} (38)

Here max{.} is defined by a first order formula, for example if it were defined for two elements it would be as
follows:

max{a, b} = x
def
= (x = a ∧ (a > b) ∨ x = b ∧ (b > a)).

Further, we define the executability of a bag of timelines, over a specified horizon (hs, he) as

exec(s, s′, (hs, he))
def
= (s = s′ ∧ ttime(s) ≥ hs ∧ ttime(s) ≤ he) ∨ ∃s′′, s, a(s′ = ddo(a, s, s′′)∧

executable(do(a, s)) ∧ exec(s, s′′, (hs, he)) ∧ time(a) ≥ hs ∧ time(a) ≤ he),
(39)

exec(s, s′, (hs, he)) states that s′ is an executable extension of s. The definition is inductive with respect to s′,
where the base case is s′ = s and the inductive step is given for s′ = ddo(a, s, s′′), assuming exec(s, s′, (hs, he)),
with do(a, s) ∈ s′ executable timeline such that s ∈ s′′.

We can now specify the DoT F(p, s, s′, (hs, he)) as follows.



7 FLEXIBLE HIGH LEVEL PROGRAMMING IN TFGOLOG 30

1. Primitive action with horizon:

DoT F(a, s, s′, (hs, he))
def
=

∃s(s ∈ s ∧ a=νs ∧ Poss(a, s) ∧ time(s) ≥ hs ∧ time(s) ≤ he ∧ time(s) ≥ time(a)∧
(time(a) ≤ he ∧ s

′ = ddo(a, s, s) ∨ time(a) > he ∧ s = s′))).

Here, if the primitive action is applicable to s ∈ s, and a can be scheduled after the horizon then it is
neglected along with the rest of the program (i.e. each action, which can start after the horizon could be
neglected; this temporal planning strategy is employed in several timeline-based planners, e.g. [51, 33]).
Notice that Poss(a, s) require a and s to be of the same type. Notice also that, for a = A(~x, t) with t free
variable, the free variable t is mentioned in s′. We recall that s[ω] denotes a bag of situations s with free
variables ω.

2. Program sequence:

DoT F(prog1 ; prog2, s, s
′, (hs, he))

def
= ∃s′′(DoT F(prog1, s, s

′′, (hs, he)) ∧ DoT F(prog2, s
′′, s′, (hs, he))

Here, the second program prog2 is executed starting from the execution s′′ of the first program prog1.

3. Partial-order action choice:

DoT F(prog1 ≺ prog2, s, s
′, (hs, he))

def
= ∃s′′, s′′′(DoT F(prog1, s, s

′′, (hs, he))∧
DoT F(prog1, s

′′′, s′, (hs, he)) ∧ s′′ �S s′′′) ∧ exec(s′′, s′′′, (hs, he))

Here, given the execution s′′ of the first program prog1, the second program prog2 can be executed starting
from an executable extension s′′′ of s′′. If s′′=s′′′ then we have the sequence case.

4. Parallel execution:

DoT F(prog1 ‖ prog2, s, s
′, (hs, he))

def
=

∃s′′DoT F(prog1, s, s
′, (hs, he)) ∧ DoT F(prog2, s, s

′′, (hs, he)) ∧ (s′ = s′′).

The parallel execution of two programs from s, under the horizon (hs, he), can be specified by the con-
junction of the execution of the two programs over the timelines s′ and s′′. The execution is correct iff the
obtained timelines are equal.

5. Test action:

DoT F(φ?, s, s′, (hs, he))
def
= φ[s] ∧ s = s′ .

Here φ[s] stands for a generalisation of the standard φ[s] (in the TFSC) extended to bag of timelines, e.g.
P1[s] ∧ P2[s] stands for P1(s1) ∧ P2(s2) with s1, s2 ∈ s, i.e. each fluent is evaluated with respect to its
specific timeline.

6. Nondeterministic action choice:

DoT F(prog1|prog2, s, s
′, (hs, he))

def
= DoT F(prog1 , s, s

′, (hs, he)) ∨ DoT F(prog2, s, s
′, (hs, he)).

Here, analogously to standard Golog, the execution of the action choice is represented as the disjunction
of the two possible executions.



7 FLEXIBLE HIGH LEVEL PROGRAMMING IN TFGOLOG 31

7. Nondeterministic argument selection:

DoT F(π(x, prog(x)), s, s′, (hs, he))
def
= ∃xDoT F(prog(x), s, s′, (hs, he)).

The execution of the nondeterministic argument selection is represented as in standard Golog.

8. Conditionals:

DoT F(if φ then prog1 else prog2, s, s
′, (hs, he))

def
=

φ[s] ∧ DoT F(prog1, s, s
′, (hs, he)) ∨ ¬φ[s] ∧ DoT F(prog2, s, s

′, (hs, he)).

9. Nondeterministic iteration:

DoT F(prog∗, s, s′, (hs, he))
def
=

∀P{∀s1P(s1, s1) ∧ ∀s1, s2, s3[P(s1, s2) ∧ DoT F(prog, s2, s3, (hs, he))→ P(s1, s3)]} → P(s, s′).

10. The semantics of conditionals, while loops, and procedures is defined in the usual way.

We show, now, that given two fully ground bags of timelines sinit and s such that DoT F(prog, sinit, s, (hs, he))
then the timelines in the bag of timelines s complete the timelines in sinit. Furthermore, we show that, if the
initial bag of timelines sinit mentions only executable timelines, then s mentions only executable timelines too.

Proposition 3 LetDT |= DoT F(prog, sinit, s, (hs, he)) with ttime(s) ≤ he and hs ≤ ttime(sinit), then sinit �S s.

�

Proposition 4 LetDT |= DoT F(prog, sinit, s, (hs, he)) with ttime(s) ≤ he and hs ≤ ttime(sinit), if any σ′ ∈ sinit is
executable, then any σ ∈ s is executable.

�

7.3 Generating Flexible Plans in TFGolog
In this section, we describe how TFGolog programs characterise temporally flexible execution traces represented
by bags of timelines.

The DoT F(prog, sinit, s, (hs, he)) macro defined above defines the bag of timelines s that are executable
extensions of sinit within the horizon (hs, he), but temporal constraints are not considered. However, a correct
extension s for sinit should also satisfy the temporal constraint network induced by the compatibilities Tc (see
Section D) and represented by I(Tc, s[ω]) in TFSC (Corollary 2). Therefore, we introduce the following notion
of temporally flexible execution of a TFGolog program.

Definition 3 LetDT be a domain theory, Tc a set of compatibilities, prog a TFGolog program, (hs, he) a horizon,
and sinit an initial fully ground bag of situations. Let s[ω] be a bag of timelines with free temporal variables ω,
s[ω] is a temporally flexible execution of prog if the following holds.

DT |= ∃t1, . . . , tn.DoT F(prog, sinit, s[t1, . . . , tn], (hs, he)) ∧ I(Tc, s[t1, . . . , tn]). (40)

�
The following proposition shows that, given a temporally flexible execution of prog, the possible assignments of
ω can be characterised by the solution assignments of the temporal constraint network network(DT ,Tc, s[ω]).



7 FLEXIBLE HIGH LEVEL PROGRAMMING IN TFGOLOG 32

Proposition 5 Let DT , Tc, prog, and s[ω] be, respectively, a TFSC domain theory, a set of compatibilities, a
TFGolog program, and a bag of timelines withω free temporal variables and letM a model ofDT . Furthermore,
let V be a set of assignments which are solutions for network(DT ,Tc, s[ω]) and let A be the set of assignments
to the temporal variables forM.
Given a ground bag of timelines sinit:

v ∈ A andM, v |= DoT F(prog, sinit, s[ω], (hs, he)) ∧ I(Tc, s[ω])

iff

v ∈ V andM, v |= DoT F(prog, sinit, s[ω], (hs, he)).

�
As a consequence of the definition of temporally flexible execution and of the above statement, we have the
following corollary which directly follows from Proposition 5.

Corollary 3 Let DT , Tc, and prog be, respectively, a domain theory, a set of compatibilities, and a TFGolog
program. Let (hs, he) be a horizon, sinit an initial fully ground bag of situations, and s[ω] a temporally flexible
execution of prog.

Given any modelM ofDT and any v s.t. M, v |= DoT F(prog, sinit, s[ω], (hs, he)) ∧ I(Tc, s[ω]), we have that
v ∈ V, hence it is a solution of network(DT ,Tc, s[ω]).

�
In other words, this corollary states that, given a temporally flexible execution s[ω], the possible assignments

to ω are the solutions V of network(DT ,Tc, s[ω]).
Once we have established a relation between the temporally flexible execution and the network, we may want

to explicitly represent the solutions in the signature of LT FS C . Suppose we obtain, as a solution of the network, a
tuple of real numbers m = 〈m1, . . . , mn〉 then there are two possibilities. If m is a tuple of rational numbers, they
are representable in LT FS C , hence we can explicitly refer to s[m] to represent a ground s[ω], e.g., ensuring that
DT |= DoT F(prog, sinit, s[m], (hs, he)) ∧ I(Tc, s[m])) to check (40) for the instance m. Otherwise, m = 〈m1, . . . ,
mn〉might be numbers not in the signature ofLT FS C . If we want to represent also these cases, a possible solution
is to extend the language to Lm

T FS C adding for each number its corresponding symbol name as a constant. Then,
in the extended language Lm

T FS C , we can obtain a suitable interpretation for the new symbols, by associating the
interpretation of each new symbol mi to the correspondent variable assignment, that is, ensuring that v(ti) = mI

i ,
according to Proposition 5.

Notice that the s[ω], analogously to standard Golog, can be obtained from the program prog as constructive
proof of (40). The main difference with respect to the standard Golog approach relies in the presence of the free
variables ω, these are the temporal variables 〈t1, . . . , tm〉 associated with the actions Ai(~di, ti) extending the bag
of timelines sinit to s[ω]. The description of an algorithm implementing the interpreter is beyond the scope of
this paper, here we just notice that, similarly to the standard Golog approach, the interpreter has to instantiate the
nondeterministic choices searching for the possible alternatives. However, in this case, the temporal variables
for the actions Ai(~di, ti), instead of been instantiated, are left free (because constrained by the temporal network
represented by I(Tc, s[ω])). An interpreter of this kind can be implemented in the Constraint Logic Programming
language (CLP) [32] which combines logic programming and constraint management. For example, in [10] we
exploit an implementation of the TFGolog interpreter developed in C++ and the Eclipse 5.7 engine for CLP.

Example 13 Considering again the two components nav (for navigation) and eng (for engine), depicted in
Figure 4, a possible TFGolog program encoding the robot task approaching position pos, within the time interval
d , can be written as follows:

proc(approach(d, pos), π(t1, π(t2, π(t3,
[π(x, startgo(nav, x, pos, t1)) ≺ at(nav, pos)? ‖ startrun(eng, t3) ; endrun(eng, t2) ; (t2 − t1<d)?])))).



7 FLEXIBLE HIGH LEVEL PROGRAMMING IN TFGOLOG 33

Here, we are stating that, the robot starts to go to pos at time t1, meanwhile the engine starts to work at time t3
and it is switched off, at the arrival to pos, at time t2. Given an initial, fully ground, bag of timelines:

sinit = B({do(startgo(nav, p1, p2, 2), S 0), do(startrun(eng, 1), S 0)}),

stating that, at the beginning, the agent starts going from p1 to p2 at time 2 and starts the engine at time 1, a
temporally flexible execution σ[ω] for the program approach(d, pos) is such that

DT |= ∃t1, t2, t3.DoT F(approach(5, p2), sinit, s[t1, t2, t3], (0, 10)) ∧ I(Tc, s[t1, t2, t3]),

where d = 5, pos = p2, and (hs, he) = (0, 10).

7.4 TFGolog and Sequential Temporal Golog
To understand how TFGolog relates to other Golog versions in the literature we now show that TFGolog extends
Sequential Temporal Golog. Given the axioms of sequential temporal SC in [64], it is possible to accommodate
time in the Golog semantics. The Sequential Temporal Golog [64] can be directly obtained from the classical
Golog, the only change needed is the Do macro for primitive actions:

Do(a, s, s′)
def
= Poss(a, s) ∧ start(s) ≤ time(a) ∧ s′ = do(a, s),

where start(s) represents the activation time for the situation s. Everything else about Do remains the same.
It is possible to show that TFGolog extends STGolog. Intuitively, any STGolog program can be expressed

as TFGolog program working with a single timeline, grounded time, infinite horizon, without time constraints.
More formally, we can state the following proposition.

Proposition 6 Given a Sequential Temporal SC theory DS TS C it is possible to define a TFSC theory DT such
that for any STGolog program progst there exists a TFGolog program progt f such that

DS TS C |= Do(progst, σ, σ
′) i f f DT |= DoT F(progt f , s, s

′, (0,∞)),

where s = B(σ) and s′ = B(σ′).

�
Notice that STGolog concurrent temporal processes can be expressed by interleaving start and end actions

along a unique timeline represented by a single situation. STGolog, indeed, induces a complete order on activi-
ties. Therefore, this model of concurrency cannot represent partially ordered activities, that might have parallel
runs, since in this case the sequence of activations has to be decided at the execution time.

Reiter [65] proposes a concurrent version of STGolog, that permits the execution of sets actions, with a set
c = {a1, . . . , an} in place of primitive actions. This notwithstanding the order of the activations is already fixed in
the generated sequence of actions. For example

[{starta, startb}, enda, endb] (41)

is a concurrent execution of two processes a and b where a and b start is synchronised, but end of a has to occur
before the end of b.

On the other hand, in TFGolog we can express a more general (flexible) execution plan as follows:

[starta, enda]‖[startb, endb]. (42)

Here process a can end either before or after or even during the end of b.
The point here is that strict sequentialization, as illustrated above for concurrent STGolog, is due to the con-

currency model based on interleaving actions. This model hampers the possibility to generate flexible sequences
in which switching is made possible. These limiting aspects are inherited by all the Golog-family, based on the
interleaving model, including ConGolog [11] and IndiGolog [29].



8 EXAMPLE: ATTENTIVE ROBOT EXPLORATION OF THE ENVIRONMENT 34

8 Example: Attentive robot exploration of the environment
Consider an autonomous robot exploring an environment and performing observations (e.g. a rescue rover [10]),
robot stimuli might guide the robot according to compatible constraints between components and tasks.

Let us model the executive control of the robot via a set of interacting components enabling switching between
tasks. For example, some typical components of an autonomous mobile robot are: the Head controller, that is
the PTU or pan-tilt unit, the Locomotion controller, the Navigation module, including simultaneous localisation
and mapping S LAM, the Attention system providing a saliency map for focusing on regions to be processed by
the Visual Processing component etc. We refer the reader to [10] for a detailed description of this domain. In
particular, in [10] we present a mobile robot whose executive control system is designed deploying TFSC and
TFGolog (see Figure 6).

Head
Moving

Attention

Navigation Locomotion

idle

reset

point

scan

detect

focus

idle

stop

run

idle

at

idle

SLAM

idle

stop

map
Exploration

explore

observe

approach

d

Moving
gotowander d

d

d

a

d

Figure 6: Robot Control Architecture (left) and some control modules (right) with their processes/states (round
boxes), transitions (arrows), and temporal relations (dotted arrows)

TFSC Representation. Each component of the control system can be represented by a type in TCSF and it
is associated with a set of processes. For example, we can consider as names of types the constants: ptu, slm,
att,exp, nav, lcm denoting, respectively, the Head component (ptu), the SLAM module (slm), the Attention
module (att), the Explore module (exp), the Navigation module (nav), and the Locomotion component (lcm).
Each of these types is associated with a set of primitive actions, e.g. for the Locomotion component we have the
primitive actions startstop(lcm, t), endstop(lcm, t), startrun(lcm, t), and endrun(lcm, t), here the lcm type is defined
as follows:

H(lcm, a) ≡ ∃t a = startstop(lcm, t) ∨ ∃t a = endstop(lcm, t) ∨ ∃t a = startrun(lcm, t) ∨ ∃t a = endrun(lcm, t).

As for the related processes, we can introduce specific fluents for each component, for example, given the
component depicted in Figure 6, possible fluents in this domain are:



8 EXAMPLE: ATTENTIVE ROBOT EXPLORATION OF THE ENVIRONMENT 35

Head: {idle(ptu, s), point(ptu, x, t, s), scan(ptu, z, x, t, s), reset(ptu, z, x, t, s)};
SLAM: {idle(slm, s) map(slm, s, t), stop(slm, s, t)} };
Attention: {idle(att, s) detect(att, s, t), f ocus(att, s, t)} };
Explore: {idle(exp, s), explore(exp, t, s), observe(exp, s, t), approach(exp, s, t)} };
Navigation: {idle(nav, s), goto(nav, x, y, t, s), wander(nav, t, s), at(nav, x, s)};
Locomotion: {idle(lcm, s), run(lcm, t, s), stop(lcm, t, s)}.

Each process is explicitly represented in the TFSC model as described in Section 3. For example, in our case the
process scan is modelled by the fluent scan(ptu, z, x, t, s) and the actions startscan(ptu, z, x, t) and endscan(ptu, z,
x, t). The preconditions and the effects are encoded in the DT as specified in (16). For example, the successor
state axiom for scan(ptu, z, x, t, s) is the following:

scan(ptu, z, x, t, do(a, s)) ≡ a = startscan(ptu, z, x, t)∨
scan(ptu, z, x, t, s) ∧ ¬∃t′(a = endscan(ptu, z, x, t′)),

while the preconditions for startscan(ptu, z, x, t) and endscan(ptu, z, x, t) are:

Poss(startscan(ptu, z, x, t), s) ≡ (s = S 0 ∨ s=νstartscan(ptu, z, x, t)) ∧ idle(ptu, s) ∧ time(s) ≤ t ;
Poss(endscan(ptu, z, x, t), s) ≡ (s = S 0 ∨ s=νendscan(ptu, ~x, t)) ∧ ∃t′scan(ptu, z, x, t′, s) ∧ time(s) ≤ t .

Temporal Compatibilities Some temporal compatibilities Tc among the activities can be defined as follows:

Tc =[ comp(point(ptu, x), [[(m scan(ptu, x))]]),
comp( f ocus(att, x), [[(a point(ptu, x))]]),
comp(scan(ptu, z, x), [[(d stop(exp)), (a map(slm))]]),
comp(goto(nav, x, y), [[(d idle(ptu)), (d map(slm))]])].

These compatibilities state the following temporal constraints. point(ptu, x) m scan(ptu, x), i.e. upon the PTU
is pointed toward a location x the head is expected to scan the region around that point x, and the temporal
relation f ocus(att, x) a point(ptu, x) tells that attention focus is preceded by a PTU pointing towards a region
of the environment specified by x. After focusing the head can direct the cameras towards the region. Also,
scan(ptu, z, x) d stop(lcm) prescribes that while the Head is scanning the environment the robot must be in stop
mode to avoid invoking stabilisation processes. The constraints goto(nav, x, y) d idle(ptu) and goto(nav, x, y) d
map(slm) state that, while the robot is moving, the pant-tilt unit is to be idle and attention is to be active. Figure
7 illustrates a possible evolution of the timelines up to a planning horizon considering the overall system.

TFGolog programs Once we have defined the TFSC domain, we can introduce a partial specification of the
robot behaviours using TFGolog programs. For example, we can say that: at the very beginning, i.e. time 0,
the pant-tilt is idling with attention enabled; from time 0 to 3 the robot should remain where it is (e.g. posinit),
perform overall scanning with attention on, gathering information from the environment. Furthermore, given a
direction θ it should focus attention f ocus towards it, before 30 and after 20, and move towards it before 50. This
partially specified plan of actions can be encoded by the following TFGolog program:

proc(partialPlan(p, p′, θ),
π(t1, π(t2, π(t3, π(t4, π(t6, π(t5, π(t7, π(t8, π(t9, π(t10, π(t11, π(t12, π(t13, π(t14,

Activemap(slm, 0, t1) ∧ t1 > 0)? ‖
Elapsed(att, detect, t2, t3) ≺ Elapsed f ocus(att, θ, t4, t5)? ‖
Elapsedidle(ptu, 0, t6)? ≺ (Elapsedscan(ptu, θ, t7, t8) ∧ 20 ≤ t6 ∧ t8 ≤ 30)? ‖
Elapsed(lcm, stop, t9, t10)? ‖
(Elapsedat(nav, p, 0, t11) ∧ t12 > 3)? ≺ (Elapsedat(nav, p′, t13, t14) ∧ t15 < 50)?

)))))))))))
).



8 EXAMPLE: ATTENTIVE ROBOT EXPLORATION OF THE ENVIRONMENT 36

PTU idle idlepoint

SLAM idle stop

scan reset

map map

Attention detect detect active

stop

Camera passive passivepassiveactive

Navigation at

Locomotion stop

at goto

run runstop

wander

Exploration observeobserve approach explore

point scan resetidle

Execution History Planning Horizon

Current time

0  1  2  3   4   5  6  7  8   9  10  11  12  13  14  15  16  17 18  19 20 21 22  23  24  25  26  27  28 29 30 31 32 33  34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 

focus focus

active

Figure 7: The history of states over a period of time (timelines) illustrating the evolution of several system
components up to a planning horizon.

If we fix the horizon equal to (he, hs) = (0, 50) and the initial bag of situations s0 = B(S 0), a complete plan for
partialPlan can be obtained as a bag of timelines mentioning timelines for each components such that

DT |= ∃t1, . . . , tn.DoT F(partialPlan(p1, p3, θ), s0, s[t1, . . . , tn], (0, 50)) ∧ I(Tc, s[t1, . . . , tn]).

For example, let:

σslm = do([ startmap(slm, t1)], S 0);
σatt = do([ startdet(att, t2) enddet(att, t3),

start f ocus(att, t4) end f ocus(att, t5), startdet(att, t6)], S 0);
σexp = do([ startexp(exp, t7) endexp(exp, t8),

startobs(exp, t9), endobs(exp, t10), startexp(exp, t11)], S 0);
σptu = do([ startpoint(ptu, θ, t12), endpoint(ptu, θ, t13), startscan(t14),

endscan(ptu, t15), startreset(ptu, t16), endreset(ptu, t17)], S 0);
σnav = do([ startgo(nav, p3, t18), endgo(nav, p3, t19)], S 0);
σlcm = do([ startstart(lcm, t20), endstart(lcm, t21)], S 0).

and s[t1, . . . , t21]=B(〈σslm[t1], σatt[t2, t3, t4], σexp[t7, . . . , t11], σptu[t12, . . . , t17], σnav[t18, t19], σlcm[t20, t21]〉), the
bag of situations s[ω] defined above is obtained by the macro I(Tc, s[ω]) which represents a temporal network,
denoted by network(DT ,Tc, s[ω]), with the following temporal constraints:

{0 ≤ t1 ≤ 50; 0 ≤ t2 ≤ t3 = t4 ≤ t5 = t6 ≤ 50;
0 ≤ t7 ≤ t6 = t7 ≤ t8 = t9 ≤ t10 = t11 ≤ 50;
0 ≤ t12 ≤ t12 = t13 ≤ t14 = t15 ≤ t16 = t17 ≤ 50;
0 ≤ t18 ≤ t19 ≤ 50; 0 ≤ t20 ≤ t21 ≤ 50;
t1 ≤ t18; t1 ≤ t20; t13 ≤ t4; t9 ≤ t4;
t5 ≤ t10; 0 ≤ t4 ≤ t5 ≤ t18; t21 ≤ t12}.



9 RELATED WORKS 37

Beyond partial plans, TFGolog can encode more general and intuitive behaviour fragments for tasks that can
be selected and compiled if they are compatible with the execution context. For example, the following behaviour
fragment can induce the interpreter to produce a plan to find a location within the deadline d and reach it:

proc( f indLocation(d),
π(t1, π(t2, π(t3, π(t4, π(t5,

startexp(exp, t1) ≺ endappr(exp, t2) ‖
startwand(nav, t3) ; endwand(nav, t4) ; π(x, startgoto(nav, x, t5)) ; (t4 − t3<d)?))))))

).

This TFGolog script starts both the exploration and wandering activities; the wandering phase has a timeout
d, after which the robot has to go somewhere. The timeout d is provided by the calling process that can be
either another TFGolog procedure or a decision taken by the operator. Note that the procedure here is partially
specified, indeed, we only mention processes belonging to the Exploration and Navigation timelines, but all the
other timelines are to be managed by the TFGolog interpreter.
Another example is the following script that manages the switch to the explore mode during an approach phase
in the case of a stop:

proc(switchApproachExplore(x, d),
π(t1, π(t2, π(t3,

((((Activeappr(exp, x, t1) ∧ Activestop(lcm, t1) ∧ idle(nav, t1))? ≺
(startmap(slm, t2) ≺ startexp(exp, t3))) |

(Activeappr(exp, x, t1) ∧ Activestop(lcm, t1) ∧ ∃y(at(nav, y, t1) ∧ y , x))? ;
((Activemap(slm, t1))? ≺ startrun(loc, t3) |
¬Activemap(slm, t1)? ≺ startmap(slm, t2) ≺ startexp(exp, t3))) ∧ (t3 − t1) ≤ d)))

).

Here, the script manages a switch between the approach and explore tasks caused by a stop during an approach
to a target location x. The overall switch should occur within a deadline d. It considers two cases: (1) the stop
occurred while the navigation is in idle, hence the robot is not localised; (2) the stop occurred while navigation is
at position y, therefore the robot is localised. In the first case, the system should switch to the exploration mode
(i.e. startexp) and restart the SLAM mapping (i.e. startmap) to re-localise the robot. Notice that the generation of
the restart sequence is left to the interpreter because it depends on the context. For instance, if map is running,
the interpreter is to switch off map and restart it. In the second case, the stop occurred while the robot is localised
at position y (that is not the target position), the system can just restart the engine to continue to approach the
target, otherwise, since the system behaviour is not the expected one, to keep the robot safety, the activities are
to be reconfigured in the exploration mode restarting the map.

9 Related Works
A very first temporal extension of the Situation Calculus is proposed by Pinto and Reiter in [57, 56, 65]. In
these works, the authors provide an explicit representation of time and event occurrences assimilating a single
timeline to a timed situation. They specify durative actions by instantaneous starting and ending actions actuating
processes. Concurrent executions of instantaneous actions are also enabled as reported in [65]. Pinto and Reiter
in [57] show that a modal logic for concurrency can be embedded in a suitable Situation Calculus extension.
These topics are addressed also by Miller and Shannahan in [49], where they propose a method to represent
incomplete narratives in the Situation Calculus. In this case, differently from our approach, the problem of an
unknown ordering amongst events is enabled by non monotonic reasoning on temporal events.



9 RELATED WORKS 38

Indeed, while Pinto and Reiter in [57, 56, 65] propose a situation-based timeline representation, where time
is scanned by actions, from which is recovered, Miller and Shannahan suggest in [49] a non monotonic time-
based framework where each time point is connected with a situation and the frame problem is addressed via
minimisation.

These approaches are substantially different from our; in fact, as we already stated in Section 4, our frame-
work assumes the durative actions representation proposed in [65, 56], but considering multiple timelines and
flexible intervals. Our approach, furthermore, contributes substantially to the formalisation of tasks switching
and components interaction that has been treated and faced with methodologies, distinct from ours, such as the
flexible temporal planning framework.

Pinto in [57, 56] has considered the interaction within processes too, but under the perspective of exogenous
actions as natural processes.

In [66], Reiter and Yuhua exploit the temporal extension of the Situation Calculus already presented in
[57, 56, 65] for modelling complex scheduling tasks by axiomatising a deadline driven scheduler. In this case,
the tasks are to be scheduled for a single CPU, and a schedule of length n is a sequence of n ground actions rep-
resented by a single grounded situation term, therefore constraints and flexible plans are not taken into account.

Temporal properties in the Situation Calculus are also investigated by Gabaldon in [24] and by Bienvenu,
Fritz and McIlraith in [7, 23], mainly focusing on search control in forward planning. Gabaldon, in fact, in [24]
proposes to formalising control knowledge for a forward chaining planner using Linear Temporal Logic (LTL)
expressions, represented in the Situation Calculus, and shows how a progression algorithm can be deployed in
this setting. In the context of preference based planning [5], Bienvenu et al. [7] propose a logical language for
specifying qualitative temporal preferences in the Situation Calculus. In this framework, temporal preferences
can be expressed in LTL and the temporal connectives are interpreted in the Situation Calculus following the
approach proposed by Gabaldon in [24].

Kvarnström and Doherty in [36] present a forward-chaining planner based on domain-dependent search con-
trol knowledge represented as formulas in the Temporal Action Logic (TAL); a narrative based linear metric time
logic is used for reasoning about action and change. The authors disregard temporal constraint networks and
flexible planning although in [44], following an approach similar to the one taken in [20, 19], the authors propose
a first step towards the integration of constraint-based representations within the TAL framework.

A procedural approach to model-based executive control through temporally flexible programs is provided by
the model-based programming paradigm of Williams and colleagues [80]. In this approach, the reactive system’s
controller is specified by programs and models of the system components. In particular, the authors develop the
Reactive Model-based programming (RMPL) language and its executive (Titan). Titan control executes RMPL
programs using extensive component-based declarative models of the embedded system to track states, analyse
anomalous situations, and generate control sequences. RMPL programs are complete procedural specification
of the system behaviour. In contrast, we deploy the TFGolog framework where partially specified programs can
be encoded. The system we propose in this paper copes with high-level agent programming and can be seen as
a trade off between the model-based programming approach (e.g. RMPL-Titan) and the model-based reactive
planning (e.g. IDEA [50, 18]), but based on a logical framework and inspired by neuroscience principle on task
switching. Indeed, similarly to RMPL, we use high-level programs to design the controller, but the constructs are
defined in FOL; further, to enable run-time switching, our programs are partially specified scripts to be completed
on-line by the program interpreter that works as a planner.

In the literature, we can find several works investigating the combination of logic-based framework and
temporal constraint reasoning. For example, Dechter and Schwalb in [69] present a logic-based framework com-
bining qualitative and quantitative temporal constraints. This framework integrates reasoning in a propositional
and narrative-based representation of a dynamic domain - in the style of the Event Calculus - with inference tech-
niques proper of the temporal constraint networks formalism of Dechter, Meiri and Pearl [14]. The integration is
based on the notion of conditional temporal network (CTN) which allows decoupling propositional and tempo-
ral constraints and treating them in isolation. Analogously to our approach, the logical machinery determines a



10 SUMMARY AND OUTLOOK 39

temporal network that can be solved with constraint propagation techniques.
The combination of logic-based and constraint-based temporal reasoning is also investigated within the Con-

straint Logic Programming (CLP) paradigm. For example, the TCLP framework proposed by Schwalb and
Vilain [70] augments logic programs with temporal constraints. Indeed Schwalb and Vilain investigate a de-
cidable fragment called Simple TCLP accommodating intervals of event occurrences and temporal constraints
between them. Lamma and Milano in [37] extend the Constraint Logic Programming framework to temporal
reasoning, elaborating on the extensions of Vilain and Kautzs Point Algebra, on Allen’s Interval Algebra and on
the STP framework proposed by Dechter, Meiri and Pearl. Lamma and Milano show how it is possible to cope
with disjunctive constraints even in an interval based framework.

10 Summary and Outlook
Cognitive control has to deal with several components, with flexible behaviours that can be adapted to different
contexts and with the ability to switch between tasks, on stimuli requests.

In this paper, we have presented a methodology to incorporate these attitudes in the Situation Calculus. We
have introduced the Temporally Flexible Situation Calculus (TFSC) that combines temporal constraint reasoning
and reasoning about actions. In this framework, we have shown how to incorporate multiple parallel timelines
and temporal constraints among the activities. For this purpose, we have introduced sets of concurrent, temporal,
situations describing a constructive method to associate a temporal constraint network to each set of concurrent
timelines represented by a collection of situations. In this way, causal logic-based reasoning and temporal con-
straint propagation methods can be integrated. We have described an approach for modelling complex dynamic
domains in TFSC illustrating how temporally flexible behaviours can be represented. We have shown how this
framework can be exploited to design and develop a model-based control system for an autonomous mobile robot
capable of balancing high-level deliberative activities and reactive behaviours, more details on the application
can be found in [10].

References
[1] Natasha Alechina, Mehdi Dastani, Brian Logan, and John-Jules Ch. Meyer. A logic of agent programs. In

AAAI, pages 795–800, 2007.

[2] James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26(11):832–843, 1983.

[3] A. R. Aron. The neural basis of inhibition in cognitive control. The Neuroscientist, 13:214 – 228, 2007.

[4] Fahiem Bacchus, Joseph Y. Halpern, and Hector J. Levesque. Reasoning about noisy sensors and effectors
in the situation calculus. Artif. Intell., 111(1-2):171–208, 1999.

[5] J. Baier, F. Bacchus, and S. McIlraith. A heuristic search approach to planning with temporally extended
preferences. In Proceedings of IJCAI-2007), pages 1808–1815, 2007.

[6] Federico Barber. Reasoning on interval and point-based disjunctive metric constraints in temporal contexts.
J. Artif. Intell. Res. (JAIR), 12:35–86, 2000.

[7] M. Bienvenu, C. Fritz, and S. McIlraith. Planning with qualitative temporal preferences. In Proceedings of
KR-06, pages 134–144, 2006.

[8] Stephen A. Block, Andreas F. Wehowsky, and Brian C. Williams. Robust execution on contingent, tempo-
rally flexible plans. In AAAI, 2006.



REFERENCES 40

[9] Craig Boutilier, Raymond Reiter, Mikhail Soutchanski, and Sebastian Thrun. Decision-theoretic, high-level
agent programming in the situation calculus. In Proceedings of AAAI-2000, pages 355–362, 2000.

[10] A. Carbone, A. Finzi, A. Orlandini, and F. Pirri. Model-based control architecture for attentive robots in
rescue scenarios. Autonomous Robots, 24(1):87–120, 2008.

[11] G. de Giacomo, Y. Lespérance, and H. J. Levesque. Congolog, a concurrent programming language based
on the situation calculus. Artif. Intell., 121(1-2):109–169, 2000.

[12] A.K. Jonsson D.E. Smith, J. Frank. Bridging the gap between planning and scheduling. Knowledge Engi-
neering Review, 15(1), 2000.

[13] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. In KR, pages 83–93, 1989.

[14] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artif. Intell., 49(1-3):61–95,
1991.

[15] Yiannis Demiris and Bassam Khadhouri. Hierarchical attentive multiple models for execution and recogni-
tion of actions. Robotics and Autonomous Systems, 54(5):361–369, 2006.

[16] J. Duncan. Disorganization of behaviour after frontal-lobe damage. Cognitive Neuropsychology, 3:271–
290, 1986.

[17] Matthias Fichtner, Axel Großmann, and Michael Thielscher. Intelligent execution monitoring in dynamic
environments. Fundamenta Informaticae, 57(2–4):371–392, 2003.

[18] A. Finzi, F. Ingrand, and N. Muscettola. Model-based executive control through reactive planning for
autonomous rovers. In Proceedings of IROS-2004, pages 879–884, 2004.

[19] A. Finzi and F. Pirri. Flexible interval planning in concurrent temporal golog. In Proceedings of Cognitive
Robotics 2004, 2004.

[20] A. Finzi and F. Pirri. Representing flexible temporal behaviors in the situation calculus. In Proceedings of
IJCAI-2005, pages 436–441, 2005.

[21] A. Finzi, F. Pirri, and R. Reiter. Open world planning in the situation calculus. In Proceedings of AAAI/IAAI-
2000, pages 754–760, 2000.

[22] Jeremy Forth and Murray Shanahan. Indirect and conditional sensing in the event calculus. In ECAI, pages
900–904, 2004.

[23] C. Fritz and S. McIlraith. Decision-theoretic golog with qualitative preferences. In Proceedings of the
10th International Conference on Principles of Knowledge Representation and Reasoning (KR06), pages
153–163, Lake District, UK, June 2006.

[24] A. Gabaldon. Precondition control and the progression algorithm. In Shlomo Zilberstein, Jana Koehler,
and Sven Koenig, editors, ICAPS-2004, pages 23–32. AAAI, 2004.

[25] Sandra Clara Gadanho. Learning behavior-selection by emotions and cognition in a multi-goal robot task.
J. Mach. Learn. Res., 4:385–412, 2003.

[26] Michael Gelfond and Vladimir Lifschitz. Action languages. Electron. Trans. Artif. Intell., 2:193–210, 1998.

[27] M. Ghallab and H. Laruelle. Representation and control in ixtet, a temporal planner. In Proceedings of
AIPS-1994, pages 61–67, 1994.



REFERENCES 41

[28] G. De Giacomo, Y. Lespérance, and H. Levesque. ConGolog, a concurrent programming language based
on the situation calculus. Artif. Intell., 121(1–2):109–169, 2000.

[29] G. De Giacomo, Y. Lespérance, and H. J. Levesque. Reasoning about concurrent execution, prioritized
interrupts, and exogenous actions in the situation calculus. In IJCAI-1997, pages 1221–1226, 1997.

[30] H. Grosskreutz and G. Lakemeyer. ccgolog – a logical language dealing with continuous change. Logic
Journal of the IGPL, 11(2):179–221, 2003.

[31] H. Grosskreutz and G. Lakemeyer. Probabilistic complex actions in golog. Fundam. Inf., 57(2-4):167–192,
2003.

[32] J. Jaffar and M.J. Maher. Constraint logic programming: A survey. Journal of Logic Programming,
19/20:503–581, 1994.

[33] Ari K. Jonsson, Paul H. Morris, Nicola Muscettola, Kanna Rajan, and Benjamin D. Smith. Planning in
interplanetary space: Theory and practice. In Artificial Intelligence Planning Systems, pages 177–186,
2000.

[34] Kazuhiko Kawamura, Tamara E. Rogers, and Xinyu Ao. Development of a cognitive model of humans in a
multi-agent framework for human-robot interaction. In AAMAS ’02: Proceedings of the first international
joint conference on Autonomous agents and multiagent systems, pages 1379–1386, New York, NY, USA,
2002. ACM.

[35] Andrei Krokhin, Peter Jeavons, and Peter Jonsson. Reasoning about temporal relations: The tractable
subalgebras of allen’s interval algebra. J. ACM, 50(5):591–640, 2003.

[36] J. Kvarnström and P. Doherty. Talplanner: A temporal logic based forward chaining planner. Annals of
Mathematics and Artificial Intelligence, 30(1-4):119–169, 2000.

[37] E. Lamma, M. Milano, and P. Mello. Extending constraint logic programming for temporal reasoning.
Annals of Mathematics and Artificial Intelligence, 22(1-2):139–158, 1998.

[38] H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl. GOLOG: A logic programming langauge
for dynamic domains. Journal of Logic Programming, 31:59–84, 1997.

[39] Hector Levesque and Gerhard Lakemeyer. Handbook of Knowledge Representation, chapter Cognitive
Robotics. Elsevier, 2007.

[40] Hector J. Levesque. What is planning in the presence of sensing? In AAAI/IAAI, Vol. 2, pages 1139–1146,
1996.

[41] Hector J. Levesque, Fiora Pirri, and Raymond Reiter. Foundations for the situation calculus. Electron.
Trans. Artif. Intell., 2:159–178, 1998.

[42] H.J. Levesque. Knowledge, action, and ability in the situation calculus. In Proceedings of TARK-94, pages
1–4. Morgan Kaufmann, 1994.

[43] F. Lin and R. Reiter. State constraints revisited. Journal of Logic and Computation, 5(4):655–677, 1994.

[44] M. Magnusson and P. Doherty. Deductive planning with temporal constraints. In Proceedings of
Commonsense-2007, 2007.



REFERENCES 42

[45] U. Mayr and SW. Keele. Changing internal constraints on action: the role of backward inhibition. Journal
of Experimental Psychology, 129(1):4–26, 2000.

[46] J. McCarthy. Situations, actions and causal laws. Technical report, Stanford University, 1963. Reprinted in
Semantic Information Processing (M. Minsky ed.), MIT Press, Cambridge, Mass., 1968, pp. 410-417.

[47] Itay Meiri. Combining qualitative and quantitative constraints in temporal reasoning. Artif. Intell., 87(1-
2):343–385, 1996.

[48] E.K. Miller and J.D. Cohen. An integrative theory of prefrontal cortex function. Annual Rev. Neuroscience,
24:167 – 202, 2007.

[49] R. Miller and M. Shanahan. Narratives in the situation calculus. Journal of Logic and Computation,
4(5):513–530, 1994.

[50] N. Muscettola, G. A. Dorais, C. Fry, R. Levinson, and C. Plaunt. Idea: Planning at the core of autonomous
reactive agents. In Proc. of NASA Workshop on Planning and Scheduling for Space, 2002.

[51] Nicola Muscettola. Hsts: Integrating planning and scheduling. Intelligent Scheduling, pages 451–461,
1994.

[52] Bernhard Nebel and Hans-J&#252;rgen B&#252;rckert. Reasoning about temporal relations: a maximal
tractable subclass of allen’s interval algebra. J. ACM, 42(1):43–66, 1995.

[53] A. Newell. Unified theories of cognition. Harvard University Press, 1990.

[54] D. A. Norman and T. Shallice. Consciousness and Self-Regulation: Advances in Research and Theory,
volume 4, chapter Attention to action: Willed and automatic control of behaviour. Plenum Press, 1986.

[55] Andrea Philipp and Iring Koch. Task inhibition and task repetition in task switching. The European Journal
of Cognitive Psychology, 18(4):624–639, 2006.

[56] J. Pinto. Occurrences and narratives as constraints in the branching structure of the situation calculus.
Journal of Logic and Computation, 8(6):777–808, 1998.

[57] J. Pinto and R. Reiter. Reasoning about time in the situation calculus. Annals of Mathematics and Artificial
Intelligence, 14:2510–268, 1995.

[58] J.A. Pinto and R. Reiter. Reasoning about time in the situation calculus. Annals of Mathematics and
Artificial Intelligence, 14(2-4):251–268, September 1995.

[59] F. Pirri and A. Finzi. An approach to perception in theory of actions: Part i. Electron. Trans. Artif. Intell.,
3(C):19–61, 1999.

[60] F. Pirri and R. Reiter. Planning with natural actions in the situation calculus. Logic-based artificial intelli-
gence, pages 213–231, 2000.

[61] Fiora Pirri and Ray Reiter. Some contributions to the metatheory of the situation calculus. Journal of ACM,
46(3):325–361, 1999.

[62] R. Reiter. The frame problem in the situation calculus: A simple solution (sometimes) and a completeness
result for goal regression. In Vladimir Lifschitz, editor, Artificial Intelligence and Mathematical Theory of
Computation: Papers in Honor of John McCarthy, pages 359–380. Academic Press, San Diego, CA, 1991.



REFERENCES 43

[63] R. Reiter. Natural actions, concurrency and continuous time in the situation calculus. In Proceedings of
KR’96, pages 2–13, 1996.

[64] R. Reiter. Sequential, temporal GOLOG. In Proceedings of KR’98, pages 547–556, 1998.

[65] R. Reiter. Knowledge in action : logical foundations for specifying and implementing dynamical systems.
MIT Press, 2001.

[66] R. Reiter and Z. Yuhua. Scheduling in the situation calculus: A case study. Annals of Mathematics and
Artificial Intelligence, 21(2-4):397–421, 1997.

[67] J.S. Rubinstein, E.D. Meyer, and J. E. Evans. Executive control of cognitive processes in task switching.
Journal of Experimental Psychology: Human Perception and Performance, 27(4):763–797, 2001.

[68] Erik Sandewall. Features and fluents (vol. 1): the representation of knowledge about dynamical systems.
Oxford University Press, Inc., 1994.

[69] E. Schwalb, K. Kask, and R. Dechter. Temporal reasoning with constraints on fluents and events. In
Proceedings of AAAI-1994, pages 1067–1072, Menlo Park, CA, USA, 1994. American Association for
Artificial Intelligence.

[70] E. Schwalb and L. Vila. Logic programming with temporal constraints. In TIME ’96: Proceedings of the
3rd Workshop on Temporal Representation and Reasoning (TIME’96), Washington, DC, USA, 1996. IEEE
Computer Society.

[71] M.P. Shanahan. A cognitive architecture that combines internal simulation with a global workspace. Con-
sciousness and Cognition, 15:433–449, 2006.

[72] Murray Shanahan. Solving the frame problem: a mathematical investigation of the common sense law of
inertia. MIT Press, 1997.

[73] Murray Shanahan. The event calculus explained. In Artificial Intelligence Today, pages 409–430. 1999.

[74] A. Tate. ”I-N-OVA” and ”I-N-CA”, Representing Plans and other Synthesised Artifacts as a Set of Con-
straints, pages 300–304. 2000.

[75] Michael Thielscher. FLUX: A logic programming method for reasoning agents. Theory and Practice of
Logic Programming, 5(4–5):533–565, 2005.

[76] Michael Thielscher and Thomas Witkowski. The features-and-fluents semantics for the fluent calculus. In
KR, pages 362–370, 2006.

[77] S. P. Tipper. Does negative priming reflect inhibitory mechanisms? a review and integration of conflicting
views. Quarterly Journal of Experimental Psychology, 54:321 – 343, 2001.

[78] Marc B. Vilain and Henry A. Kautz. Constraint propagation algorithms for temporal reasoning. In AAAI,
pages 377–382, 1986.

[79] H. Wang and K. J. Brown. Finite set theory, number theory and axioms of limitation. Mathematische
Annalen, 164:26–29, 1966.

[80] B. Williams, M. Ingham, S. Chung, P. Elliott, M. Hofbaur, and G. Sullivan. Model-based programming of
fault-aware systems. AI Magazine, Winter 2003.

Appendix A



A NOTATIONAL CONVENTIONS AND PRELIMINARIES 44

A Notational conventions and preliminaries

We recall that the set of axioms Σ (see also Table 1) is:

1. ¬(s @ S 0),
2. s @ do(a, s′) ≡ s v s′,
3. do(a, s) = do(a′, s′) ≡ a = a′ ∧ s = s′,
4. ∀P.P(S 0) ∧ ∀as.P(s)→P(do(a, s))→∀sP(s).

(43)

Duna is the set of axioms of the form Ai(·) , A j(·) with Ai and A j names of actions, and the set of axioms
specifying that identical action terms must have the same arguments (see Section 3.1). The set Σ ∪ Duna is
satisfiable in some modelM0 = (D, I) in which the real line is interpreted as usual. In fact in order to introduce
time (see [58]) we may assume that the signature of initial language Lsitcalc includes:

(i) All rational constants p/q, and the special symbols 0 and 1;

(ii) usual operators, such as +, − and ·;

(iii) the relations < and, being = in the language, the defined relation ≤=< ∨ = and the defined relation >
standing for (¬ ≤).

Thus Σ can be suitably extended to include all the axioms for the theory of reals (additive, multiplicative, order,
least upper bound) and the axiom ∀t.0 ≤ t with t ranging over the reals. We also may assume that there always
exists a structure M for the classical basic Situation Calculus, in which the real numbers have an intended
interpretation.

For the next theorems we stipulate the following. Let S be the signature of standard Situation Calculus
with equality, including symbols for actions, situations, v, indexed symbols ti for the rational numbers, and the
symbols indicated in the above items (i-iii), then:

1. L1 is Lsitcalc, the language defined on S.
2. L2 is L1 extended to the signature including the symbols for the terms mentioning time.
3. L3 is like L2 extended to the signature including the symbols H, a finite amount of new constants,

of sort object, for types, and =ν.
4. L4 is like L3 extended to the signature including the symbols for the terms mentioning timelines and

the terms of sort bag of timelines, i.e. the symbols T , ∈S , =S , ∪S , ∩S , ⊆S and the symbol B.
L4 is LT FS C , the language of the Temporal Flexible Situation Calculus.

(44)

A formula ϕ of a language L is said to be restricted to the language LQ, over the signature Q, and denoted ϕ\LQ

if ϕ mentions only the symbols of Q.
Finally we recall two theorems of [61] that will be used in the next proofs.

Theorem 8 (Relative Satisfiability) A basic action theoryD is satisfiable iffDuna ∪DS 0 is.

Theorem 9 (Regression) Suppose W is a regressable formula ofLsitcalc andD is a basic theory of actions. Then
R[W] is a formula uniform in S 0. Moreover,

D |= (∀)(W ≡ R[W]),

where (∀)φ denotes the universal closure of the formula φ with respect to its free variables.

For the definition of the regression operator R we refer the reader for details to [61], see also equation (85).

Appendix B



B PROOFS OF SECTION 3 45

B Proofs of Section 3
In the following we assume that the reals are axiomatised, as noted in A above, that the language includes
countable many terms taking values in the reals and countable many constant symbols denoting the rational
numbers, plus 0 and 1. We also assume that actions form their arguments in the domain Ob j and R+.

B.1 Lemma 1-7
Lemma 1 Σtime is a conservative extension of Σ and any model of Σ ∪ Duna can be extended to a model of
Σtime ∪Duna.

Proof of Lemma 1.
Let Σtime = Σ∪Ax0, that is, the set formed by the foundational axioms of the Situation Calculus, given above,

and the axioms T1-T3 (see Table1 page 9). We have to prove that Σtime ∪ Duna is a conservative extension of
Σ ∪Duna, that is, for any formula ϕ in the language L1 of Σ ∪Duna:

Σtime ∪Duna |= ϕ iff Σ ∪Duna |= ϕ

LetM0 = 〈D, I〉 be a model of Σ ∪Duna with D including the positive real line (see paragraph A above). We
define a structureM1 = (D, I′) for L2 having the same domain asM0 and with I′ interpreting all the symbols of
L1 like I, thus, in particular, we might assume that there is a specific term t0 indicating the 0, and such that for
all positive t, (t0 ≤ t)(I,v), and thus this is replicated inM1, v.

Now for the terms mentioning time the interpretation I′ is specified as follows, for any assignment v to the
free variables:

(1) (time(S 0))(I′,v) is mapped to t(I′,v)
0 .

(2) For each action A(~x, t) we set (time(A(~x, t)))(I′,v) = t(I′,v) iff t > 0.
(3) For all situation s and actions A:

(time(do(A(~x, t), s)))(I′,v) = time(A(~x, t))(I′,v).

It follows that T1-T3 are satisfied in M1. This concludes the interpretation of time. We have shown that any
structure for L1 which is a model of Σ ∪ Duna can be suitably extended to the language L2 in so being a model
of Σtime ∪ Duna. Now, by monotonicity, if Σ ∪ Duna |= ϕ\L1 then Σtime ∪ Duna |= ϕ\L1 . For the other direction,
suppose that Σtime ∪Duna |= ϕ\L1 and Σ ∪Duna 6|= ϕ\L1 , then there is a modelM of Σ ∪Duna not satisfying ϕ\L1 .
Now,M can be extended to satisfy Σtime ∪Duna, hence we have a contradiction.

Lemma 2 There exists a modelM of Σtime ∪Duna such that, for all s and s′,M models:

s v s′→time(s) ≤ time(s′) (45)

Proof of Lemma 2. LetM0 = (D, I) be a model of Σtime ∪ Duna, using Lowenheim-Skolem theorem letM1 be a
model elementary equivalent toM0 but with a countable domain. We build a new modelM2 = (D′, I′), having
the same domain for Act and Ob j as M1, and interpreting in these domains everything, like I. However, the
domain of situations in D′ is DS 0 = {S I,v

0 } = {[]}, that is, the domain of situations includes only the interpretation
of the constant S 0, which is the usual one and it is like in I:

(1) M1, v |= time(S 0) = t0 iffM2, v |= time(S 0) = t0
(2) M1, v |= A(x, t) = t iffM2, v |= A(x, t) = t
(3) M1, v |= A(x, t) = A′(x, t) iffM2, v |= A(x, t) = A′(x, t)

(46)



B PROOFS OF SECTION 3 46

The set of terms for the sort Act is countable, thus we can enumerate the terms of sort action, order them according
to time a1, a2, . . . , and consider the interpretation in M2, according to v, with respect to time along a chain as
follows:

C = t(M2,v)
0 <(M2) time(a1)(M2,v) ≤(M2) time(a2)(M2,v) ≤(M2) · · · ≤(M2) time(am)(M2,v) ≤(M2) · · · (47)

Here ≤ has the usual interpretation. Since C is countable because there are countable many terms in the language
of sort Act, we can assume that each term time(ai) is suitably interpreted. Furthermore, being bothM1 andM2
models of Σtime, by axiom (T2), for all actions A, t0 < time(A(x, t)). Now, given that the domain of sort situation
is DS 0 = {S (M2)

0 } = {[]}, we shall build the following two sets:

Tti = {a(M2,v) ∈ Act | time(a)(M2,v) = t(M2,v)
i , t(M2,v)

i the i-th element in C}
Dsi = {[aM2,v

1 , . . . , aM2,v
i ] | a(M2,v)

1 , . . . , a(M2,v)
i ∈ Act, a(M2,v)

i ∈ Tti and [aM2,v
1 , . . . , aM2,v

i−1 ] ∈ Dsi−1 }
(48)

Each Dsi is countable. Taking the union of the Dsi :

S it =

∞⋃
i=0

Dsi (49)

We still get a countable set such that Dsi ⊆ S it for all Dsi . The interpretation of do can now be defined as usual
on the sequences in S it, the interpretation of @ can be set also to be the usual one, given that the interpretation
of each element in S it is a finite sequence of elements of the domain Act. Thus we extend the interpretation I′ of
M2 to J accordingly. Indeed, letM = (D′ ∪ S it, J):

[a(J,v)
1 , . . . , a(J,v)

i ] = do(J,v)(a(J,v)
i , [a(J,v)

1 , . . . , a(J,v)
i−1 ])

s(J,v) @J s
′(J,v) iff the sequence s(J,v) is a proper initial subsequence of s

′(J,v) (50)

It follows, by the definition of the Dsi , that if [a(J,v)
1 , . . . , a(J,v)

p ] = s(J,v) ∈ Dsp and [a(J,v)
1 , . . . , a(J,v)

q ] = s
′(J,v) ∈ Dsq ,

with p < q then s(J,v) @J s
′(J,v), hence timeI(a(J,v)

p ) < timeI(a(J,v)
q ) since a(J,v)

P ∈ Ttp and a(J,v)
q ∈ Ttq . Now, in the new

structureM we can define, for each [a(M2,v)
1 , . . . , a(M2,v)

i ] ∈ Dsi ⊆ S it:

time([a1, . . . , ai])(M,v) = time(do(ai, s))(M,v) = time(ai)(M2,v) (51)

Hence time(s) < time(s′) and, clearly,M = (D′ ∪ S it, J) is a model of Σtime ∪Duna.
Thus the claim holds. �

Lemma 3 Let Ax1 denote the axioms H1-H2 and ΣH = Σtime ∪ Ax1: ΣH is a conservative extension of Σtime and
any model of Σtime ∪Duna can be extended to a model of ΣH ∪Duna.

Proof of Lemma 3. Let ΣH = Σtime ∪ Ax1 (see the axioms H1-H2 Table 1, page 9). We have to prove that
ΣH∪Duna is a conservative extension of Σtime∪Duna, that is, for any formula ϕ in the languageL2 of Σtime∪Duna:

ΣH ∪Duna |= ϕ iff Σtime ∪Duna |= ϕ

LetM0 = 〈D, I〉 be a model of Σtime ∪Duna.
We extend I to I′ to interpret the type predicates H(i, a) and the relation =ν, between actions. LetM1 = (D, I′)

be a structure having the same domain asM0 and I′ will interpret all predicate symbols, and function symbols
and constant of L2 as I, and for the extended language L3 we shall proceed with the following interpretation.

• We first consider the interpretation of the predicate H(i, a). Here we shall only provide a partition of
name types, as follows. We order the constants denoting types, namely i1, i2, . . . , im and the action names



B PROOFS OF SECTION 3 47

A1, A2, . . . , An, . . . and we define a mapping f : Ap 7→ (mod(p − 1,m) + 1), with p ≥ 1 and m the number
of constants denoting types, so that each action name is assigned precisely to a single type.

Now, for any assignment v:

M0, v |= a = Ap(~x) iffM1, v |= a = Ap(~x)

We thus set

〈ik, Ap(~x)〉(I
′,v) ∈ HI′ iff f (Ap) = k = (mod(p − 1,m) + 1)

It follows that

ifM0, v |= Ap(~y) = Ap(~x) thenM1, v |= H(ik, Ap(~x)) ∧ H(ik, Ap(~y)) for f (Ap) = k = (mod(p − 1,m) + 1)

• Next we consider the interpretation of =ν, for any assignment v, as follows:

〈Ap(~y), Aq(~x)〉(I
′,v) ∈ =ν

I′ iffM1, v |= H(ik, Ap(~y)) ∧ H(ik, Aq(~x))

By the construction it follows that:

1. ifM0, v |= A(~x) = A(~y) thenM1, v |= A(~x) = A(~y) andM1, v |= A(~x)=νA(~y)

2. M0, v |= A(~x) , B(~y) iffM1, v |= A(~x) , B(~y)

3. HI′ (iI′ , AI′
p (~xv)) ∩ HI′ ( jI′ , AI′

q (~xv)) = ∅ iff iI′ , jI′ .

Hence H1-H2 ∪Duna are verified inM1.

Now, by an analogous argument as in Lemma 1 we obtain that ΣH ∪ Duna is a conservative extension of
Σtime ∪Duna.

�

Lemma 4 The relation =ν is an equivalence relation on the set of actions.

Proof of Lemma 4. That the relation =ν is reflexive and symmetric follows from (H2) and the property of ∧. And
the same for transitivity:

1. a=νa′ ∧ a′=νa′′→H(i, a) ∧ H(i, a′) ∧ H(i, a′′) (by (H2))
2. H(i, a) ∧ H(i, a′′)→a=νa′′ (by (H2))
3. a=νa′ ∧ a′=νa′′→a=νa′′ (by 1, 2 and Taut.)

(52)

Hence =ν is a reflexive, transitive and symmetric relation on the set of actions partitioned by (H1), i.e. it is an
equivalence relation. �

Lemma 5 Let Ax2 denote the set of four axioms E1-E4 and Σ=ν = ΣH ∪ Ax2. Any model of ΣH ∪ Duna can be
extended to a model of Σ=ν ∪Duna.

Proof of Lemma 5. Let Σ=ν = ΣH ∪ Ax2, we have to prove that Σ=ν ∪Duna is satisfiable iff ΣH ∪Duna is.
Let M1 = (D, I) be a model of ΣH ∪ Duna, M1 exists according to Lemma 3. Let M = (D, I′), where I′

interprets all symbols like I and =ν, on all actions, like I. We thus manage to extend I′ to interpret =ν also on
situations as follows:



B PROOFS OF SECTION 3 48

(a) ifM1, v |= s = s′ then 〈s, s′〉(I
′,v) ∈ =ν

I′

(b) ifM1, v |= ¬(s = S 0) then (〈s, S 0〉
(I′,v), 〈S 0, s〉(I

′,v)) < =ν
I′

(c) ifM1, v |= (a=νa′) then both 〈a, do(a′, S 0)〉(I
′,v) ∈ =ν

I′ and 〈a′, do(a, S 0)〉(I
′,v) ∈ =ν

I′

(d) ifM1, v |= ¬(a=νa′) then both 〈a, do(a′, S 0)〉(I
′,v) < =ν

I′ and 〈a′, do(a, S 0)〉(I
′,v) < =ν

I′

The interpretation I′ can thus be extended for any assignment v to all situations as follows:

(e) ifM1, v |= (a=νa′) and 〈s, a′〉(I
′,v) ∈ =ν

I′ then 〈a, do(a′, s)〉(I
′,v) ∈ =ν

I′

(f) ifM1, v |= ¬(a=νa′) or 〈s, a′〉(I
′,v) < =ν

I′ then 〈a, do(a′, s)〉(I
′,v) < =ν

I′

(g) ifM1, v |= (s=νs′) and 〈s, a′〉(I
′,v) ∈ =ν

I′ then 〈s, do(a′, s′)〉(I
′,v) ∈ =ν

I′

(h) ifM1, v |= ¬(s=νs′) or 〈a′, s〉(I
′,v) < =ν

I′ then 〈s, do(a′, s′)〉(I
′,v) < =ν

I′

(i) if (a=νs)〉(I
′,v) ∈ =ν

I′ then 〈s, a〉(I
′,v) ∈ =ν

I′

This concludes the extension of I to I′. The construction implies thatM = (D, I′) is a model of (H1-H2, E1-E5).
�

Lemma 6 Let =ν be a relation on the terms of sort actions and situations. Then =ν is an equivalence relation
both on situations and on actions and situations.

Proof of Lemma 6.
First note that the relation =ν is reflexive both on situations and on actions. By axiom E5 it is symmetric on

action and situations. We show that it is symmetric and transitive on situations, likewise that it is transitive over
actions and situations:

Basic case: symmetry s
s=νS 0 ≡ S 0=νs (By E1.) (53)

Let, now, s, s′ A S 0, we shall first show:

(a). do(a, s)=νdo(a′, s′) ≡ a=νa′ ∧ s=νs′ ∧ s′=νa ∧ a′=νs (54)

Indeed:

3.1 do(a, s)=νdo(a′, s′) ≡ do(a, s)=νa′ ∧ s′=νdo(a, s) (By E4)
3.2 do(a, s)=νa′ ≡ a′=νdo(a, s) (By E5)
3.3 a′=νdo(a, s) ≡ a=νa′ ∧ (s=νa′) (By E4)
3.4 s′=νdo(a, s) ≡ s′=νa ∧ s′=νs (By E4)
3.5 do(a, s)=νdo(a′, s′) ≡ (a=νa′) ∧ (s=νs′) ∧ (s′=νa) ∧ (a′=νs) (By 3.2, 3.3, 3.4, E5 and Ind. Hyp.)

(55)

We can thus show symmetry for situations:

symmetry-s : do(a, s)=νdo(a′, s′) ≡ do(a′, s′)=νdo(a, s)
do(a, s)=νdo(a′, s′) ≡ (a=νa′) ∧ (s=νs′) ∧ (s′=νa) ∧ (a′=νs) (By 3)

≡ (a′=νa) ∧ (s′=νs) ∧ (s=νa′) ∧ (a=νs′) (By Ind. Hyp.)
≡ do(a′, s′)=νdo(a, s)

(56)

We shall, now, show transitivity for action and situations, here (symm) shall refer to both (E5) and symmetry-
s:

T1. a=νs ∧ s=νs′→a=νs′. (57)



B PROOFS OF SECTION 3 49

For either s = S 0 or s′ = S 0 or both, it is trivially true, by (E2). Let s, s′ A S 0

1. a=νs ∧ s=νs′ ∧ a = a→a=νs′ ∧ s′=νs ∧ a=νa ( By (E1) and (E5))
2. a=νs ∧ s′=νs ∧ a=νa→do(a, s′)=νdo(a, s) ( by (a))
3. do(a, s′)=νdo(a, s)→a = do(a, s′) ∧ s=νdo(a, s′) ( by (E4))
4. a = do(a, s′)→a=νa ∧ a=νs′ ( by (E3) and (symm.))
5. a=νs ∧ s=νs′→a=νs′ ( by 1,4 and Taut)

(58)

T2. a′=νs ∧ s=νs′ ∧ s′=νa→a′=νa. (59)

1. a′=νs ∧ s′=νs→s=νdo(a′, s′) ( By (E4) and (symm) )
2. a=νs′ ∧ s′=νs→a=νs ( by T1. and (symm.))
3. a=νs ∧ s=νdo(a′, s′)→a=νdo(a′, s′) ( by 1, 2 and T1.)
4. a=νdo(a′, s′)→a=νa′ ∧ a=νs′ ( by (E4))
5. a′=νs ∧ s=νs′ ∧ s′=νa→a′=νa ( by 1,2, 4, (symm.) and Taut)

(60)

Similarly, from (a), (E3), (E4) and (E5) it is possible to prove that

T3. a=νa′ ∧ a′=νs→a=νs. (61)

Finally transitivity for situations can be shown by induction on s. For s = S 0 and s′′ = S 0:

1. do(a, S 0)=νdo(a′, s′) ∧ do(a′, s′)=νdo(a′′, S 0)→a=νa′′ ( By (a) above and Lemma 4)
2. a=νa′′→a′′=νdo(a, S 0) ( by (E3))
3. a′′=νdo(a, S 0)→do(a, S 0)=νdo(a′′, S 0) ( by (E4))
4. do(a, S 0)=νdo(a′, s′) ∧ do(a′, s′)=νdo(a′′, S 0)→do(a, S 0)=νdo(a′′, S 0) ( by 1, 3 and Taut.)

(62)

For s A S 0:

1. do(a, s)=νdo(a′, s′) ∧ do(a′, s′)=νdo(a′′, s′′)→a=νs′ ∧ a′=νs ∧ a′=νs′′ ∧ a′′=νs′ ( By (a) )
2. s=νs′ ∧ s′=νs′′→s=νs′′ ( by Ind. Hyp.)
3. a=νs′ ∧ s′=νs′′→a=νs′′ ( by (a) )
4. a=νa′′ ∧ s=νs′′ ∧ a=νs′′→do(a, s)=νdo(a′′, s′′) ( by (d) )
5. do(a, s)=νdo(a′, s′) ∧ do(a′, s′)=νdo(a′′, s′′)→do(a, s)=νdo(a′′, s′′) ( by 5 and Taut.)

(63)

We have thus shown that =ν is an equivalence relation on the set of actions and situations.
�

B.2 Proof of Theorem 1
We have to show that Σ∪Duna together with the set of axioms Ax0 − Ax2, that is, (T1-T3,H1-H2, E1-E5) forms
a satisfiable set. We have shown, incrementally that Σtime = Σ ∪ Ax0 is a conservative extension, Lemma 1, that
ΣH = Σtime ∪ Ax1 conservatively extends Σtime, Lemma 3, and that Σ=ν = ΣH ∪ Ax2 is a conservative extension of
ΣH , Lemma 5. And, in particular, that all are conservative extensions of Σ ∪Duna. Hence any model of Σ ∪Duna

can be extended to a model of Σ ∪ Ax0 ∪ Ax1 ∪ Ax2.
�



B PROOFS OF SECTION 3 50

B.3 Proof of Corollary 1
By Theorem 1 we know that Σ=ν∪Duna is satisfiable in some modelM ofL3. On the other hand the satisfiability
of DS 0 and hence of Σ=ν ∪ Duna ∪ DS 0 depends on the design of DS 0 and, in particular, on the definition of
H(i, a), for each component i, which are in DS 0 . If DS 0 ∪ Duna ∪ Σ=ν is satisfiable, then following the same
arguments of the relative satisfiability theorem (see Theorem 8) a modelM of DS 0 ∪ Duna ∪ Σ=ν can be easily
extended to a model of Σ=ν ∪ Duna ∪ DS 0 ∪ Dss ∪ Dap. The other direction follows from the fact that a model
of Σ=ν ∪Duna ∪DS 0 ∪Dss ∪Dap is also a model of Σ=ν ∪Duna ∪DS 0 .

�
The only concern is given by the specifications of the H(i, a) for each type i and each action A, mentioned in

Duna, in DS 0 , whether there exists a model for DS 0 ∪ Duna ∪ Ax1. If this model exists then using the previous
theorem and lemmas this can be extended to a model ofDS 0 ∪Duna ∪ Σ=ν .

So we may make some assumption on the definition of the H(i, a) to show that, under these conditions, a
model ofDS 0 ∪Duna ∪ Ax1 exists.

Lemma 7 LetD−S 0
∪Duna be satisfiable in some modelM of L2, let it be uniform in S 0 and not mentioning the

predicate H(·). Then the definitions of H(·), for each type i, and action A referred to, inDuna, can be safely added
toD−S 0

∪Duna in the form:

∀a.H(i, a) ≡ ϕ(i, a),with ϕ not mentioning H(·) (64)

If there are formulas ϕ(i, a) specifying actions and components, such that, for each i.

i. D−S 0
6|= ∀a.ϕ(i, a),

ii. D−S 0
|= ∃a.ϕi(i, a) ∧

∧n
i, j
j=1
¬ϕ j( j, a). (65)

then the extendedDS 0 will satisfy, for all types i:

a. H(i, a), inDS 0 occurs only in formulas of the form ∀a.H(i, a) ≡ φ(i, a),with φ not mentioning H(·),
b. DS 0 ∪Duna ∪ {∀a.

∨n
i=1 H(i, a)} ∪ {∀a.H(i, a)→

∧n
i, j
j=1
¬H( j, a)}

is satisfiable in some modelM′ of L3

(66)

Proof. Assume that D−S 0
is satisfiable in some structureM of L2 and, thus, it does not mention H(·). Then we

extend the theoryDS 0 to L3 according to the following construction.
First note that here we mention i as an element of the domain object, no axioms for types are assumed so far,

although we can assume that there are n elements of the domain object specifying components (despite we use
natural numbers to denote them). Define, similarly as in Lemma 3, an indexing function i = mod( j − 1, n) + 1
for action names A j so that actions are grouped in such a way thatM 6|= ∀aϕ(i, a), with ϕ(i, a) a suitable formula
mentioning the A j specified inDuna, and satisfying the conditions of the Lemma. For example, if there is a finite
set of action names ascribed to a component i, then ϕi(i, a) is ∃ ~x1, . . . , ~xk

∨k
j=1 a = A j(~x j), as in (6), with the

A j suitably chosen with i = mod( j − 1, n) + 1, and it satisfies all the conditions of the lemma. GivenM, by the
Lowenheim-Skolem theorem, there is a modelM∼ ofDS 0 ∪Duna which is elementary equivalent toM and has
a countable domain. As usual we define a new structureM1 = (D, I) for L3, with the same domain and the same
interpretation as M∼ on all symbols of L2. Furthermore M1 interprets all the new constants symbols that are
added in the construction, as illustrated below in (67).

The construction with new constants is given according to the above specified enumeration of formulas ϕ(i, a),



B PROOFS OF SECTION 3 51

and the above specified conditions as follows:

∆0 = {ψ | M∼ |= ψ}
. . .
∆i = {H(i, a) ≡ ϕ(i, a) | M∼, v |= ϕ(i, a) iffM1, v |= H(i, a) and ∃a.ϕ(i, a) not used in ∆ j, 0 < j < i}

⋃
{H(i, c) | M1, v |= H(i, a) ∧ ϕ(i, a), av = d = cI , c a fresh constant symbol}

⋃
{¬H(i, c) | M1, v |= ¬ϕ(i, a) ∧ ¬H(i, a), av = d = cI , c a fresh constant symbol}

⋃
{H(i, c)→

∧n
j,i

j=1
¬H( j, c) | M1, v |=

∧n
j,i

j=1
¬ϕ j( j, a) ∧ ϕi(i, a), , av = d = cI , c a fresh constant symbol}

(67)

Each ∆i, 0 ≤ i ≤ n is satisfiable inM1, by construction, furthermore

D =

n⋃
i=0

∆i (68)

is satisfiable inM1 and H is complete in D, which is the diagram of H, inM1, that is, H(i, c) ∈ D iffM1, v |=
H(i, a) and ¬H(i, c) ∈ D iff M1, v |= ¬H(i, a), with av = d = cI . By the constraints on each ϕ(i, a) in the
enumeration, M∼ 6|= ∀a.ϕ(i, a), and M∼, v |= ϕi(i, a) ∧

∧n
j,i

j=1
¬ϕ j( j, a) hence H(i, c)→

∧n
j,i

j=1
¬H( j, c) ∈ ∆i. It

remains to show that
∧n

i=1 ¬H(i, c) < ∆i. But that
∧n

i=1 ¬H(i, c) ∈ ∆i is impossible, since for each ∆i all the added
constants are fresh hence if ¬H(i, c) ∈ ∆i, then ¬H( j, c) < D, i , j. Also because if

∧n
j,i

j=1
¬H( j, c) ∈ ∆i, then by

the condition on the subset, it must be that H(i, c) hence
∧n

i=1 ¬H(i, c) < ∆i.
It follows thatM1 6|= ∃a.

∧n
i=1 ¬H(i, a) and sinceM1 is also a model ofDS 0 it follows thatDS 0 6|= ∃a.

∧n
i=1 ¬H(i, a).

On the other hand H(i, c)→
∧n

j,i
j=1
¬H( j, c) ∈ ∆i, for each i, hence D |= H(i, c)→

∧n
j,i

j=1
¬H( j, c) for each i with c

new constants, henceM1 |= ∀a.H(i, a)→
∧n

j,i
j=1
¬H( j, a). ThusDS 0

⋃
Duna

⋃
{∀a.H(i, a)→

∧n
j,i

j=1
¬H( j, a)}

⋃
{∀a.

∨n
i=1 H(i, a)}

is satisfiable inM1.
Therefore, under the conditions (65), M1 |= H1. Following again Lemma 3 the construction can lead to a

model forDS 0 ∪Duna ∪ Ax1.
�

B.4 Proof of Theorem 2
Theorem 2 A timeline represents the =ν-equivalence class of situations of the same type.

Proof of the theorem. Recall that a timeline is defined by an (improper) successor state axiom as follows:

T (i, do(a, s)) ≡ (s A S 0 ∧ a=νs ∧T (i, s)) ∨ (s = S 0 ∧ H(i, a)). (69)

We show that a timeline corresponds to an =ν-equivalence class. Define:

[ do(a, s) ] = {do(a′, s′) |do(a, s)=νdo(a′, s′)} (70)

[ do(a, s)] is an =ν-equivalence class because =ν is an equivalence relation on actions and situations (see Lemma
6). We show, by induction on s′ that:

do(a′, s′) ∈ [do(a, s)] iff ∃i.T (i, do(a′, s′)) ∧T (i, do(a, s)).
By definition of the equivalence class, it implies that we show
do(a, s)=νdo(a′, s′) ≡ ∃i.T (i, do(a′, s′)) ∧T (i, do(a, s)).

(71)

Basic case s′ = S 0



B PROOFS OF SECTION 3 52

⇒ A. s′ = S 0 and s = S 0

1. do(a′, S 0)=νdo(a, S 0)→a=νa′ (By (a), Lemma 6 )
2. a=νa′→∃i.H(i, a) ∧ H(i, a′) (By (H2))
3. H(i, a) ∧ H(i, a′) ∧ s′ = S 0 ∧ s = S 0→

∃i.T (i, do(a′, S 0)) ∧T (i, do(a, S 0)) (By (W1))
4. do(a′, S 0)=νdo(a, S 0)→∃i.T (i, do(a′, S 0)) ∧T (i, do(a, S 0)) (By A1, A3 and Taut.)

(72)

B. s′ = S 0 and s A S 0 and the Ind. Hyp. is s=νdo(a′, S 0)→∃i.T (i, do(a′, S 0)) ∧ T (i, s), for s ∈
[do(a, s)].

1. do(a′, S 0)=νdo(a, s)→a=νdo(a′, S 0) ∧ s=νdo(a′, S 0) (By (E4))
2. s=νdo(a′, S 0)→∃i.T (i, do(a′, S 0)) ∧T (i, s) (By Ind. Hyp.)
3. a=νdo(a′, S 0)→a=νa′ (By (E3).)
4. s=νdo(a′, S 0)→a′=νs (By (E4))
5. a′=νa′ ∧ a′=νs→a=νs (By (T3) Lemma 6)
6. ∃i.T (i, do(a′, S 0)) ∧T (i, s) ∧ a=νs→
∃i.T (i, do(a′, S 0)) ∧T (i, do(a, s)) (By 2 and (W1))

7. do(a′, S 0)=νdo(a, s)→∃i.T (i, do(a′, S 0)) ∧T (i, do(a, s)) (By 1, 6 and Taut.)

(73)

⇐ C. s′ = S 0 and s = S 0

1. ∃i.T (i, do(a′, S 0)) ∧T (i, do(a, S 0))→∃i.H(i, a′) ∧ H(i, a) (By (W1))
2. ∃i.H(i, a) ∧ H(i, a′)→a=νa′ (By (H2))
3. a′=νa ∧ s = S 0→a′=νdo(a, S 0) (By (E3) )
4. a′=νdo(a, S 0)→do(a, S 0)=νdo(a′, S 0) (By (E4))
5. ∃i.T (i, do(a′, S 0)) ∧T (i, do(a, S 0))→do(a, S 0)=νdo(a′, S 0) (By 1,4 and Taut.)

(74)

D. s′ = S 0 and s A S 0, the Ind. Hyp. is ∃i.T (i, do(a′, S 0)) ∧T (i, s)→s=νdo(a′, S 0)
1. ∃i.T (i, do(a′, S 0)) ∧T (i, do(a, s))→
∃i.T (i, do(a′, S 0)) ∧ a=νs ∧T (i, s) (By (W1))

2. ∃i.T (i, do(a′, S 0)) ∧ a=νs ∧T (i, s)→s=νdo(a′, S 0) (By Ind. Hyp.)
3. a=νs ∧ s=νdo(a′, S 0)→a=νdo(a′, S 0) (By (E3) and symm.)
4. a=νdo(a′, S 0) ∧ s=νdo(a′, S 0)→do(a, s)=νdo(a′, S 0) (By (E4))
5. ∃i.T (i, do(a′, S 0)) ∧T (i, do(a, s))→do(a′, S 0)=νdo(a, s) (By 1,4 and Taut.)

(75)

Induction s′ A S 0 (we may also assume w.l.g s A S 0, otherwise it can be reduced to the above basic cases.)

⇒ The Ind. Hyp. is s=νs′→∃i.T (i, s) ∧T (i, s′) with s′ ∈ [s].

1. do(a′, s′)=νdo(a, s)→a=νa′ ∧ s=νs′ ∧ a=νs′ ∧ a′=νs (By (b,c), Lemma 6 )
2. a′=νs ∧ s=νs′→a′=νs′ (By (T1), Lemma 6 )
3. a=νs′ ∧ s′=νs→a=νs (By (T1), Lemma 6 )
4. s=νs′→∃i.T (i, s′) ∧T (i, s) (By Ind. Hyp. and 1)
5. ∃i.T (i, s′) ∧T (i, s) ∧ a=νs ∧ a′=νs′→

∃i.T (i, do(a, s)) ∧T (i, do(a′, s′)) (By (W1))
6. do(a′, s′)=νdo(a, s)→∃i.T (i, do(a, s)) ∧T (i, do(a′, s′)) (By 1, 5 and Taut.)

(76)

⇐ The induction hypothesis is ∃i.T (i, s) ∧T (i, s′)→s=νs′ with s′ ∈ [s].

1. ∃i.T (i, do(a′, s′)) ∧T (i, do(a′, s′))→
a′=νs′ ∧ a=νs ∧T (i, s) ∧T (i, s′) (By (W1))

2. ∃i.T (i, s) ∧T (i, s′)→s=νs′ (By Ind. Hyp.)
3. a′=νs′ ∧ s′=νs ∧ a=νs→a′=νs ∧ a=νs′ ∧ a=νa′ (By (T1,T2), Lemma 6 )
4. a=νs′ ∧ s=νs′ ∧ a=νa′→→do(a, s)=νdo(a′, s′) (By (d), Lemma 6 )
5. ∃i.T (i, do(a′, s′)) ∧T (i, do(a′, s′))→do(a, s)=νdo(a′, s′) (By 1,4 and Taut.)

(77)



B PROOFS OF SECTION 3 53

We have, thus, shown that a timeline represents an equivalence class indexed by a type (that is by a component
of the system). Furthermore it follows from the definition that S 0 does not belong to any equivalence class hence
to no timeline. Thus any induction on timelines needs that the basic case is do(a, S 0). �

B.5 Proof of Theorem 3
We have to show that the axioms G1-G5 have a model which is also a model of Σ=ν ∪Duna.

A structure for L3 which is a model for Σ=ν ∪ Duna has been provided in Theorem 1, furthermore, if we
consider a satisfiable initial databaseDS 0 as shown in Corollary 1, there exists a model of Σ=ν ∪Duna ∪DS 0 that
can be extended to a model of D = Σ=ν ∪ Duna ∪ DS 0 ∪ Dss ∪ Dap, with successor state axioms mentioning
also timelines. Therefore letM1 = (D, I0) be such a model. We shall show that this modelM1 can be extended
to a modelM2 in which we give an appropriate interpretation for the sort S of bags of timelines, and such that
the axioms G1-G5 are satisfied. LetM2 = (D ∪ {S }, I) i.e. M2 has the same domain asM1 for sorts object-
including reals (time)- actions and situations, I is like I0 for all symbols of the language L3 and it is extended to
interpret the above mentioned elements in S according to the following steps.

Let n ∈ N and 〈s1, . . . , sn〉 a n tuple of situations in S itn, S it ⊂ D and v any valuation on the free variables.

1. If n = 0 BI
0 ∈ S .

2. If n > 0 〈s(I,v)
1 , . . . , s(I,v)

n 〉 ∈ S iff for each sk, k = 1, .., n,M1, v |= (sk = S 0 ∨ ∃iT (i, sk))
(78)

Now, each term s(I,v) ∈ S is invariant to both permutations of the order of the tuple and compaction of
repeated situations. That is, whenever p is a permutation of {1, . . . , n} and 〈s1, . . . , sn〉 is a tuple of situations in
S itn, S it ⊂ D, then

〈s(I,v)
1 , . . . , s(I,v)

n 〉 = 〈κ(s(I,v)
p1 , . . . , s(I,v)

pi , s(I,v)
pi , . . . , s(I,v)

pn )〉(I,v)
p (79)

Here κ : S 7→ S indicates a compaction function on a tuple of the repeated k elements of a n + k tuple and
〈· 〉p : S 7→ S the permutation function on {1, . . . , n}. More precisely, 〈s(I,v)

p1 , . . . s(I,v)
pn 〉p has been obtained

from κ(〈s(I,v)
1 , . . . , s(I,v)

pi , s(I,v)
pi , . . . , s(I,v)

pn 〉
(I,v)
p ) by compacting to a single representative the repeated arguments spi,

and 〈s(I,v)
1 , . . . , s(I,v)

n 〉 has been obtained from 〈s(I,v)
p1 , . . . , s(I,v)

pi , . . . s(I,v)
pn 〉

(I,v)
p by a permutation p of {1, . . . , n}. In the

language the permutation 〈·〉p incorporates also the compaction κ.
[G1] Given the construction of terms of sort bag of timelines we can state the following, for n ∈ N and v any

assignment to the free variables:

M2, v |= s ∈S B(〈s j1, . . . , s jn〉 j) iff M1, v |=
∨

1≤k≤n

(
(s = s jk ∧ ∃i.T (i, s jk)) ∨ S 0 = s jk

)
(80)

And sinceM2 is likeM1 for L3 it follows that (G1) is satisfied inM2.
We can now generalise the membership relation over bags of situations as follows:

For all sI,v ∈ S it ⊂ D,
1. I f s(I,v) = BI

0 thenM2, v |= s <S s

2 Otherwise
M2, v |= s ∈S s iff there is a n ∈ N and a n tuple 〈s(I,v)

1 , . . . s(I,v)
n 〉, of elements of S it ⊂ D s.t.

s(I,v) = 〈κ(s(I,v)
p1 , . . . s(I,v)

pn )〉(I,v)
p , for some k = 1, . . . , n, s(I,v) = s(I,v)

pk , and
M2, v |= ∃i.T (i, s) iff sI,v , S I

0

(81)

Now we have given an interpretation inM2 to ∈S and built the terms of sort bag of timelines, thus we can
define the interpretation for =S :

M2, v |= s =S s′ iff for any sI′,v ∈ S it (M2, v |= s ∈S s iffM2, v |= s ∈S s′) (82)



B PROOFS OF SECTION 3 54

[G2] Follows from (82) above.
[G3] This is a consequence of item (1) of (78), defining the interpretation of the constant B0.
[G4] By definition of timeline and of bag of timelines, ifM2, v |= (s = S 0 ∨ ∃iT (i, s)) then B(s) is a bag of

timelines. Consider, now, the definition of ∪S given in Example 10 then

M2, v |= s =S s
′ ∪B(s) iffM2, v |= ∀s.s ∈ s ≡ s ∈ s′ ∪B(s)

Hence by simple induction on the structure of s′, G4 is satisfied inM2.
[G5] Let S be the terms of sort bag of timelines, and consider the definition of ⊆S given in Example 10:

⊆S is an ordering relation on S , then every subset of S has a set of minimal elements and, in particular, B0 is
a minimum. Now suppose that

M2, v |= ϕ(B0) ∧ (∀s s.ϕ(s) ∧ ϕ(B(s))→ϕ(s ∪S B(s))) (83)

and for some t

M2, v 6|= ϕ(t)

Hence

M2, v |= ¬ϕ(t)

Let W = {t′ |M2, v |= ¬ϕ(t′)} then W has a set of minimal elements Min = {s ∈ W |¬∃t ∈ W, t ⊂S s}. Let
x ∈ Min then, by hypothesisM2, v |= ¬ϕ(x), with x , B0. Now, being x minimal in W, there must exist a s′,
s′ ∈ S , with s′ ⊂ x and s′ < W. ThenM2, v |= ϕ(s′), since s′ < W. We can find an s such that x = s′ ∪S B(s),
by the conditional existence. By equation (83)), since by hypothesisM2, v |= ϕ(B0), and from M2, v |= ϕ(s′)
and ϕ(B(s)) it follows thatM2, v |= ϕ(s′ ∪B(s)). HenceM2, v |= ϕ(x), a contradiction.

We have shown thatM2 is a model ofDuna ∪ Σ=ν ∪ (G1-G5).
�

B.6 Proof of Theorem 4
To prove the theorem we shall first extend the definition of uniform terms and regressable sentence (see [61])
to include terms and formulas mentioning terms of sort bag of situations. Let LT FS C be the language of SC
extended to includeA+ and letD+ be a basic action theory extended withA+.

Let σ denote a term of sort situation mentioning only S 0 and terms of sort actions αi = A(t1, . . . , tm),m ≥ 0,
with ti, 1 ≤ i ≤ m, not mentioning terms of sort situation, that is, appealing to the notational convention used in
[61] σ = do([α1, . . . , αn], S 0), for some n ≥ 0, and for terms α1, . . . , αn of sort action.

Definition 4 The set of terms of the language LT FS C uniform in σ1, . . . , σk, k ≥ 1, is the smallest set defined as
follows:

1. Any term not mentioning term of sort situation is uniform in σ1, . . . , σk, k ≥ 1.

2. σi is uniform in σ1, . . . , σk, i = 1, . . . , k.

3. If g is an n-ary function symbol other than do and B, and t1, . . . , tn are terms uniform in σ1, . . . , σk whose
sorts are appropriate for g, then g(t1, . . . , tn) is a term uniform in σ1, . . . , σk.

4. B(σi) is a term uniform in σ1, . . . , σk, i = 1, . . . , k.

5. B(〈σ j1, . . . , σ jk〉 j) is a term uniform in σ1, . . . , σk, for any permutation j of {1, . . . , k}.



B PROOFS OF SECTION 3 55

Finally:
Items (4) and (5), of Definition 4 above, are correct because bags of timelines are flat sets, that is, they are

formed only by situations, which are their individual elements. This follows from the first axiom (G1) defining
membership only for elements of sort situation. To see this we prove the following lemmas.

Lemma 8 For all bags of timelines t and s: t <S s.

B.6.1 Proof of Lemma 8

We prove the claim by induction on s, using (G5). First note that by (G1) t < B0 and by (G2) t < B(s), because
t ,S s. Let: φ(s) = ∀t.t < s, then we have:

φ(s) = ∀t.t < s (Ind. Hyp)
φ(B0) = ∀t.t < B0 (by G1)
φ(B(s)) = ∀t.t < B(s) (by G2)

Then
∀t.t < s ∧ t < B(s)→t < s ∪S B(s) (by Def. of ∪S Ex. 10)
∀t.t < s(by Ind. Hyp. and G5)

(84)

Hence the claim.
�

The above lemma implies, in particular, that bags of timelines are not ordinal numbers.

Lemma 9 Let P(s) be the power set of the bag s. Then for any bag term t, t ∩P(s) = ∅.

B.6.2 Proof of Lemma 9

Let P(s) be the power set of s, that is ∀x.x ⊆S s→x ∈S P(s). We have to show that for all bags of timelines
t, t ∩S P(s) = ∅. Suppose that there is some x, such that x ∈S t ∩S P(s), then x ∈S t and x ∈S P(s).
Since x ∈S P(s) then x is a bag term s′ hence s′ ∈S t contradicting the previous Lemma 8.

�

Lemma 10 If S is a set of bag terms then S ,S s for all bag terms s.

B.6.3 Proof of Lemma 10

Follows from the previous Lemma 9.
�

We define now the set of regressable formulas extending the definition of [61] to include formulas mentioning
bag of timelines.

Definition 5 A formula W of LT FS C is regressable iff

1. W is first order.

2. W does not mention variables of sort situation nor of sort bag of timelines.

3. Every term of sort situation mentioned by W is uniform in σ1, . . . , σn, n ≥ 1.

4. For every atom of the form Poss(α, σ) mentioned by W, α has the form A(t1, . . . , tn) for some n-ary action
function symbol A of LT FS C .



B PROOFS OF SECTION 3 56

5. Every term s of sort bag of timelines appearing in W is uniform in σ1, . . . , σk, for some k ≥ 0.

6. W does not quantify over situations nor bag of situations.

First note that, by definition of the regression operator,

if D |= W ≡ W ′

then D |= R(W) ≡ R(W ′) (85)

Let W be a regressable formula mentioning terms s of sort bag of timelines we show that

D+ |= (∀)W ≡ R(W)

with R(W) a formula uniform in S 0.
We show the claim by induction on the structure of the regressable formula W, mentioning terms of sort bag

of timelines. We first show, however, that T (i, σ) is regressable if σ is a uniform term.

Lemma 11 Consider a uniform term of sort situation, of the formσm+1 = do(Am+1(~xm+1), do(. . . , do(A1(~x1), S 0) . . .)),
for some m ∈ N and actions A1, . . . Am+1, that is a timeline. Then:

R(T (i, do(Am+1, σ
m))) ≡

m+1∧
j=1

H(i, A j(~x j)) (86)

Proof of the Lemma First note that given σm+1, as specified in the Lemma, the following holds, by m applications
of Axioms (E1) and (E3) and of theorem (T1) of Lemma 6:

Am+1=ν σ
m ∧ σm = do(Am(~xm), do(. . . , do(A1(~x1), S 0) . . .)) ≡ Am+1(~xm+1)=νAm(~xm) ∧ . . . ∧ A2(~x2)=νA1(~x1)

≡ H(i, Am+1(~xm+1)) ∧ . . . ∧ H(i, A1(~x1)) (87)

Further, by induction on the number of actions mentioned in the uniform situation term σm+1, we can see
that:

T (i, do(Am+1(~xm+1), σm)) ≡
m+1∧
j=1

[
A j(~x j)=νσ

j−1 ∨ σ j−1 = S 0 ∧ H(i, A(~x j))
]

(88)

Indeed, the basic case, for σm = S 0 follows from the definition of T (i, do(a, s)). For the induction, we have:

T (i, do(Am+1(~xm+1), σm)) ≡ T (i, σm) ∧ Am+1(~xm=1)=νσ
m∨

σm = S 0 ∧ H(i, Am+1(~xm=1))
≡

∧m+1
j=1

[
A j(~x j)=νσ

j−1 ∨ σ j−1 = S 0 ∧ H(i, A(~x j))
]

∧Am+1(~xm=1)=νσ
m ∨ σm = S 0 ∧ H(i, Am+1(~xm=1)) (By Ind. Hyp.)

≡
∧m+1

j=1 H(i, A j(~x j)) (By (87), above and Taut.)

(89)

Thus
∧m+1

j=1 H(i, A j(~x j)) ≡ R(T (i, do(Am+1, σ
m))), a formula uniform in S 0.

�
Theorem continue.. For the basic step we consider the following atoms (see Definition 1):

1. if W has the form σ ∈ B(〈σ j1, . . . , σ jk〉), with each σ ji = do([α1, . . . , αn], S 0) for some n ≥ 0, then by
axiom (G1),

D+ |= W ≡
∨

1≤p≤k

σ = σ jp ∧

σ jp = S 0 ∨
∨

i

T (i, σ jp)





B PROOFS OF SECTION 3 57

So let W ′ be the RHS of the equivalence in the above formula, by Lemmas 8,9 and (G1) W ′ does not
mention terms of sort bag of timelines and moreover is a regressable formula (Lemma 11) hence the
regression theorem, as stated in [61] applies. Therefore R(W ′) is a formula uniform in S 0 and, by (85)
above:

R(W) ≡ R(W ′) (90)

and the claim is verified by monotonicity sinceD ⊆ D+.

2. If W has the form s =S t then, because W is a regressable sentence, it has the following form:

B(〈σ j1, . . . , σ jk〉 j) =S tB(〈σ′p1, . . . , σ
′
pm〉p)

then by (G2), W is equivalent to the formula W ′:

∀s.
(
s ∈S B(〈σ j1, . . . , σ jk〉 j)

)
≡

(
s ∈S B(〈σp1, . . . , σpm〉p)

)
(91)

And, by (G1), W ′ is equivalent to the following formula W ′′:

∀s.
(∨

1≤h≤k s = σ jh ∧ (σ jh = S 0 ∨
∨

i T (i, σ jh)) ≡
∨

1≤q≤m s = σpq ∧ (σpq = S 0 ∨
∨

i T (i, σpq))
)

(92)

Finally W ′′, by first order tautologies and equality, is equivalent to the following sentence W ′′′:(∧
1≤h≤k

∨
1≤q≤m(σ jh = σpq ∧ (σ jh = S 0 ∨

∨
i T (i, σ jh)))

)
(93)

Now, by Lemma 11, W ′′′ is a regressable sentence not mentioning terms of sort bag of timelines and hence
the regression theorem can be applied and the claim holds.

3. If W has the form:

s =S B0

Then W reduces to either > or ⊥, which are regressable sentences in L, and R(>) (as R(⊥)) are uniform
in S 0, hence the claim holds.

4. If W has the form:

B(〈σr1, . . . , σrm〉r) =S B(〈σ′j1, . . . , σ
′
jk〉 j) ∪S B(〈σ′′p1, . . . , σ

′′
pn〉p)

then we can use the definition of ∪S given in Example 10:

(s ∪S s
′ =S t ≡ ∀s.s ∈S t ≡ (s ∈S s ∨ s ∈S s

′))

Then W is equivalent to the following formula W ′:

∀s.s ∈S B(〈σr1, . . . , σrm〉r) ≡ s ∈S B(〈σ′j1, . . . , σ
′
jk〉 j) ∨ s ∈S B(〈σ′′p1, . . . , σ

′′
pn〉p) (94)

Again using (G1), we get W ′′:

∀s.
(∨

1≤u≤m s = σu ∧ (σu = S 0 ∨
∨

i T (i, σu)) ≡∨
1≤h≤k s = σ′h ∧ (σ′h = S 0 ∨

∨
i T (i, σ′h)) ∨

∨
1≤q≤n s = σ′′q ∧ (σ′′q = S 0 ∨

∨
i T (i, σ′′q ))

) (95)



C PROOFS FOR SECTION 4 58

By first order tautologies and equality, W ′′ reduces to the equivalent formula W ′′′:∧
1≤u≤m

(∨
1≤h≤k(σu = σ′h) ∨

∨
1≤q≤n(σu = σ′′q ) ∧ (σu = S 0 ∨T (i, σu))

)
(96)

W ′′′ is a regressable sentence of L3 and does not mention terms of sort bags of timelines, therefore the
regression theorem can be applied and also in this case the claim holds.

5. Any other regressable atom (see Definition 1) mentioning the classical set-operators, that can be defined
using (G1-G5), can be easily reduced to the previous cases.

Now, by induction hypothesis, regression can be extended to any regressable sentence mentioning terms of sort
bag of timelines simply using the inductive definition of R:

R[¬W] = ¬R[W],
R[W1 ∧W2] = R[W1] ∧ R[W2],
R[(∃v)W] = (∃v)R[W]

(97)

This concludes the proof that regression can be extended to regressable formulas mentioning terms of sort bag of
timelines

�

Appendix C

C Proofs for Section 4

C.1 Proof of Theorem 5
Let DT be the theory formed by Dss ∪ Dap ∪ Dπ ∪ DS 0 ∪ A

+ ∪ Duna, we have to prove that DT is satisfiable
iff DS 0 ∪ A

+ ∪ Duna is. If DT is satisfiable, despite the second order axiom, using compactness it follows that
also DS 0 ∪ A

+ ∪ Duna is. For the other direction assume that DS 0 ∪ A
+ ∪ Duna is satisfiable. Let M1 be

any of such structures. We know from the proof of Theorem 3 that M1, a structure of L4, is also a model of
DS 0 ∪Dap ∪Dssa ∪Duna ∪A

+ whereDssa ∪Duna mentions successor state axioms for timelines, but no process
is yet defined. We also assume that axiom (4), (see also (45 )) is verified inM1.

Here we have to show thatM1 can be transformed into a model of the condition (20) and of the successor
state axioms and action precondition axioms for processes. To this end we define a new structureM2 = (D, I′)
having the same domain asM1, but the interpretation I′ extends I, fixing an interpretation also for processes and
the fluent Idle, as specified in the sequel.

Let Π be the set of processes in the language L4, we enumerate Π

π1(i1, ~x, t0, S 0), π2(i1, ~x, t0, S 0), . . . , πm(ik, ~x, t0, S 0), πm+1(ik, ~x, t0, S 0), . . .

and define subsets of this ordering as follows:

Πim = {π j(im, ~x, t0, S 0) | im is the corresponding name type of the process π j, for which H(im, a) is defined}

In other words, following Corollary B.3 all the actions startπ and endpi might have been already suitable assigned
to the H(i, a).

We can now order the Πik according to the name type and choose one process for each set and state:

M2 |= ∃~xπ j(im, ~x, t0, S 0) iff for all πk(im, ~x, t0, S 0) ∈ Πim , (k , j),M2 |= ∀~x¬πk(im, ~x, t0, S 0)

Further we set for all name types ¬Idle(i, S 0).



C PROOFS FOR SECTION 4 59

This construction implies thatM1 is a model of the condition (20).
Thus we have:

(1) M2, v |= ¬Idle(i, S 0) for all name types i
(2) M2, v |= ¬Poss(startπ(i, ~x, t), S 0) for all name types i, because of (1) above and definition (19)
(3) M2, v |= Poss(endπ(i, ~x, t), S 0) iff M2, v |= Ψend(i, ~x, S 0) and

M2, v |= π(i, ~x, t0, S 0) ∧ time(endπ) > t0
(4) M2, v |= time(S 0) = t0 by the construction ofM1

(98)

Having fixed the definition of processes, Idle and Poss in DS 0 we can proceed inductively on all situation s
similarly as in the relative satisfiability theorem in [61]. In fact, the inductive step of the proof relies on the fact
that the right hand side of the successor state axioms Ψ(~x, y, a, t, s) is uniform in s and hence has already been
assigned a truth value in s byM2, and being fixed forDS 0 the induction is straightforward. �

C.2 Proof of Proposition 1
We proceed by induction on σ, using the definition of executable given in (17) and the definitions of the action
preconditions. Consider do(α, S 0), in this case, if H(i, α) then DT |= T (i, do(α, S 0)). For the inductive step,
consider do(α, σ). By the hypothesis α is executable in σ, henceDT |= Poss(α, σ), therefore, by (19) and (21) ,
α=νσ. By the induction hypothesisDT |= T (i, σ) henceDT |= T (i, do(α, σ)). �

C.3 Proof of Proposition 2
We have to show that, for σ an executable situation, then

DT |= Idle(i, σ) ∨

∃~x t.π(i, ~x, t, σ)→ ¬Idle(i, σ) ∧ ∀~y
π,π′∧
π′∈Π

¬π′(i, ~y, t, σ)

 (99)

First note that for σ = S 0 the statement holds because of (20). For any other σ, by the previous Proposition 1
(C.2) it follows that σmust also be a timeline. Suppose that for the given timeline T (i, σ) the statement holds for
any σ

′′

v σ, and let do(a, σ′) be the first situation in the equivalence class of the timeline for which the statement
does not hold, for some a. We show that this leads to a contradiction. Assume, therefore, there is some modelM
of DT and some processes π′(i, ~y, t′, do(a, σ′)) and π′′(i, ~x, t, do(a, σ′)), with π′ , π′′, which do not satisfy (99).
Then:

M |= ¬Idle(i, do(a, σ)) ∧ (∃~x, t.π′(i, ~x, t, do(a, σ′)) ∧ ∃~z, t′.π′′(i,~z, t′, do(a, σ′)) ∨ Idle(i, do(a, σ)))
M |= ¬Idle(i, do(a, σ)) ∧ (∃~x t.π′(i, ~x, t, do(a, σ′)) ∧ ∃z, t′.π′′(i,~z, t′, do(a, σ′))) (100)

Then:

1. SinceM |= ∃~x, t.π′(i, ~x, t, do(a, σ′)), then by the successor state axiom for processes (16):

M |= ∃~x, t.a=startπ′ (i, ~x, t) ∨ π′(i, ~x, t, σ′) ∧ ∀t.a , endπ′ (i, ~x, t)
M |= ∃~x, t.a=startπ′ (i, ~x, t) ∨ ∃~z, t′.π′(i,~z, t′, σ′) ∧ ∀t′′.a , endπ′ (i,~z, t′′)

(101)

2. SinceM |= ∃~x, t.π′′(i, ~x, t, do(a, σ′)), then:

M |= ∃~x, t.a=startπ′′ (i, ~x, t) ∨ ∃~z, t′.π′′(i,~z, t′, σ′) ∧ ∀t′.a , endπ′′ (i,~z, t′) (102)



D PROOFS FOR SECTION 6 60

Now, since do(a, σ′) is the first situation in which the statement fails, it follows that it must be true in σ hence it
cannot be that for some ~d and some ~d′ in the domain ofM, both π′(i, ~d, t′, σ′) and π′′(i, ~d′, t′, σ′) hold. W.l.o.g
we may assume any of the two and establish that M |= π′(i, ~d, t′, σ′), for some ~d ∈ D, the domain of M, and
M |= ∀z, t′¬π′′(i,~z, t′, σ′). But now, sinceM satisfies π′′ with argument do(a, σ), it follows, from the successor
state axiom for processes, that it must be thatM |= ∃~y, t′.a = startπ′′ (i, ~y, t′).

By the statement assumptions do(a, σ) must be executable, henceM |= ∃~y, t′.a = startπ′′ (i, ~y, t′)∧Poss(startπ′′ (i, ~y, t′), σ′).
This fact, in turn, implies, by the definition of Poss for the action startπ′′ (see 19) thatM |= Idle(i, σ′), hence

it cannot be true thatM |= π′(i, ~d, t′, σ′), for some ~d ∈ D, given that (99) holds with σ′, therefore also for π′ it
must be thatM |= ∀z, t′¬π′(i, ~d, t′, σ′). We are thus left with

M |= ∃~x, t.a=startπ′ (i, ~x, t) ∧ Idle(i, σ′) ∧ ∃~y, t′.a=startπ′′ (i, ~y, t) ∧ Idle(i, σ′) (103)

But this is not possible for both, by the equality, hence it follows that

M |= ∀~x, t.¬π′(i, ~x, t, do(a, σ′)),

and we have a contradiction. �

Appendix D

D Proofs for Section 6

D.1 Proof of Theorem 6
We first introduce three lemmas, then we prove the theorem.

Lemma 12 Let K and G be finite sets of indexes, the following are tautologies:

i. {
∨

i∈K Di} → {
∨

g∈G Wg} ≡
∧

i∈K{Di → {
∨

g∈G Wg}},
ii. ∀~w∃~z

∧
i∈K{Di(~w)→ {

∨
g∈G Wg(~w,~z)}} ≡

∧
i∈K ∀~w{Di(~w)→ {

∨
g∈G ∃~z Wg(~w,~z)}}. (104)

Proof. By FOL �

Lemma 13 Given the predicates ElapsedX(i, ~x, t−, t+, σ) and ActiveX(i, ~x, t−, σ), as defined in (24,25), with σ a
ground situation of type i, for anyM of TFSC and assignment v, the following holds:

M, v |= ElapsedX(i, ~x, t−, t+, σ) iff M, v |=
∨

i∈K[Mk,X(~x, t−, t+, S 0) ∧ (t− = τ−k,X ∧ t+ = τ+
k,X)] ;

M, v |= ActiveX(i, ~x, t−, σ) iff M, v |=
∨

i∈K[Nk,X(~x, t−, S 0) ∧ (t− = τ−k,X)]. (105)

Here τ±k,X is a time variable (or instance) mentioned inσ, Mk,X(~x, t−, t+, S 0) and Nk,X(~x, t−, S 0) are TFSC formulas
in S 0 with k in K finite set of indexes.

Proof. We proceed by induction on σ.
Basic case: in this case we state σ = S 0, hence, by (24) we have that

ActiveX(i, ~x, t−, S 0) = X(i, ~x, S 0) ∧ time(S 0) = t−

ElapsedX(i, ~x, t−, t+, S 0) = ⊥,

and we obtain (105) once we state, for instance, K = {1}, M1,X(i, ~x, t−, t+, S 0) = ⊥, N1,X(i, ~x, t−, S 0) = X(i, ~x, S 0)
and τ−1,X = t0, where t0 is for time(S 0).
Inductive step: now we assume that (105) holds for σ and we prove that it holds for do(A, σ).



D PROOFS FOR SECTION 6 61

By (24) we have that:

ActiveX(i, ~x, t−, do(A, σ)) = T (i, do(A, σ)) ∧ S tartedX(i, ~x, t−, A, σ)∨
ActiveX(i, ~x, t−, σ) ∧ ¬∃t+ EndedX(i, ~x, t+, A, σ)

ElapsedX(i, ~x, t−, t+, do(A, σ)) = T (i, do(A, s)) ∧ ElapsedX(i, ~x, t−, t+, σ)∨
EndedX(i, ~x, t+, A, σ) ∧ ActiveX(i, ~x, t−, σ).

Applying the definition of S tartedX and EndedX the previous one can be rewritten as follows:

ActiveX(i, ~x, t−, do(A, σ)) = T (i, do(A, σ)) ∧ X(~x, do(A, σ)) ∧ ¬X(~x, σ) ∧ time(A) = t−∨
ActiveX(i, ~x, t−, σ) ∧ ¬∃t+ (X(~x, σ) ∧ ¬X(~x, do(A, σ)) ∧ time(A) = t+);

ElapsedX(i, ~x, t−, t+, do(A, σ)) = T (i, do(A, s)) ∧ ElapsedX(i, ~x, t−, t+, σ)∨
X(~x, σ) ∧ ¬X(~x, do(A, σ)) ∧ time(A) = t+ ∧ ActiveX(i, ~x, t−, σ).

(106)

Consider the regression of the following formulas:

R(T (i, do(A, σ)) = R0
i (S 0);

R(X(~x, σ) ∧ ¬X(~x, do(A, σ))) = R1
X(~x, S 0);

R(T (i, do(A, σ)) ∧ X(~x, do(A, σ)) ∧ ¬X(~x, σ)) = R2
X(~x, S 0);

R(¬∃t+ (X(~x, σ) ∧ ¬X(~x, do(A, σ)) ∧ time(A) = t+)) = R3
X(~x, S 0).

Than we can rewrite the previous equivalence (106) by substituting the regressed formulas

ActiveX(i, ~x, t−, do(A, σ)) = R2
X(~x, S 0) ∧ time(A) = t−∨

ActiveX(i, ~x, t−, σ) ∧ R3
X(~x, S 0);

ElapsedX(i, ~x, t−, t+, do(A, σ)) = R0
i (S 0) ∧ ElapsedX(i, ~x, t−, t+, σ)∨

R1
X(~x, S 0) ∧ ActiveX(i, ~x, t−, σ) ∧ time(A) = t+.

If we now apply the inductive hypothesis we get:

M, v |= ElapsedX(i, ~x, t−, t+, do(A, σ)) iff
M, v |=

∨
k∈K[Mk,X(~x, t−, t+, S 0) ∧ R0

i (S 0) ∧ (t− = time(a−k,X) ∧ t+ = time(a+
k,X))]∨∨

k∈K[Nk,X(~x, t−, S 0) ∧ R1
X(~x, S 0) ∧ time(A) = t+;

M, v |= ActiveX(i, ~x, t−, do(A, σ)) iff
M, v |=

∨
k∈K[Nk,X(~x, t−, S 0) ∧ R3

X(~x, S 0) ∧ (t− = time(a−k,X))]∨
R2

X(~x, S 0) ∧ time(A) = t−

(107)

where a±k,X is an action mentioned in the ground situation σ. Since time(ak,X) equals to a time variable (or in-
stance) τ±k,X mentioned in σ, the property (23) holds for do(A, σ). This concludes the prove. �

Lemma 14 Given a bag of timelines s[ω] mentioning the set of timelines {σ1, . . . , σn}, where ω is a tuple of the
time variables ti, j, the predicate I(Tc, s[ω]) can be transformed into the following form:∧

d∈D
∨

w∈Wd

∧
r∈Rd,w

∧
k∈Kd,w,r

∨
g∈Gd,w,r

∀~x∃~y(Pd(id, ~x, τ−k , τ
+
k ) opd,r Qr( jr, ~y, τ−g , τ

+
g )[σid , σ jr ]). (108)

Here D, Wd, Rd,w Kd,w,r, and Gd,w,r are finite set of indexes, where τ−k , τ
+
k (τ−g , τ

+
g ) are either temporal variables

or ground temporal instances mentioned in the ground situation σid (respectively, σ jr ) with name types id ( jr) .

�
Proof. From (27) we have that I(Tc, s) is a TFSC formula of the form∧

(comp(Pi(~x),LL) ∈Tc)
∨

(L ∈ LL) ∃s(s ∈ s ∧T (i, s) ∧ (
∧
{(op,Q( j,~y))∈L} ∃s′(s′ ∈ s ∧T ( j, s′)∧

∀~x, t−i , t
+
i ∃~y, t

−
j , t

+
j (P(i, ~x, t−i , t

+
i ) op Q( j, ~y, t−j , t

+
j )[s, s′])))).



D PROOFS FOR SECTION 6 62

We want to prove that, for each modelM of TFSC and assignment v

M, v |= ∃s(s ∈ s ∧T (i, s) ∧ ∃s′(s′ ∈ s ∧T ( j, s′)∧
∀~x, t−i , t

+
i ∃~y, t

−
j , t

+
j (P(i, ~x, t−i , t

+
i ) op Q( j, ~y, t−j , t

+
j )[s, s′])))

iff there exist two ground situation σi and σ j in s of type i and j respectively, such that:
M, v |=

∧
k∈K

∨
g∈G ∀~x∃~y(P(i, ~x, τ−k , τ

+
k ) op Q( j, ~y, τ−g , τ

+
g )[σi, σ j]),

with K and G finite sets of indexes and τ−k , τ
+
k (τ−g , τ

+
g ) time variables or instances in σi (σ j).

(109)

First of all, observe that, sinceM is a TFSC model, the following holds:

M, v |= ∃s(s ∈ s ∧T (i, s) ∧ ∃s′(s′ ∈ s ∧T ( j, s′)∧
∀~x, t−i , t

+
i ∃~y, t

−
j , t

+
j (P(i, ~x, t−i , t

+
i ) op Q( j, ~y, t−j , t

+
j )[s, s′])))

iff there exists two ground situations, σi and σ j in s, of type i and j respectively, such that:
M, v |= ∀~x, t−i , t

+
i ∃~y, t

−
j , t

+
j (P(i, ~x, t−i , t

+
i ) op Q( j, ~y, t−j , t

+
j )[σi, σ j]).

(110)

Therefore, the theorem is proved once we show that

M, v |= ∀~x, t−i , t
+
i ∃~y, t

−
j , t

+
j (P(i, ~x, t−i , t

+
i ) op Q( j, ~y, t−j , t

+
j )[σi, σ j]), with σi, σ j ∈ s, iff

M, v |=
∧

k∈K
∨

g∈G ∀~x∃~y(P(i, ~x, τ−k , τ
+
k ) op Q( j, ~y, τ−g , τ

+
g )[σi, σ j]),

(111)

with τ−k , τ+
k , (τ−g , τ+

g ) time variables or instances thereof mentioned in σi (σ j). Indeed, from (111) and (27) we
obtain thatM, v |= I(Tc, s) iff

M, v |=
∧

d∈D
∨

w∈Wd

∧
r∈Rd,w

∧
k∈Kd,w,r

∨
g∈Gd,w,r

∀~x∃~y(Pd(id, ~x, τ−k , τ
+
k ) opr Qr( jr, ~y, τ−g , τ

+
g )[σid , σ jr ]),

where d ∈ D is for (comp(P(~x), LL) in Tc), w ∈ Wh is for L in LL, and r ∈ Rd,w is for (op,Q( j, ~y)) ∈ L. Once we
represent

∧
r∈Rd,w

∧
k∈Kd,w,r

directly as
∧
〈r,k〉∈RKd,w

, we obtain the equation (108) and the Lemma is proved.
Now, it remains to show that (27) holds. In order to prove this, we proceed with a proof by cases, restricting

our attention to {m,b, s, f,d}.
Case meets: We consider the following form:

P(i, ~x, t−i , t
+
i ) m Q( j, ~y, t−j , t

+
j )[σi, σ j]

def
= ElapsedP(i, ~x, t−i , t

+
i , σi)→(

(ActiveQ( j, ~y, t−j , σ j) ∨ ElapsedQ( j, ~y, t−i , t
+
j , σ j)) ∧ (t+i = t−j )

)
;

Given the (107), by FOLM, v |= (ActiveQ( j, ~y, t−j , σ j)∨ ElapsedQ( j, ~y, t−i , t
+
j , σ j)) iffM, v |=

∨
g∈G[Wg,Q(~y, t−j ,

t+j S 0) ∧ (t−j = τ−g,Q ∧ t+j = τ+
g,Q)], with τg,Q time variables (instances) mentioned in σ′. Therefore, we have that:

M, v |= P(i, ~x, t−i , t
+
i ) m Q( j, ~y, t−j , t

+
j )[σi, σ j] iff

M, v |= {
∨

i∈K[Mi,P(~x, t−i , t
+
i , S 0) ∧ (t−i = τ−k,P ∧ t+i = τ+

k,P)]} →
{
∨

g∈G[Wg,Q(~y, t−j , t
+
j , S 0) ∧ (t−j = τ−g,Q ∧ t+j = τ+

g,Q) ∧ (t+i =t−j )]},
(112)

We can consider the formula ∀~x, t−i , t
+
i ∃~y, t

−
j , t

+
j P(i, ~x, t−i , t

+
i ) m Q( j, ~y, t−j , t

+
j )[σi, σ j]. We can see that:

M, v |= ∀~x, t−i , t
+
i ∃~y, t

−
j , t

+
j P(i, ~x, t−i , t

+
i ) m Q( j, ~y, t−j , t

+
j )[σi, σ j], (by (112)) iff

M, v |= ∀~x, t−i , t
+
i ∃~y, t

−
j , t

+
j {
∨

i∈K[Mi,P(~x, t−i , t
+
i , S 0) ∧ (t−i = τ−k,P ∧ t+i = τ+

k,P)]} →
{
∨

g∈G[Wg,Q(~y, t−j , t
+
j , S 0) ∧ (t−j = τ−g,Q ∧ t+j = τ+

g,Q) ∧ (t+i =t−j )]}, (by (104) i.) iff
M, v |=

∧
i∈K{∀~x, t−i , t

+
i [Mi,P(~x, t−i , t

+
i , S 0) ∧ (t−i = τ−k,P ∧ t+i = τ+

k,P)]→
{
∨

g∈G ∃~y, t−j , t
+
j [Wg,Q(~y, t−j , t

+
j , S 0) ∧ (t−j = τ−g,Q ∧ t+j = τ+

g,Q) ∧ (t+i =t−j )]}}, (by (104) ii.) iff
M, v |=

∧
k∈K{∀~x[Mk,P(~x, τ−k,P, τ

+
g,P, S 0)→ {

∨
g∈G ∃~y[Wg,Q(~y, τ−g,Q, τ

+
g,Q, S 0) ∧ (τ+

k,P=τ−g,Q)]}} iff
M, v |=

∧
k∈K

∨
g∈G ∀~x,∃~yP(i, ~x, τ−k,P, τ

+
g,P) m Q( j, ~y, τ−g,Q, τ

+
g,Q)[σi, σ j]



D PROOFS FOR SECTION 6 63

The last one mentioning only time variables in σi and σ j. This concludes the prove for m.
Case before: We consider the following form:

P(i, ~x, t−i , t
+
i ) b Q( j, ~y, t−j , t

+
j )[σi, σ j]

def
= ElapsedP(i, ~x, t−i , t

+
i , σi)→(

(ActiveQ( j, ~y, t−j , σ j) ∨ ElapsedQ( j, ~y, t−i , t
+
j , σ j)) ∧ (t+i > t−j )

)
.

Analogously to the previous case, ∀~x, t−i , t
+
i ∃~y, t

−
j , t

+
j P(i, ~x, t−i , t

+
i ) b Q( j, ~y, t−j , t

+
j )[σi, σ j] can be transformed into∧

k∈K

{∀~xMk,P(~x, τ−k,P, τ
+
k,P, S 0)→ {

∨
g∈G

∃~y[Wg,Q(~y, τ−g,Q, τ
+
g,Q, S 0) ∧ (τ+

k,P<τ
−
g,Q)]}}

mentioning only time variables in σ and σ′. This concludes the prove for b.
Case finishes: We consider the following form:

P(i, ~x, t−i , t
+
i ) f Q( j, ~y, t−j , t

+
j )[σi, σ j]

def
= ElapsedP(i, ~x, t−i , t

+
i , σi)→(

ElapsedQ( j, ~y, t+i , t
+
j , σ j) ∧ (t+i = t+j )

)
.

Given the equation (107), by regression, we have thatM, v |= P(i, ~x, t−i , t
+
i ) f Q( j, ~y, t−j , t

+
j )[σi, σ j] iff

M, v |= {
∨

k∈K[Mk,P(~x, t−i , t
+
i , S 0) ∧ (t−i = τ−k,P ∧ t+i = τ+

k,P)]} →
{
∨

g∈G[Mg,Q(~y, t−j , t
+
j , S 0) ∧ (t−j = τ−g,Q ∧ t+j = τ+

g,Q) ∧ (t+i =t+j )]},

Analogously to the previous cases,M, v |= ∀~x, t−i , t
+
i ∃~y, t

−
j , t

+
j P(i, ~x, t−i , t

+
i ) f Q( j, ~y, t−j , t

+
j )[σi, σ j] iff

M, v |=
∧
k∈K

{∀~xMk,P(~x, τ−k,P, τ
+
k,P, S 0)→ {

∨
g∈G

∃~y[Mg,Q(~y, τ−g,Q, τ
+
g,Q, S 0) ∧ (τ+

k,P=τ+
g,Q)]}}

mentioning only time variables in σi and σ j. This concludes the prove for f.
Case starts: We consider the following form:

P(i, ~x, t−i , t
+
i ) s Q( j, ~y, t−j , t

+
j )[σi, σ j]

def
= (ElapsedP(i, ~x, t−i , t

+
i , σi)→

(ActiveQ( j, ~y, t−j , σ j) ∨ ElapsedQ( j, ~y, t−i , t
+
j , σ j)) ∧ (t−i = t−j ))

∧

(ActiveP(i, ~x, t−i , σi)→
(ActiveQ( j, ~y, t−j , σ j) ∨ ElapsedQ( j, ~y, t−i , t

+
j , σ j)) ∧ (t−i = t−j )).

Given the equation (107), we have thatM, v |= P(i, ~x, t−i , t
+
i ) s Q( j, ~y, t−j , t

+
j )[σi, σ j] iff

M, v |= {
∨

k∈K[Mk,P(~x, t−i , t
+
i , S 0) ∧ (t−i = τ−k,P ∧ t+i = τ+

k,P)]} →
{
∨

g∈G[Wg,Q(~y, t−j , t
+
j , S 0) ∧ (t−j = τ−g,Q ∧ t+j = τ+

g,Q) ∧ (t−i =t−j )]}∧
{
∨

k∈K[Nk,P(~x, t−i , t
+
i , S 0) ∧ (t−i = τ−k,P)]} →

{
∨

g∈G[Wg,Q(~y, t−j , t
+
j , S 0) ∧ (t−j = τ−g,Q ∧ t+j = τ+

g,Q) ∧ (t−i =t−j )]},

Given this form, we have thatM, v |= ∀~x, t−i , t
+
i ∃~y, t

−
j , t

+
j P(i, ~x, t−i , t

+
i ) s Q( j, ~y, t−j , t

+
j )[σi, σ j] iff

M, v |=
∧

k∈K{∀~xMk,P(~x, τ−k,P, τ
+
k,P, S 0)→ {

∨
g∈G ∃~y[Wg,Q(~y, τ−g,Q, τ

+
g,Q, S 0) ∧ (τ−k,P=τ−g,Q)]}}∧∧

k∈K{∀~xNk,P(~x, τ−k,P, τ
+
k,P, S 0)→ {

∨
g∈G ∃~y[Wg,Q(~y, τ−g,Q, τ

+
g,Q, S 0) ∧ (τ−k,P=τ−g,Q)]}}

mentioning only time instances or variables in σi and σ j. This concludes the prove for s.



D PROOFS FOR SECTION 6 64

Case during: We consider the following form:

P(i, ~x, t−i , t
+
i ) d Q( j, ~y, t−j , t

+
j )[σi, σ j]

def
= (ElapsedP(i, ~x, t−i , t

+
i , σi)→

(ActiveQ( j, ~y, t−j , σ j) ∨ ElapsedQ( j, ~y, t−i , t
+
j , σ j))∧

(t−j ≤ t−i ∧ t+i ≤ t+j ))∧
(ActiveP(i, ~x, t−i , σi)→
(ActiveQ( j, ~y, t−j , σ j) ∨ ElapsedQ( j, ~y, t−i , t

+
j , σ j)) ∧ (t−j ≤ t−i )).

Analogously to the previous case,M |= ∀~x, t−i , t
+
i ∃~y, t

−
j , t

+
j P(i, ~x, t−i , t

+
i ) d Q( j, ~y, t−j , t

+
j )[σi, σ j] iff

M, v |=
∧

k∈K{∀~xMk,P(~x, τ−k,P, τ
+
k,P, S 0)→ {

∨
g∈G ∃~y[Wg,Q(~y, τ−g,Q, τ

+
g,Q, S 0) ∧ (τ−g,Q ≤ τ

−
i,P ∧ τ

+
i,P ≤ τ

+
g,Q)]}}∧∧

k∈K{∀~xNk,P(~x, τ−k,P, τ
+
k,P, S 0)→ {

∨
g∈G ∃~y[Wg,Q(~y, τ−g,Q, τ

+
g,Q, S 0) ∧ (τ−g,Q ≤ τ

−
i,P)]}}

mentioning only time variables or instances in σi and σ j. This concludes the prove for d. �
Concluding the proof of Theorem 6:

To conclude the proof we consider the trivial transformation from CNF to DNF formulas, i.e. the CNF form∧
d∈D

∨
w∈Wd

Bd,w, from the Lemma, can be expressed as an equivalent DNF form
∨

n∈N
∧

m∈Mn
Bn,m for a suitable

set of indexes D, N, Wi, and Mi.
We consider now the form (108), i.e.∧

d∈D
∨

w∈Wd

∧
r∈Rd,w

∧
k∈Kd,w,r

∨
g∈Gd,w,r

∀~x∃~y(Pd(id, ~x, τ−k , τ
+
k ) opr Qr( jk, ~y, τ−g , τ

+
g )[σih , σ jr ]),

where D, W, R, K, and G are finite set of indexes, τ−k , τ
+
k (τ−g , τ

+
g ) are the temporal variables mentioned in the

ground situation σid . We consider this formula in the following form:∧
d∈D

∨
w∈Wd

∧
〈r,k〉∈RKd,w

∨
g∈Gd,w,r

Bd,w,r
k,g , (113)

with Bd,w,r
k,g representing ∀~x ∃~y Pd(id, ~x, τ−k , τ

+
k ) opr Qr( jk, ~y, τ−g , τ

+
g )[σid , σ jr ]. By applying the CNF to the DNF

transformation we can pass through the following equivalent forms.
From (1)

∧
d∈D

∨
〈w,r〉∈WRd

∧
k∈Kd,w,r

∨
g∈Gd,w,r

Bd,w,r
k,g we get (2)

∧
d∈D

∨
〈w,r〉∈WRd

∨
n=〈n1,n2〉∈Nd,w

∧
m=〈m1,m2〉∈Md,w,n

Bd,w
n,m, with Bd,w

n,m representing

∀~x∃~yPd(id, ~x, τ−n1,m1
, τ+

n1,m1
)opn1,m1

Qn1,m1 ( jn1,m1 , ~y, τ
−
n2,m2

, τ+
n2,m2

)[σid , σ jn1 ,m1
]

which is equivalent to (3)
∧

d∈D
∨
〈w,r〉∈WRd ,n∈Nd,w

∧
m∈Md,w,n

Bd,w,r
n,m , and the previous form can be expressed as (4)∧

d∈D
∨
〈w,r,n〉∈WRNd

∧
m∈Md,w,n

Bd,w,r
n,m , where 〈w, n〉 ∈ WRNd abbreviates 〈w, r〉 ∈ WRd, n ∈ Nd,w.

By applying again the CNF to DNF transformation we get (5)
∨

z∈Z
∧

s=〈s1,s2,s3〉∈S z

∧
m∈Mz,s,n

Bz,s
m ,

∀~x∃~yPz,s1 (iz,s1 , ~x, τ
−
s2,m1

, τ+
s2,m1

)ops3,m1
Qs3,m1 ( js3,m1 , ~y, τ

−
s2,m2

, τ+
s2,m2

)[σiz,s1
, σ js1 ,m1

]

hence, if we call
∧

s∈S z

∧
m∈Mz,s,n

as
∧

q=〈q1,q2,q3,q4〉∈Qz
, we get (6)

∨
z∈Z

∧
q∈Qz

Bz
q.

Now, from (6), with Bz
q representing

∀~x∃~yPz,q1 (iz,q1 , ~x, τ
−
z,q2
, τ+

z,q2
)opz,q3

Qz,q3 ( jz,q3 , ~y, τ
−
z,q4
, τ+

z,q4
)[σiz,q1

, σ jz,q3
].

We obtain the required form (32). This concludes the proof of the theorem. �



D PROOFS FOR SECTION 6 65

D.2 Proof of Theorem 7
First note that each symbol op is associated to the temporal relation γop(t−1 , t

+
1 , t
−
2 , t

+
2 ) obtained as a combination

of relations = and < as specified in equation (31). LetM be a structure of LT FS C such thatM is a model ofDT

and suppose that for some assignment v the followings hold:

(i) M, v |= ∀~x∃~y P(i, ~x, τ−p , τ
+
p) op Q( j, ~y, τ−q , τ

+
q )[σi, σ j],

(ii) M, v |= ∃~x ElapsedP(i, ~x, τ−p , τ
+
p , σi) orM, v |= ∃~x ActiveP(~x, τ−p , σi).

We can prove the theorem by cases for each op in {m, s, f, b, d}.
First of all we consider the case of m. Since

P(i, ~x, t−i , t
+
i ) m Q( j, ~y, t−j , t

+
j )[σi, σ j]

def
= ElapsedP(i, ~x, t−i , t

+
i , σi)→(

(ActiveQ( j, ~y, t−j , σ j) ∨ ElapsedQ( j, ~y, t−i , t
+
j , σ j)) ∧ (t+i = t−j )

)
,

we have that for any modelM |= DT and assignment v such that the items (i) and (ii) hold,

M, v |= ElapsedP(i, ~x, τ−p , τ
+
p , σi)→

(
(ActiveQ( j, ~y, τ−q , σ j) ∨ ElapsedQ( j, ~y, τ−q , τ

+
q , σ j)) ∧ (τ+

p = τ−q )
)
,

and,

M, v |=
(
(ActiveQ( j, ~y, τ−q , σ j) ∨ ElapsedQ( j, ~y, τ−q , τ

+
q , σ j)) ∧ (τ+

p = τ−q )
)
. (114)

Thus, by (i) and (ii) we getM, v |= (τ+
p = τ−q ),

Let [d−p , d+
p d−q , d+

q ] be an assignment to the variables according to v (or an interpretation of the ground terms)
then, sinceM, v |= (τ+

p = τ−q ), by the above equation 114 it follows that the algebraic relation γm(d−p , d+
p , d−q , d+

q )
holds too inM.

The proof for b and f is analogous.
For s, we have the following macro expansion:

P(i, ~x, t−i , t
+
i ) s Q( j, ~y, t−j , t

+
j )[σi, σ j]

def
= (ElapsedP(i, ~x, t−i , t

+
i , σi)→

(ActiveQ( j, ~y, t−j , σ j) ∨ ElapsedQ( j, ~y, t−i , t
+
j , σ j)) ∧ (t−i = t−j ))

∧

(ActiveP(i, ~x, t−i , σi)→
(ActiveQ( j, ~y, t−j , σ j) ∨ ElapsedQ( j, ~y, t−i , t

+
j , σ j)) ∧ (t−i = t−j )),

we have that for any modelM |= DT and assignment v and such that (i) holds

M, v |= ActiveP(i, ~x, τ−p , σi)→
(
(ActiveQ( j, ~y, τ−q , σ j) ∨ ElapsedQ( j, ~y, τ−q , τ

+
q , σ j)) ∧ (τ−p = τ−q )

)
,

and

M, v |= ElapsedP(i, ~x, τ−p , τ
+
p , σi)→

(
(ActiveQ( j, ~y, τ−q , σ j) ∨ ElapsedQ( j, ~y, τ−q , τ

+
q , σ j)) ∧ (τ−p = τ−q )

)
.

By (ii), eitherM, v |= ActiveP(i, ~x, τ−p , σi) orM, v |= ElapsedP(i, ~x, τ−p , τ
+
p , σi), in both casesM, v |= (τ−p = τ−q ).

Hence given the assignment [d−p , d+
p d−q , d+

q ] to the time variables, the relation γs(d−p , d
+
p , d−q , d

+
q ) holds inM.

For d, we are given the following form:

P(i, ~x, t−i , t
+
i ) d Q( j, ~y, t−j , t

+
j )[σi, σ j]

def
= (ElapsedP(i, ~x, t−i , t

+
i , σi)→

(ActiveQ( j, ~y, t−j , σ j) ∨ ElapsedQ( j, ~y, t−i , t
+
j , σ j))∧

(t−j ≤ t−i ∧ t+i ≤ t+j ))∧
(ActiveP(i, ~x, t−i , σi)→
(ActiveQ( j, ~y, t−j , σ j) ∨ ElapsedQ( j, ~y, t−i , t

+
j , σ j)) ∧ (t−j ≤ t−i )),



D PROOFS FOR SECTION 6 66

we have that, by (i) and (ii), either M, v |= ElapsedP(i, ~x, τ−p , τ
+
p , σi) then M, v |= (τ−q ≤ τ−p ∧ τ

+
p ≤ τ+

q ) or
M, v |= ActiveP(i, ~x, τ−p , σi) thenM, v |= (τ−q ≤ τ

−
q ). Also in this case, given the assignment v, mapping the time

variables to [d+
p d−q , d+

q , d
−
q ] d−q ≤ d−p or d−q ≤ d−p ∧ d+

p ≤ d+
q . The case for ground terms is analogous. Thus, either

the relation γd(d−p , d
+
p , d−q , d

+
q ) holds or its relaxed version γ′d(d−p , d+

p ) holds. �

D.3 Proof of Corollary 2
It is consequence of Theorem 6, Theorem 7, and of the network construction. Indeed, by Theorem 6, we have
that I(Tc, s[ω]) can be reduced to the form (32):∨

z∈Z
∧
〈q1,q2,q3,q4〉∈Jz

∀~x∃~y.Pz,q1 (iz,q1 , ~x, τ
−
z,q2
, τ+

z,q2
) opz,q3

Qz,q3 ( jz,q3 , ~y, τ
−
z,q4
, τ+

z,q4
)[σiz,q1

, σ jz,q3
].

Form this, following the network construction steps (a)-(d), we can build the temporal constraint network ζ:∨
z∈Z

∧
(q1,q2,q3,q4)∈Jz

µ
q1
opz,q3

(τ−z,q2
, τ+

z,q2
, τ−z,q4

, τ+
z,q4

).

We have to show that, given a model M for DT : (1) if M, v |= I(Tc, s[ω]), then the assignment v represents
a solution for ζ(DT ,Tc, s[ω]); (2) given an assignment v which is a solution for ζ(DT ,Tc, s[ω]), then M, v |=
I(Tc, s[ω]).

(1) If M, v |= I(Tc, s[ω]), then, given the (32) form, there exists at least one z ∈ Z such that M, v |=∧
〈q1,q2,q3,q4〉∈Jz

~x∃~y.Pz,q1 (·) opz,q2
Qz,q3 (·). Therefore, for each associated conjunct, indexed by 〈q1, q2, q3, q4〉 ∈

Jz,M, v |= ∀~x∃~y.Pz,q1 (·) opz,q2
Qz,q3 (·).

If (i) and (ii) of Theorem 7 are satisfied, then we can apply Theorem 7 that ensures that µq1
opz,q3

(obtained from
m2 if EPz,q1

holds or from m3 if APz,q1
holds) is satisfied by the assignment v. In the remaining case, since (i) and

(ii) are not satisfied then NP holds, thus µp1
opz,p3

is trivially satisfied because it does not impose any constraint on
the associated variables. This concludes the proof for (1).

(2) As for the other direction, we have to show that, given a modelM of DT , given an assignment solution
V for the temporal network ζ(DT ,Tc, s[ω]), then the assignment v that is like V w.r.t. the time variables ω is
such that M, v |= I(Tc, s[ω]). Analogously to the previous case, since ζ is a disjunction of conjunctions, if ζ
is satisfiable, then there exists at least one disjunct

∧
〈q1,q2,q3,q4〉∈Jz

µ
q1
z,q3 (·), indexed by z ∈ Z, such that V is an

assignment solution.
Now, given one of the conjuncts µq1

z,q3 (·), by the step (c) of the ζ construction, there exists an associated
conjunct ∀~x∃~y.Pz,q1 (·) opz,q2

Qz,q3 (·) in (32) that is also partially consistent. We show that, given the assignment
v restricted to the time variables ω that is like V on these, M, v |= ∀~x∃~y.Pz,q1 (·) opz,q2

Qz,q3 (·) for each opz,q2
∈

{m, f, s,d, . . . }.
For each of these cases, Pz,q1 (·) opz,q2

Qz,q3 (·) can be reduced to the following form (A)
∨

(EP(~x, ~τ, ·) →
(QEP (~y, ~τ, ·) ∧ µop(~τ))), where the EP(~x, ~τ, ·) are mutually exclusive in the disjunction (i.e. given an assign-
ment for ~x,~τ,and · at least one µop is enabled). We may assume, by contradiction, that v is such that M, v 6|=
∀~x∃~y.Pz,q1 (~x, ~τ) opz,q2

Qz,q3 (~y, ~τ), hence M, v 6|= ∀~x∃~y.
∨

(EP(~x, ~τ, ·) → (QEP (~y, ~τ, ·) ∧ µop(~τ))). However, by
FOL, from this we get thatM, v 6|= ∀~x.

∨
(EP(~x, ~τ, ·)→ (∃~yQEP (~y, ~τ, ·) ∧ µop(~τ))). From this, it follows that there

exists v∗ that extends v with an assignment for ~x, such thatM, v∗ 6|=
∨

(EP(~x, ~τ, ·) → (∃~yQEP (~y, ~τ, ·) ∧ µop(~τ))),
hence, for each disjunct,M, v∗ 6|= EP(~x, ~τ, ·)→ (∃~yQEP (~y, ~τ, ·) ∧ µop(~τ)). At this point, for each disjoint, we have
two possible cases: (B)M, v∗ 6|= EP(~x, ~τ, ·) → ∃~yQEP (~y, ~τ, ·) or (C)M, v∗ 6|= EP(~x, ~τ, ·) → µop(~τ). However, by
the partial consistency assumption, (B) is contradicted in at least one disjoint. On the other hand, (C) requires
thatM, v∗ |= EP(~x, ~τ, ·) and (D)M, v∗ 6|= µop(~τ). But (D) contradicts the assumption, in fact, by assumption, v∗

restricted to the temporal variables is like V that solves the algebraic relation represented by µop(~τ).
This concludes the proof for (2). �



E PROOFS FOR SECTION 7 67

E Proofs for Section 7

E.1 Proof of Proposition 3
We have to show that given a modelM ofDT if

M |= DoT F(prog, sinit, s, (hs, he)),

and assuming that ttime(s) ≤ he and hs ≤ ttime(sinit), then

M |= sinit �S s.

We shall show the statement by induction on the structure of prog.
The basic case is given for the primitive action prog = a. In this case, we have to show that if

M |= DoT F(a, sinit, s, (hs, he)),

then sinit �S s. However, by definition, either M |= s = ddo(a, s, sinit) or M |= sinit = s, in both cases the
statement holds for the basic case.

Now assume, by induction, that the statement holds for DoT F(prog, sinit, s, (hs, he)), we show the following
constructs.

1. Consider the program sequence: DoT F(prog1 ; prog2, sinit, s, (hs, he)), by definition and inductive hy-
pothesis we have that there exists s′′ such that sinit �S s′′ and s′′ �S s, hence, by transitivity we have
sinit �S s.

2. Consider the Partial-order action choice: DoT F(prog1 ≺ prog2, sinit, s, (hs, he)). By definition and the
assumptions

M |= ∃s′′, s′′′(DoT F(prog1, sinit, s
′′, (hs, he)) ∧ DoT F(prog2, s

′′′, s, (hs, he)) ∧ s′′ �S s′′′) (115)

Thus, there are two bags of timelines s′′, s′′′ such that sinit �S s′′ and s′′′ �S s by inductive hypothesis,
and s′′ �S s′′′ by definition, therefore by transitivity of �S we obtain that sinit �S s

3. Consider Nondeterministic action choice: M |= DoT F(prog1|prog2, sinit, s, (hs, he)). By definition,

M |= DoT F(prog1 , sinit, s, (hs, he)) ∨ DoT F(prog2, sinit, s, (hs, he)).

hence, by inductive hypothesis, sinit �S s.

4. Consider the Nondeterministic iteration: M |= DoT F(prog∗, sinit, s, (hs, he)). By inductive hypothesis we
have that, ifM |= DoT F(prog, s′, s′′, (hs, he)), then s′ �S s′′, hence, by transitive closure, sinit �S s.

The other cases follow by analogous reasoning.
�

E.2 Proof of Proposition 4
Analogously to the previous proof, we show the statement by induction on the structure of prog. The base of the
induction uses the primitive action cases and the other statements are proved using the inductive hypothesis.



E PROOFS FOR SECTION 7 68

1. Primitive action. If prog = a, the executability is a direct consequence of the executability of a in sinit.
Indeed, in any modelM of DT , if DoT F(a, sinit, s

′, (hs, he)) and ttime(s) ≥ hs and ttime(s′) ≤ he hold, by
definition of DoT F and FOL, we have that ∃s(s ∈ s∧ a=νs ∧ Poss(a, s) ∧ time(s) ≥ hs ∧ time(s) ≤ he

∧time(s) ≥ time(a)∧ (time(a) ≤ he ∧ s′ = ddo(a, s, s)). Hence, if σ ∈ s′ holds, either σ ∈ sinit or
σ = do(a, σ′) with σ′ ∈ sinit. In the two cases, by assumption and definition of DoT F, executable(σ)
obtains.

2. Program sequence. If DoT F(prog1 ; prog2, sinit, s, (hs, he)) holds, we can assume by induction that, there
exists s′′ such that the property holds for: (1) DoT F(prog1, sinit, s

′′, (hs, he)); (2) DoT F(prog1, s
′′, s′, (hs, he)).

Therefore, by assumption and (1) we can conclude that any σ ∈ s′′ is executable. Now, since any σ ∈ s′′

is executable, we can apply the inductive hypothesis to (2) and conclude that if σ ∈ s then σ is executable.

3. Partial-order action choice. Analogously to the previous case, if DoT F(prog1 ≺ prog2, sinit, s, (hs, he))
holds, there exists s′′ and s′ such that (1) DoT F(prog1, sinit, s

′′, (hs, he)) and (2) DoT F(prog2, s
′, s, (hs, he))

with (3) exec(s′′, s′, (hs, he)). Now, from (1) and (3), by the inductive hypothesis and definition of exec,
any σ ∈ s′ is executable. Therefore, by (3) and the inductive hypothesis, we can also conclude that if σ ∈ s
then σ is executable.

4. Nondeterministic iteration. By the inductive hypothesis, if DoT F(prog, s′, s′′, (hs, he)) holds and σ ∈ s′,
only if it is executable, then σ′ ∈ s′′ only if it is executable. Analogously to Proof E.1, the statement can
be proved by transitive closure.

5. The cases of test, nondet. choice of actions, nondet. choice of argument are straightforward.

�

E.3 Proof of Proposition 5
The proof is a direct consequence of Corollary 2.

By FOL, we have that, for any modelM of DT , and for any assignment v to ω, M, v |= DoT F(prog, sinit,
s[ω], (hs, he)) ∧ I(Tc, s[ω]) iffM, v |= DoT F(prog, sinit, s[ω], (hs, he)) andM, v |= I(Tc, s[ω]).

However, by Corollary 2 we have that, given a modelM ofDT , for any assignment v to the free variables ω
of s[ω],M, v |= I(Tc, s[ω]) iff v is an assignment solution for the network(DT ,Tc, s[ω]).

Hence, by FOL and Corollary 2, we have that for any modelM of DT , for any assignment v to ω, M, v |=
DoT F(prog, sinit, s[ω], (hs, he)) ∧ I(Tc, s[ω]) iffM, v |= DoT F(prog, sinit, s[ω], (hs, he)) and v is a solution for
network(DT ,Tc, s[ω]). �

E.4 Proof of Proposition 6
Given the DS TS C , we can build an associated DT denoting a single component. We introduce a constant v
representing a unique state variable. Each action ast(·) and fluent Pst(·) used in DS TS C is also introduced in DT .
For each startst

p (·) and endst
p (·) in DS TS C we introduce an action startst(v, ·) and endst(v, ·) in DT . The action

preconditions associated with startst(v, ·), endst
p (v, ·) are the one in DS TS C . In this case, the processes are not

needed, preconditionsDap and successor state axiomsDss coincide withDst
ap andDst

ss respectively. As forDS 0 ,
this coincides with Dst

S 0
. At this point, the DT is defined by Dst

ss ∪ D
st
ap

+
∪ Dst

S 0
∪ A+ ∪ Duna. Note that, since

the durative actions inDS TS C are not the processes inDT , henceDπ is left empty.
We shall show the statement by induction on the structure of progst.
For the base step we consider the primitive action. We can show that (1) DS TS C |= Do(a, s, s′) iff (2) DT |=

DoT F(a, s, s′, (0,∞)). If we consider the horizon (0,∞), (1) can be reduced to

DT |= ∃s(s ∈ s ∧ a=νs ∧ Poss(a, s) ∧ time(s) ≥ time(a) ∧ (s′ = ddo(a, s, s)))).



E PROOFS FOR SECTION 7 69

On the other hand, the (1) holds iff

DS TS C |= Poss(a, s) ∧ start(s) ≤ time(a) ∧ s′ = do(a, s).

SinceDT extendsDS TS C , it is easy to see that (2) entails (1). As for the other direction, s is composed of a single
situation, therefore, for any situation σ that satisfies (2) it is possible to build a bag of situation s that satisfies
(1).

By induction on the structure of the program, it is easy to show that the property holds for the other standard
Golog constructs. �


	copertinaTR7 2010
	TechRep
	1 Introduction
	2 Why Flexible Planning and why modelling multiple behaviours
	3 Basics for the Temporal Flexible Situation Calculus
	3.1 Preliminaries
	3.2 Extensions of the SC
	3.3 Time, types and bag of timelines
	3.4 Representing Time in TFSC
	3.5 Typed Actions and Situations 
	3.6 Timelines and bag of timelines

	4 The system at work: processes in TFSC
	5 Temporal Intervals and Constraints
	5.1 Temporal Compatibilities: Syntax
	5.2 Temporal Compatibilities: Semantics

	6 Mapping TFSC to Temporal Constraint Networks
	6.1  Temporal Constraint Network
	6.2 Mapping compatibilities to temporal constraints
	6.3 Compatibilities without logical constraints
	6.4 Network Construction

	7 Flexible High Level Programming in TFGolog
	7.1 TFGolog Syntax
	7.2 TFGolog Semantics
	7.3 Generating Flexible Plans in TFGolog
	7.4 TFGolog and Sequential Temporal Golog

	8 Example: Attentive robot exploration of the environment
	9 Related Works
	10 Summary and Outlook
	A Notational conventions and preliminaries
	B Proofs of Section 3
	B.1 Lemma 1-7
	B.2 Proof of Theorem 1
	B.3 Proof of Corollary 1
	B.4 Proof of Theorem 2
	B.5 Proof of Theorem 3
	B.6 Proof of Theorem 4
	B.6.1 Proof of Lemma 8
	B.6.2 Proof of Lemma 9
	B.6.3 Proof of Lemma 10


	C Proofs for Section 4
	C.1 Proof of Theorem 5
	C.2 Proof of Proposition 1
	C.3 Proof of Proposition 2

	D Proofs for Section 6
	D.1 Proof of Theorem 6
	D.2 Proof of Theorem 7
	D.3 Proof of Corollary 2

	E Proofs for Section 7
	E.1 Proof of Proposition 3
	E.2 Proof of Proposition 4
	E.3 Proof of Proposition 5
	E.4 Proof of Proposition 6



