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Abstract

The Robust Network Loading Problem (RNL) can be stated as follows.
Given a graph and a set of traffic matrices, install minimum cost integer
capacities on the edges such that all the matrices can be routed non simul-
taneously on the network. The routing scheme is said to be dynamic if we
can choose a (possibly) different routing for every matrix, it is called static
if the routing must be the same for all the matrices. The flows are unsplit-
table if each point-to-point demand (commodity) must use a single path,
they are splittable if the flow for every commodity can be splitted along
several paths. In this paper we present the first exact approach for solving
the RNL problem with splittable flows and dynamic routing under poly-
hedral uncertainty for the demands. A branch-and-cut algorithm based on
the capacity formulation of the problem defined by metric inequalities is
developed, and polyhedral results are given. The separation problem is
formulated as a bilevel programming problem and a corresponding single
level problem is derived. Computational results are presented.

keywords: network design, robustness, branch-and-cut
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1 Introduction

The Network Loading Problem (NL) is a classic network design problem. It
can be defined as follows. Given a graph and set of point-to-point traffic de-
mands (commodities), choose minimum cost integer capacities for the edges
such that all the demands can be routed simultaneously on the network. This
problem has received a lot of attention in the literature, see for example [25],
[5], [10], [3], [4] and references therein. The assumption that there is only one
traffic matrix to be considered, and that this matrix is known in advance or can
be reliably estimated, can be too restrictive. In fact the demands can be difficult
to predict and they can change over time. Therefore, in order to obtain a more
flexible and robust network, it is necessary to take into account the demand
uncertainty in the design process. A way to do that is to consider, instead of a
single traffic matrix, a set of traffic matrices to be served non simultaneously.
This version of the problem is known as the Robust Network Loading Problem.

The set of traffic matrices can either be explicitly given, that is it consists of
a list of matrices to be served, or it can be implicitly defined, which means
that we have to serve all the matrices belonging to a given polyhedron [6].
One possible polyhedral representation for the demands is the hose model [18],
[20]. In this model upper bounds on node traffic are given and all the matri-
ces satisfying the bounds belong to the polyhedron. The hose polyhedron is
asymmetric if for every node two bounds are given: one for the incoming traffic
and one for the outgoing traffic. It is called symmetric if only one bound on
the sum of the incoming and outgoing traffic is given. In the following we say
symmetric (asymmetric) demands to denote the demands belonging to the sym-
metric (asymmetric) hose polyhedron. The routing scheme is dynamic if we can
choose a (possibly) different routing for every matrix, it is static (or oblivious) if
the routing must be the same for all the matrices. The flows are unsplittable (or
non-bifurcated) if each commodity must use a single path, they are splittable (or
bifurcated) if the flow for every commodity can be splitted along several paths.

For general demands, the RNL problem is NP-hard both for static routing and
for dynamic routing, as it includes the Steiner Tree Problem as a special case.
The problem of finding a Steiner Tree in an undirected graph G given the set
of terminals T, can be transformed into a RNL problem defining a symmetric
hose polyhedron as follows. Choose r ∈ T and set br = 1, bi = 1/|T − 1| for
i ∈ T, i 6= r. Solving the RNL problem with the given node bounds b solves
the Steiner Tree Problem. The same result can be obtained for directed graphs
and asymmetric demands. We also note that all the matrices in the polyhedron
defined above are dominated by d̄ri = 1/|T − 1|, for i ∈ T, i 6= r, d̄ij = 0
otherwise. A traffic matrix d1 is dominated by a traffic matrix d2 if every ca-
pacity vector that supports d2, also supports d1 [28]. Therefore solving the RNL
problem with node bounds b reduces to solve the NL problem, which is also
NP-hard, with demands d̄.
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The importance of robustness in practical applications has been analyzed in
[32], [7], and [9].

Two well-known problems that are closely related to the Robust Network Load-
ing Problem are the Robust Network Design Problem (RND) and the Virtual
Private Network Problem (VPN). The RND problem is a RNL problem where
capacities for the edges are not restricted to be integer numbers. The VPN
problem is a RND problem with static routing and unsplittable flows.

Most of the contributions in the literature deal with approximation results,
while there are very few papers presenting exact approaches for the RNL prob-
lem. For approximation results on the VPN problem see for example [19]
and references therein. For the RND problem see [11], [22], [21] and refer-
ences therein. As for exact approaches, in [1] a compact flow formulation
and a branch-and-cut-and-price algorithm for the VPN problem using the hose
model for the demands are presented. In [2] a similar approach is used to de-
rive a branch-and-cut algorithm for the RNL problem with splittable flows and
static routing under polyhedral uncertainty. They also derive a capacity formu-
lation for the problem not based on metric inequalities and consider the case
where multiple facilities can be chosen for the edges. Polyhedral results are
given when the demands are defined using the hose model. In [6] a branch-
and-cut-and-price algorithm based on the solution of two auxiliary problems
is presented to solve the VPN problem under polyhedral uncertainty.

As far as we know, there is no exact algorithm in the literature for the RNL
problem with splittable flows and dynamic routing. In this paper we present
the first exact approach for this problem. Our approach is a branch-and-cut
algorithm based on the capacity formulation of the problem defined by metric
inequalities.

Metric inequalities have been used extensively to derive capacity formulations
for different network design problems. See for example [10], [31],[4], [8], [26],
[14] and references therein.

Being more flexible, the dynamic routing allows to realize cheaper networks.
Consider for example the problem of Figure 1.

The graph in Figure 1(a) is an instance of the RNL problem with splittable flows
on a directed graph with asymmetric demands. Edge labels are capacity costs
and node labels are traffic bounds. In Figure 1(b) we report the optimal so-
lution of the problem using dynamic routing, edge labels are capacity values.
In Figure 1(c) we represent the optimal solution if we restrict to static routing,
edge labels are capacity values, the capacity is zero for the missing edges. The
optimal solution with dynamic routing has a cost of 16 but it is not static feasi-
ble. The optimal solution with static routing has a cost of 17. Similar examples
can be given for undirected graphs and symmetric demands. For the RND
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chosen for the edges. Polyhedral results are given when the demands are de-
fines using the hose model. In [6] a branch-and-cut-and-price algorithm based
on the solution of two auxiliary problems is presented to solve the VPN prob-
lem under polyhedral uncertainty.

As far as we know, there is no exact algorithm in the literature for the RNL
problem with splittable flows and dynamic routing. In this paper we present
the first exact approach for this problem. Our approach is a branch-and-cut
algorithm based on the capacity formulation on the problem defines by metric
inequalities.

Metric inequalities have been extensively used to derive capacity formulations
for different network design problems. See for example [10], [32],[4], [8], [27],
[14] and references therein.

Being more flexible, the dynamic routing allows to realize cheaper networks.
Consider for example the problem of Figure 1.

1

4

3

2

4

2

4

3

3

in: 0
out: 2

in: 2
out: 0

in: 1
out: 0

in: 2
out: 0

(a)

1

4

3

2

1

1

1

1

1

(b)

1

4

3

2

2

1

2

1

(c)

Figure 1: static vs dynamic

The graph in Figure 1(a) is an instance of the RNL problem with splittable flows
on a directed graph with asymmetric demands. Edge labels are capacity costs
and node labels are traffic bounds. In Figure 1(b) we report the optimal solution
of the problem using dynamic routing, edge labels are capacity values. In Fig-
ure 1(c) we represent the optimal solution if we restrict to static routing, edge
labels are capacity values, the capacity is zero for the missing edges. The opti-
mal solution with dynamic routing has a cost of 16 but it is not static feasible.
The optimal solution with static routing has a cost of 17. Similar examples can
be given for undirected graphs and symmetric demands. For the RND prob-
lem it has been proved that the gap between the optimal dynamic solution and
the optimal static solution is O(log n) where n is the number of nodes and that
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problem it has been proved that the gap between the optimal dynamic solu-
tion and the optimal static solution is O(log n) where n is the number of nodes
and that this bound is tight [21]. On the other hand the RNL problem with
dynamic routing is, in a sense, more difficult to solve than the corresponding
problem with static routing, see Section 2.

In the following, we refer to undirected graphs and to symmetric demands,
but models, algorithms and results can be extended to directed graphs and to
a general demand polyhedron. The rest of the paper is organized as follows.
In Section 2 a mathematical model for the problem is presented. In Section 3
polyhedral results are given. In Section 4 a branch-and-cut approach based on
the capacity formulation of the problem is described. The separation problem
is formulated as a bilevel programming problem and a corresponding single
level formulation is derived. The complexity of the separation problem is also
discussed. In Section 5 computational results are presented. In Section 6 con-
clusions and open questions are discussed.

2 The model

Formally, the RNL problem can be defined as follows. Let G(V, E) be an undi-
rected graph, where V is the set of the nodes to be connected and E is the
set of the edges. Let D be the polyhedron representing the traffic matrices
whose routing must be ensured and let d ∈ D be a feasible vector of demands
(traffic matrix) to be served. The entry dij ≥ 0 represents the amount to be
sent from source node i to destination node j (dii = 0). We can group the
demands by source, therefore for every node k ∈ V we define a commod-
ity k having a single source and multiple destinations. We denote by K the
set of commodities. Let c : E → R+ and b : V → R+ be functions defin-
ing per-unit capacity installation costs for the edges and traffic bounds for the
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nodes. With the above definitions, the symmetric hose polyhedron is the set
D = {d ∈ R+ : dii = 0, ∑k∈K dki + ∑t∈V dit ≤ bi, i ∈ V}.

Let xe be an integer variable representing the capacity installed on edge e ∈
E and let f k

ij(d) and f k
ji(d) be continuous variables representing the flow for

commodity k in traffic matrix d directed from i to j and viceversa on edge e =
(i, j) ∈ E. We denote by N(i) = {j ∈ V : (i, j) ∈ E} the neighborhood of node
i. The problem can be formulated as follows.

(RFF) min ∑
e∈E

cexe

∑
j∈N(i)

( f k
ij(d)− f k

ji(d)) = −dki i ∈ V, k ∈ K, d ∈ D (1)

max
d∈D

{
∑
k∈K

( f k
ij(d) + f k

ji(d))

}
≤ xe e = (i, j) ∈ E (2)

f ≥ 0
xe ∈ Z+

Constraints (1) are flow conservation constraints. Constraints (2) are capacity
constraints. Since there is a flow vector for every d ∈ D, formulation (RFF) is
non-compact and, as far as we know, there is no compact formulation in the
literature for this problem.

If we consider a list of matrices instead of a polyhedron for the demands, the
above formulation is compact as long as we have a polynomial number of traf-
fic matrices to be taken into account. This is the case, for example, when we
have a single traffic matrix (NL problem). Using the polyhedral representation,
instead of considering all feasible traffic matrices, we could restrict our atten-
tion to the vertices of the demand polyhedron, but they can be exponentially
many.

On the other hand, there exists a compact flow formulation for the RNL prob-
lem with static routing [1], [2]. Therefore, in a sense, the problem with static
routing is more tractable than the one with dynamic routing.

Since flows are splittable and there are no flow costs, we can project out flow
variables obtaining, by duality, the following capacity formulation.

min ∑
e∈E

cexe

∑
d∈D

∑
e∈E

x̄eµe(d) ≥ ∑
d∈D

∑
k∈K

∑
i∈V

`
µ(d)
ki dki µ ≥ 0 (3)

xe ∈ Z+
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Where `µ(d) are shortest path lengths using µ(d) as weights. Constraints (3)
are dominated by constraints (4) where only one µ(d) is not identically zero. In
fact (3) can be obtained as the sum of constraints (4).

∑
e∈E

x̄eµe ≥ ∑
k∈K

∑
i∈V

`
µ
kidki d ∈ D (4)

Therefore the formulation above can be changed into the following one.

(RCF) min ∑
e∈E

cexe

∑
e∈E

µexe ≥ max
d∈D

{
∑
k∈K

∑
i∈V

`
µ
kidki

}
µ ≥ 0 (5)

xe ∈ Z+

Constraints (4), that can be re-written in a compact way as (5), are metric
inequalities [27], [23]. Due to metric inequalities, formulation (RCF) is non-
compact, even if we consider a single traffic matrix.

For static routing and splittable flows there exists a capacity formulation not
based on metric inequalities [2]. In fact, since the requirement to have a static
routing is a routing constraint itself, metric inequalities are valid but they do
not provide a formulation for the problem.

Solving (RCF) we get optimal x values, but not the corresponding routing, that
must be computed in a second time. Note that, even if the capacities are fixed,
(RFF) remains non-compact, therefore even computing the routing for a given
x is not an easy task.

In practical applications, the approach that can be used is the following:

1. compute optimal capacities x.

2. select an initial traffic matrix d ∈ D (the current demands)

3. compute a routing f solving (RFF) with x fixed, considering only the
given traffic matrix. Since only one traffic matrix is considered, (RFF) is
compact (the problem reduces to the NL problem)

4. as the demands change, keep using f as long as all the commodities can
be routed.

5. when the demands are no longer supported, let d̄ be the traffic matrix
that can not be routed using f . Then go to back to step 3

If demands changes do not come quickly and they are not dramatic, f must be
recomputed a limited number of times.
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3 Polyhedral results

All the polyhedral properties that have been proved for the NL problem, can
easily be extended to the RNL problem. Let RNL(G, D) be the convex hull of
integer feasible solutions of (RCF).

THEOREM 3.1 RNL(D, G) is full-dimensional

PROOF: Let d∗ = dmaxd∈D {∑k∈K ∑i∈V dki}e be the maximum total demand.
For a given f ∈ E, let v f ∈ R|E| be the vector:

v f
e =

{
d∗ + 1 e = f
d∗ otherwise

Let v∗ ∈ R|E| be the vector having all entries equal to d∗. Vectors v∗ and v f for
all f ∈ E are |E|+ 1 affinely independent vectors in RNL(G, D).

DEFINITION 3.2 An edge e = (i, j) ∈ E is a bridge if its removal disconnects at least
one origin-destination pair in at least one traffic matrix d ∈ D

THEOREM 3.3 Inequality x f ≥ 0 is facet-defining if and only if f is not a bridge

PROOF: If f is a bridge, every solution must have x f ≥ dmaxd∈D

{
∑st∈Kdisc

dst

}
e,

where Kdisc is the set of node pairs disconnected by the removal of f . Therefore
x f ≥ 0 can not be facet-defining. If f is not a bridge, define d∗ as above. Let
v∗ ∈ R|E| be the vector having v∗f = 0 and v∗e = d∗ for e 6= f . Let v f h be the
vector defined as:

v f h
e =

 0 e = f
d∗ + 1 e = h
d∗ otherwise

Vectors v∗f and v f h for h 6= f are |E| affinely independent vectors satisfying
x f ≥ 0 with equality.

Since RNL(G, D) is a dominant, that is it has the non-negative orthant as re-
cession cone, the following condition holds.

THEOREM 3.4 [12] Let aTx ≥ b be any valid inequality for RNL(G, D) then a ≥ 0

DEFINITION 3.5 Given a set of nodes V, a function ` : V×V → R+ is a semi-metric
on V if and only if:

1. `ii = 0 i ∈ V

2. `ij ≥ 0 i, j ∈ V
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3. `ij = `ji i, j ∈ V

4. `ij ≤ `ik + `kj i, j, k ∈ V

More precisely, if condition 2. holds with strict inequality we have a metric,
otherwise we have a semi-metric. If symmetry condition 3. does not hold we
have an oriented distance function or quasi-(semi)-metric [16],[17]. Since we are
working on undirected graphs and we allow ` values to be zero, when we
say metric, we are technically speaking of a semi-metric. Let MetV the cone
generated by all non zero metrics.

DEFINITION 3.6 Let G(V, E) be a graph, a function µ : E→ R+ defines a metric on
G if and only if:

1. µe ≥ 0 e ∈ E

2. µe ≤ µ(Pe) e ∈ E

where µ(Pe) is the length of shortest path between the endpoints of edge e using µ as
weights.

Let MetG be the cone of all non zero metrics defined on G(V, E). Given u, v ∈ V
we denote by `

µ
uv the length of the shortest path in G between u and v using µ

as weights, `
µ
ii = 0 for all i. If (u, v) ∈ E then, by definition, `

µ
uv = µuv. In this

way a metric µ ∈ MetG can be extended to a metric `µ ∈ MetV . If G is directed
we get a quasi-(semi-)metric, otherwise we get a (semi-)metric.

THEOREM 3.7 If aTx ≥ b is valid for RNL(G, D) then there exists a metric µ ∈
MetG such that µTx ≥ b is still valid and µe ≤ ae for all e ∈ E.

PROOF: The same argument of the proof of theorem 2.1 in [4] can be used. Let
aTx ≥ b be a valid inequality. Define µ as the metric µe = a(Pe) for all e ∈ E,
where a(Pe) is the length of the shortest path between the endpoints of e using
a as weights. If a is not a metric, let f ∈ E an edge with the property that
a f > µ f and assume, without loss of generality, that there is a unique edge
with this property. Suppose that µTx ≥ b is not valid and let x̄ be a feasible
solution with the property that µT x̄ < b. Define a new solution x̂ as follows:

x̂e =


x̄e e 6= f , e /∈ Pf
x̄e + x̄ f e ∈ Pf
0 e = f

Solution x̂ is feasible and aT x̂ = µT x̄ < b, therefore aTx ≥ b is not valid and we
get a contradiction.

DEFINITION 3.8 Given a metric µ ∈ MetG, let Rµ = min
{

µTx : x ∈ RNL(G, D)
}

THEOREM 3.9 Every constraint µTx ≥ b is dominated by µTx ≥ Rµ.
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Inequalities µTx ≥ Rµ are called tight metric inequalities. All facet-defining in-
equalities are tight metric inequalities.

THEOREM 3.10 If µ is an integer valued extreme ray of the metric cone having great-
est common divisor equal to one, then Rµ = dmaxd∈D

{
∑k∈K ∑i∈V `

µ
kidki

}
e.

PROOF: The same argument of the proof of theorem 2.4 in [4] can be used. Let
P = {x ∈ Rn : Ax ≥ b} be a rational polyhedron and let γTx ≥ δ be a valid
inequality, then γTx ≥ δ can be obtained by Chvatal-Gomory derivation from
Ax ≥ b. In our case P is described by metric inequalities therefore γ will be a
metric too. Let µTx ≥ Rµ be a valid inequality. If µ is an extreme ray of the
metric cone, it can not be obtained as conic combination of two or more metrics
and, if the greatest common divisor is equal to one, the corresponding inequal-
ity can not be derived by Chvatal-Gomory procedure from a single inequality.
Therefore the right-hand-side value can not improve over Chvatal-Gomory it-
erations and therefore Rµ = dmaxd∈D

{
∑k∈K ∑i∈V `

µ
kidki

}
e.

As for the NL problem, a special class of valid inequalities are the cut inequal-
ities. A cut is a partition of the nodes V into two subsets S and V − S. Let
δ(S) ⊆ E be the set of edges having endpoints in different sets of the partition.
A cut induces a metric µ having µe = 1 for e ∈ δ(S) and µe = 0 otherwise. Cut
metrics are the only {0, 1} extreme metrics for undirected graphs [16].

LEMMA 3.11 Given a partition of the nodes into S and V − S and the corresponding
cut metric µ, then Rµ = maxd∈D{∑i∈S,j∈V−S(dij + dji)}

LEMMA 3.12 If D is the symmetric hose polyhedron, then

Rµ = min{∑
i∈S

bi, ∑
i∈V−S

bi}

LEMMA 3.13 If D is the asymmetric hose polyhedron, then

Rµ = max{min{∑
i∈S

bout
i , ∑

i∈V−S
bin

i }, min{∑
i∈S

bin
i , ∑

i∈V−S
bout

i }}

The conditions to be satisfied for a cut inequality to be facet-defining are the
same of the standard NL problem [25], [5].

THEOREM 3.14 Let µ be a cut metric derived by the partition into S and V − S, then
the corresponding tight metric inequality is facet-defining if and only if the well-known
following conditions are satisfied:

1. S and V − S are connected

2. Rµ > 0
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PROOF: If Rµ = 0, cut inequality is dominated by non negativity constraints.
Suppose that S is not connected, then it can be partitioned into connected com-
ponents S1, . . . , Sp. Cut inequalities corresponding to the connected compo-
nents dominate the inequality corresponding to S. The same if V − S is not
connected. Suppose now that the two conditions hold. Let d∗ be the maximum
total demand defined as before. For every edge f ∈ δ(S) define the vector
v f ∈ R|E| as:

v f
e =

 Rµ e = f
0 e ∈ δ(S), e 6= f
d∗ e /∈ δ(S)

Choose now an edge h ∈ δ(S) and for every edge r /∈ δ(S), let vr be the vector:

vr
e =


Rµ e = h
0 e ∈ δ(S), e 6= h
d∗ + 1 e = r
d∗ e /∈ δ(S), e 6= r

Vectors v f for f ∈ δ(S) and vr for r /∈ δ(S) are |E| affinely independent vectors
satisfying µTx ≥ Rµ with equality.

4 The Algorithm

In this section a branch-and-cut approach for solving the problem is presented.
Separation and heuristic techniques to be used within a branch-and-cut frame-
work are given.

A branch-and-cut algorithm works as follows [30]. Starting from an initial for-
mulation including only a reduced number of inequalities, the relaxed problem
is solved. A separation routine is used to find a constraint that is violated by the
current solution, if any. If a violated inequality is found, the inequality is added
to the current formulation and the problem is solved again, until a feasible so-
lution is found. If the solution is fractional, then a branching step is performed.

Given a polyhedron P and a vector x̄, the separation problem can be stated as
follows.

DEFINITION 4.1 Find, if any, an inequality aTx ≥ b which is valid for P but it is
violated by x̄, or conclude that x ∈ P

We start with an initial formulation including only single-node cut inequalities.
The quality of the violated inequality to be found by the separation procedure
is crucial to obtain good branch-and-cut algorithms. For this problem the best
thing to do would be separating tight metric inequalities, but this is a very
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difficult task. For the NL problem, finding a violated tight metric inequality
is difficult, since even computing Rµ for a given µ is NP-hard. On the other
hand separating metric inequalities is easy, since it can be done solving an LP
problem. For the RNL problem even separating simple metric inequalities (5)
is not easy.

4.1 Separation of metric inequalities

Formally, given a solution x̄, the separation problem for metric inequalities can
be defined as follows.

DEFINITION 4.2 Find either an inequality:

∑
e∈E

µexe ≥ max
d∈D

{
∑
k∈K

∑
i∈V

`
µ
kidki

}
µ ∈ MetG

violated by x̄, or conclude that none exists.

The separation problems can be written as a bilevel programming problem. A
bilevel programming problem models a hierarchical decision process [13] [15].
The variables of the problem are partitioned into a set of upper-level variables
and a set of lower-level variables. We can suppose to have two players, one
(leader) controlling the upper-level variables, that are fixed first solving the
master problem, the other (follower) controlling the lower-level variables, that
are fixed by solving a subproblem that depends on the value of the upper-level
variables. Many separation problems can be reformulated using bilevel pro-
gramming, see for example [24].

The separation problem for metric inequalities can be formulated as follows.

(sepmax) min ∑
e∈E

x̄eµe − β

`
µ
kj ≤ `

µ
ki + µe k ∈ K, e = (i, j) ∈ E (6)

`
µ
ki ≤ `

µ
kj + µe k ∈ K, e = (i, j) ∈ E (7)

∑
e∈E

µe = 1 (8)

µ ≥ 0, ` free
β = max ∑

k∈K
∑
i∈V

`
µ
kidki

(ϕi) ∑
k∈K

dki + ∑
t∈V

dit ≤ bi i ∈ V (9)

d ≥ 0, dii = 0

The master problem controls variables µ and ` (upper-level variables). Con-
straints (6)-(7) make sure that ` are shortest-path distances using µ as weights.
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Since (sepmax) is a minimization problem, it is not necessary to include addi-
tional constraints to guarantee that µ is a metric. Constraint (8) is a normal-
ization constraint to avoid unboundedness. The subproblem depends on the
choice of ` in the master problem and it controls variables d (lower-level vari-
ables). Given µ (and the corresponding `), the purpose of the subproblem is to
select the traffic matrix d ∈ D corresponding to the maximum violation. Con-
straints (9) define the symmetric hose polyhedron.

Since we are minimizing, the max in the subproblem is redundant and (sepmax)
can be transformed into the single-level problem below.

(sepQ) min ∑
e∈E

x̄eµe − ∑
k∈K

∑
i∈V

`
µ
kid

k
i

`
µ
kj ≤ `

µ
ki + µe k ∈ K, e = (i, j) ∈ E

`
µ
ki ≤ `

µ
kj + µe k ∈ K, e = (i, j) ∈ E

∑
e∈E

µe = 1

∑
k∈K

dki + ∑
t∈V

dit ≤ bi i ∈ V

µ, d ≥ 0, dii = 0, ` free

We have a quadratic objective function to be optimized over a polyhedron. Un-
fortunately the quadratic matrix is neither positive- nor negative-semidefinite
therefore the problem is non-convex. On the other hand, since the subproblem
of (sepmax) is feasible and bounded, it can be replaced by its dual, obtaining
problem (sepmin), which is equivalent to (sepmax).

(sepmin) min ∑
e∈E

x̄eµe − β

`
µ
kj ≤ `

µ
ki + µe k ∈ K, e = (i, j) ∈ E

`
µ
ki ≤ `

µ
kj + µe k ∈ K, e = (i, j) ∈ E

∑
e∈E

µe = 1

µ ≥ 0, ` free
β = min ∑

i∈V
ϕibi

(dki) ϕi + ϕk ≥ `
µ
ki k ∈ K, i ∈ V

ϕ ≥ 0

From the duality theory, given a primal problem (P) and its dual (D), two
solutions that are feasible for (P) and (D) are optimal if and only if they respect
the so-called complementarity conditions. Moreover the two solutions have
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the same objective value. Therefore (sepmin) can be rewritten as a single level
problem in the following way.

(sepmetric) min ∑
e∈E

x̄eµe − ∑
i∈V

ϕibi

`
µ
kj ≤ `

µ
ki + µe k ∈ K, e = (i, j) ∈ E

`
µ
ki ≤ `

µ
kj + µe k ∈ K, e = (i, j) ∈ E

∑
e∈E

µe = 1

∑
k∈K

dki + ∑
t∈V

dit ≤ bi i ∈ V (10)

ϕi + ϕk ≥ `
µ
ki k ∈ K, i ∈ V (11)

dki(ϕi + ϕk − `
µ
ki) = 0 k ∈ K, i ∈ V (12)

ϕi(bi − ∑
k∈K

dki − ∑
t∈V

dit) = 0 i ∈ V (13)

µ, ϕ, d ≥ 0, dii = 0, ` free

We replaced β by the dual objective function (which is linear), but in this case
we are not allowed to simply eliminate the min in the subproblem. In order
to guarantee the optimality of the subproblem it is necessary to ensure primal
and dual feasibility (constraints (10)-(11)) and to enforce complementarity con-
ditions (constraints (12)-(13)).

Complementarity conditions can be stated as follows: each non-zero primal
variable must correspond to a dual constraint satisfied with equality, and each
non-zero dual variable must correspond to a primal constraint satisfied with
equality. Therefore the problem can be linearized adding additional variables
and constraints. Let wki be a binary variable whose value is one if dki > 0 and
zero otherwise, and let yi be a binary variable whose value is one if ϕi > 0 and
zero otherwise. Constraints (12) and (13) can be replaced by:

(CC) wki ≤ Mdki k ∈ K, i ∈ V (14)
dki ≤ Mwki k ∈ K, i ∈ V (15)
yi ≤ Mϕi i ∈ V (16)
ϕi ≤ Myi i ∈ V (17)
ϕi + ϕk − `

µ
ki ≤ M(1− wki) k ∈ K, i ∈ V (18)

bi − ∑
k∈K

dki − ∑
t∈V

dit ≤ M(1− yi) i ∈ V (19)

Constraints (14)-(17) are variable upper bound constraints. Constraints (18)
and (19) together with primal and dual feasibility, enforce complementarity

13



conditions.

Therefore the separation problem for metric inequalities becomes the MIP prob-
lem below.

(sepm) min ∑
e∈E

x̄eµe − ∑
i∈V

ϕibi

`
µ
kj ≤ `

µ
ki + µe k ∈ K, e = (i, j) ∈ E

`
µ
ki ≤ `

µ
kj + µe k ∈ K, e = (i, j) ∈ E

∑
e∈E

µe = 1

ϕi + ϕk ≥ `
µ
ki k ∈ K, i ∈ V

∑
k∈K

dki + ∑
t∈V

dit ≤ bi i ∈ V

wki ≤ Mdki k ∈ K, i ∈ V
dki ≤ Mwki k ∈ K, i ∈ V
yi ≤ Mϕi i ∈ V
ϕi ≤ Myi i ∈ V
ϕi + ϕk − `

µ
ki ≤ M(1− wki) k ∈ K, i ∈ V

bi − ∑
k∈K

dki − ∑
t∈V

dit ≤ M(1− yi) i ∈ V

µ, ϕ, d ≥ 0, dii = 0, ` free, wki, yi ∈ {0, 1}

One could ask whether it is possible to write the separation problem for metric
inequalities as an LP, as it happens when we have a single traffic matrix (NL
problem). The existence of an LP separation problem for metric inequalities is
closely related to the existence of a compact flow formulation for the problem.
In fact, if a compact LP separation problem exists, by duality we can derive a
compact flow formulation.

Given a vector x̄, checking if a violated metric inequality exists, corresponds to
verify if x̄ is feasible for the RNL problem when the integrality requirements
are not considered. This means that we want to test if x̄ is feasible for the corre-
sponding RND problem. The RND problem has been proved to be coNP-hard
both for undirected graphs [11] and for directed graphs [22], if asymmetric de-
mands are considered. It follows that it is (probably) not possible to write an
LP separation problem for metric inequalities with asymmetric demands. For
the same reason there is (probably) no compact flow formulation for the prob-
lem. On the other hand, the complexity of the RND problem for symmetric
demands is still unknown.
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4.2 Separation of rounded metric inequalities

If µ is integral, the right-hand-side of the metric inequality can be rounded
to the upper nearest integer obtaining a so-called rounded metric. If µ and
` are {0, 1}-vectors, it becomes a {0, 1}-rounded metric inequality [4]. {0, 1}-
rounded metric inequalities include cut inequalities, which are facet-defining.
The separation problem for {0, 1}-rounded metric inequalities can be stated as
follows.

DEFINITION 4.3 Find either an inequality:

∑
e∈E

µexe ≥ max
d∈D

{⌈
∑
k∈K

∑
i∈V

`
µ
kidki

⌉}
µe, `ki ∈ {0, 1}

violated by x̄, or conclude that none exists.

From (sepQ) we can derive the separation problem below.

(seprmQ) min ∑
e∈E

x̄eµe − z

`
µ
kj ≤ `

µ
ki + µe k ∈ K, e = (i, j) ∈ E

`
µ
ki ≤ `

µ
kj + µe k ∈ K, e = (i, j) ∈ E

∑
k∈K

dki + ∑
t∈V

dit ≤ bi i ∈ V

z ≤ ∑
k∈K

∑
i∈V

`
µ
kidki + 1− ε (20)

ϕ, d ≥ 0, dii = 0, `
µ
ki, µe ∈ {0, 1}

Variable z represents the amount
⌈

∑k∈K ∑i∈V `
µ
kidki

⌉
. This is ensured by (20)

and by z ≥ ∑k∈K ∑i∈V `
µ
kidki, that has been omitted because we are solving a

minimization problem. Since in this case ` are binary variables, the problem
can be linearized adding constraints dki ≤ M`ki and replacing constraint (20)
by z ≤ ∑k∈K ∑i∈V dki + 1− ε, thus obtaining the problem below.

(seprm) min ∑
e∈E

x̄eµe − z

`
µ
kj ≤ `

µ
ki + µe k ∈ K, e = (i, j) ∈ E

`
µ
ki ≤ `

µ
kj + µe k ∈ K, e = (i, j) ∈ E

∑
k∈K

dk
i + ∑

t∈V
di

t ≤ bi i ∈ V

dki ≤ M`
µ
ki k ∈ K, i ∈ V

15



z ≤ ∑
k∈K

∑
i∈V

dki + 1− ε

ϕ, d ≥ 0, dii = 0, `
µ
ki, µe ∈ {0, 1}

4.3 Branch-and-bound and initial heuristics

A simple branch-and-bound heuristic is based on the following idea. Given
a solution that is feasible but fractional, if each component is rounded to the
upper-nearest integer the resulting capacity vector is integer and feasible for
the problem. Therefore every time the heuristic is performed, we get the cur-
rent fractional solution and we round each component obtaining an integer
solution x̂. We test x̂ for feasibility applying the separation routines of Section
4.1. If it is feasible we get a solution, otherwise no solution is returned.

An initial solution can be found as follows. The minimum spanning tree T is
computed. Let {Se, V− Se} be the partition of the nodes when edge e ∈ T is re-
moved. A feasible solution is xe = 0 for e /∈ T, xe = min

{
∑i∈Se bi, ∑i∈V−Se bi

}
for e ∈ T. We call this algorithm spanning tree heuristic.

A first feasible solution can also be computed in the following way. Choose
a traffic matrix d∗, not necessarily feasible, but such that it dominates all the
matrices in D and solve the NL problem for d∗. Since d∗ dominates all d ∈ D,
every capacity vector that supports d∗ also supports every d ∈ D [28]. If D is
the symmetric hose polyhedron, a simple dominating matrix d∗ can be com-
puted setting d∗ij = min{bi, bj}. If d∗ ∈ D then solving RNL reduces to solve
NL with demands d∗. Unfortunately, most of the times matrix d∗ is not feasi-
ble. The problem is solved using the flow formulation. We call this algorithm
dominating matrix heuristic.

Since all solutions that are feasible for the problem with static routing are also
feasible for the problem with dynamic routing, any heuristic (or exact algo-
rithm) for solving the RNL with static routing can be used to find an initial
feasible solution for the RNL with dynamic routing. In particular, the optimal
solution of the problem with static routing obtained solving the compact flow
formulation presented in [1][2] can be used. We call this algorithm static routing
heuristic.

Using the compact formulation for the problem with static routing, it is also
possible to obtain an initial feasible solution for the problem with dynamic
routing solving the LP relaxation and then rounding each component of x to
the upper-nearest integer. We call this algorithm static routing LP heuristic.
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5 Computational results

The proposed approach has been implemented in C++, using CPLEX 12.1 as
solver. Experiments have been made on a laptop having a 2.20 GHz Intel Core
2 Duo processor, with 4Gb RAM using 72 instances derived from SNDlib net-
works [29]. The size of the instances is reported in Table 1. Column problem
is the instance name, columns |V| and |E| are the number of nodes and edges
of the problem, column |d| is the number of demands that are non-zero in at
least one traffic matrix. We tested our algorithm on undirected graphs using
both symmetric (US instances) and asymmetric (UA instances) demands. The
instances can be obtained sending request to the author.

In Table 2 we report the values of the feasible solutions found by the span-
ning tree heuristic (ST-H), the dominating matrix heuristic (DM-H), and the
static routing LP heuristic (SR-LP-H) respectively. For all the algorithms a time
limit of 600 seconds (10 minutes) has been considered. Column problem is the
instance name. For the static routing LP heuristic, columns obj and time are
objective values and solution times (in seconds). For the spanning tree heuris-
tic, column obj reports the solution values. Solution times have been omitted
since it runs in almost no computational time on the considered instances. For
the dominating matrix heuristic, if the problem has been solved to optimality
within the given time limit, obj is the optimal solution and time/gap is the so-
lution time, if not, obj is the best UB found and time/gap is the corresponding
gap. As one could expect, the static routing LP heuristic produces the best so-
lutions. The performance of the dominating matrix heuristic is very poor, also
because the choice of the traffic matrix to be used is not very accurate. The
spanning tree heuristic is the fastest algorithm and it performs better than the
dominating matrix heuristic.

In Tables 3 the results obtained solving the problem with static routing are
reported. For all the problems a time limit of 5400 seconds (1h30min) is set.
Column problem is the instance name, columns UB and LB are the best upper
and lower bounds produced within the given time limit, and column gap is the
corresponding gap. Column time is the solution time (in seconds).

In Table 4 we report computational results for the branch-and-cut algorithm..
Column problem is the instance name, columns UB and LB are the best upper
and lower bounds produced within the given time limit and column gap is the
corresponding gap. Columns cuts and time are the number of cuts added and
the solution time (in seconds). Since solving to optimality (sepm) is expensive,
the following strategy is used. First we use a simple heuristic to find violated
cut inequalities. The nodes are randomly partitioned and the corresponding
cut inequality is tested for violation. If it is violated, we add it, otherwise we
look for a violated {0, 1}-rounded metric inequality, since (seprm) is computa-
tionally easier to solve than (sepm). If there is a violated {0, 1}-rounded metric
inequality we stop, otherwise we look for a violated metric inequality. As ini-
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tial heuristic, we use the static routing heuristic with a time limit of 50 seconds.
If no feasible solution is produced within the given time limit, the static rout-
ing LP heuristic is used. We set a time limit 5400 seconds (1h30min) for all the
problems.

Even if we are not able to solve all the problems to optimality, the results are
encouraging. The routine for separating {0, 1}-rounded metric inequalities is
reasonably fast, even on large instances. The bottleneck of the algorithm is
the separation of metric inequalities, that is very time consuming and when
the size of the instance increases, it becomes quickly impractical. Therefore,
in order to solve large instances, the separation of metric inequalities must be
improved.

Comparing the results for static routing (Table 3) and for dynamic routing (Ta-
ble 4) it is easy to see that the problem with static routing can be solved faster
than the one with dynamic routing, but most of the times the solutions are
more expensive.

problem |V| |E| |d| problem |V| |E| |d|
atlanta.US50-1 15 22 72 atlanta.UA50-1 15 22 59
atlanta.US50-7 15 22 72 atlanta.UA50-7 15 22 75
atlanta.US50-12 15 22 72 atlanta.UA50-12 15 22 86
atlanta.US50-17 15 22 56 atlanta.UA50-17 15 22 75
dfn-bwin.US50-1 10 45 20 dfn-bwin.UA50-1 10 45 27
dfn-bwin.US50-7 10 45 30 dfn-bwin.UA50-7 10 45 33
dfn-bwin.US50-12 10 45 42 dfn-bwin.UA50-12 10 45 26
dfn-bwin.US50-17 10 45 30 dfn-bwin.UA50-17 10 45 27
dfn-gwin.US50-1 11 47 42 dfn-gwin.UA50-1 11 47 32
dfn-gwin.US50-7 11 47 42 dfn-gwin.UA50-7 11 47 33
dfn-gwin.US50-12 11 47 42 dfn-gwin.UA50-12 11 47 38
dfn-gwin.US50-17 11 47 42 dfn-gwin.UA50-17 11 47 39
di-yuan.US50-1 11 42 42 di-yuan.UA50-1 11 42 21
di-yuan.US50-7 11 42 42 di-yuan.UA50-7 11 42 28
di-yuan.US50-12 11 42 42 di-yuan.UA50-12 11 42 26
di-yuan.US50-17 11 42 42 di-yuan.UA50-17 11 42 18
nobel-us.US50-1 14 21 56 nobel-us.UA50-1 14 21 51
nobel-us.US50-7 14 21 56 nobel-us.UA50-7 14 21 53
nobel-us.US50-12 14 21 56 nobel-us.UA50-12 14 21 59
nobel-us.US50-17 14 21 42 nobel-us.UA50-17 14 21 60
pdh.US50-1 11 34 42 pdh.UA50-1 11 34 21
pdh.US50-7 11 34 42 pdh.UA50-7 11 34 27
pdh.US50-12 11 34 42 pdh.UA50-12 11 34 38
pdh.US50-17 11 34 42 pdh.UA50-17 11 34 27
polska.US50-1 12 18 56 polska.UA50-1 12 18 51
polska.US50-7 12 18 30 polska.UA50-7 12 18 27
polska.US50-12 12 18 42 polska.UA50-12 12 18 38
polska.US50-17 12 18 42 polska.UA50-17 12 18 27
nobel-germany.US50-1 17 26 100 nobel-germany.UA50-1 17 26 83
nobel-germany.US50-7 17 26 90 nobel-germany.UA50-7 17 26 85
nobel-germany.US50-12 17 26 90 nobel-germany.UA50-12 17 26 87
nobel-germany.US50-17 17 26 90 nobel-germany.UA50-17 17 26 74
norway.US50-1 27 51 182 norway.UA50-1 27 51 26
norway.US50-12 27 51 210 norway.UA50-7 27 51 45
norway.US50-7 27 51 156 norway.UA50-12 27 51 52
norway.US50-17 27 51 240 norway.UA50-17 27 51 76

Table 1: instances
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6 Conclusions

In this paper we presented the first exact branch-and-cut approach for solving
the RNL with splittable flows and dynamic routing under hose polyhedral un-
certainty for the demands. We use a capacity formulation of the problem based
on metric inequalities. Polyhedral results are given. The separation problem
for finding violated metric inequalities is formulated as a bilevel programming
problem and a corresponding single level problem is derived. The algorithm
has been implemented in C++, using CPLEX 12.1 and computational results
have been presented. A possible scheme for using such algorithm in real-life
applications is also given.

Different questions are still open:

1. how difficult is the RND problem with symmetric demands? If the prob-
lem is discovered to be easy, then a better algorithm can be derived for
such case

2. is it possible to improve the formulation of the separation problem for
metric inequalities? If so, then larger instances could be solved using the
proposed algorithm

3. is it possible to separate tight metric inequalities? The separation of in-
equalities stronger than rounded metrics, not necessarily tight metrics,
is an open issue, both for the NL problem and for the RNL problem. To
our knowledge, no algorithm, not even heuristic, is known for separating
inequalities stronger than rounded metrics in the general case
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