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Abstract
Wireless networks have shown a rapid growth over the past two decades
and now play an increasingly prominent role in di�erent telecommu-
nication systems. Consequently, scarce resources such as the radio
spectrum and the physical sites that accommodate transmitters have
become extremely congested and need to be allocated in more e�ective
ways. Since the early 1980s several optimization models have been
developed to design wireless networks, that is to localize and con�g-
ure transmitters by assigning transmission frequencies and emission
powers to them. Most such models represent emission powers as con-
tinuous decision variables. This choice typically yields ill-conditioned
constraint matrices and requires the introduction of very large coef-
�cients to model disjunctive relations. The corresponding relaxations
are very weak and the solutions returned by Mixed-Integer Linear Pro-
gramming solvers are typically far from the optimum and sometimes
even infeasible. In order to overcome these di�culties, we introduce
a pure 0-1 formulation for the problem that is obtained by consider-
ing only a �nite set of power values. Basing on such formulation we
also developed an iterative, row generation algorithm to solve wireless
network design problems. The new approach presents many computa-
tional and modeling advantages. First, albeit considering only a subset
of feasible solutions, it allows to �nd better solutions to large practi-
cal instances with less computational e�ort. Second, since the feasible
powers are well spaced over the power spectrum, the �nal plans tend
to be robust. Third, it directly models power restrictions that are of-
ten imposed by the technology and that sometimes permits two values
only (i.e., on/o�). Finally, it easily allows for generalizations, such as
power consumption minimization.
Keywords: Wireless Network Design, 0-1 Linear Programming, Cover
Inequalities
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1 Introduction
Wireless communication systems are pervading everyday life. Television and
Radio programs are distributed through broadcasting networks (both terres-
trial and satellite), mobile communication is ensured by cellular networks,
internet is provided through broadband access networks. Moreover, a num-
ber of security services are provided by ad-hoc wireless networks. All these
networks have grown very rapidly and very large during the last decades,
generating a dramatic congestion of all radio resources. Wireless networks
provide di�erent services and rely on di�erent technologies and standards.
Still, they share a common feature: they all need to reach users scattered
over a target area with a radio signal that must be strong enough to pre-
vail against other unwanted signals. The perceived quality of service thus
depends on several signals, wanted and unwanted, generated from possibly
a large number of transmitting devices. Due to the large size of the current
networks, to an extremely congested radio spectrum, to local and interna-
tional constraints, establishing suitable emission powers for all the transmit-
ters has become a very di�cult systemic task, which calls for sophisticated
optimization techniques.

For our purposes, a wireless network can be described as a set of trans-
mitters B that provide for a telecommunication service to a set of receivers
T . A receiver is said to be covered (or served) by the network if it receives
the service within a minimum level of quality. Transmitters and receivers are
characterized by a number of physical and radio-electrical parameters. The
Wireless Network Design problem (WND) consists in establishing suitable
values for such parameters with the goal of maximizing the coverage (or a
revenue associated with the coverage). In particular, each transmitter b ∈ B

emits a radio signal with power pb ∈ [0, Pmax]. Typically a receiver t ∈ T

receives radio signals from a subset B(t) ⊆ B of transmitters. Since each
transmitter in B(t) is associated to a unique received signal, in what follows
we will also refer to B(t) as the set of signals received by t.

To simplify the discussion, we assume here that all transmitters of the
network operate at the same frequency (Single Frequency Network or simply
SFN). This assumption is dropped in Section 4 where we describe the real-
life application which motivated our developments. Among the received
signals B(t), receiver t can select a reference signal (or server), which is

2



the one carrying the service. All the other signals are interfering (in digital
broadcasting several signals can contribute to the overall wanted signal, but
this case is not discussed here). A receiver t is regarded as served by the
network with reference signal β ∈ B(t) i� the following linear constraint in
the emitted powers is satis�ed:

atβ · pβ −
∑

b∈B(t)\{β}
etb · pb ≥ δ (1)

where the fading coe�cients atβ and etb with b ∈ B(t) \ {β} are computed
through suitable propagation models and depend on physical as on radio-
electrical conditions. Inequality (1) is called SIR inequality and derives from
the Signal-to-Interference Ratio (SIR) [21]. Parameter δ depends on the
requested level of quality of service and is called SIR threshold. For any
given t ∈ T , we have one inequality of type (1) for each potential server
β ∈ B(t). Receiver t is served i� at least one such inequality is satis�ed, or,
equivalently, if the following disjunctive constraint is satis�ed:

∨

β∈B(t)


atβ · pβ −

∑

b∈B(t)\{β}
etb · pb ≥ δ


 (2)

The above disjunction can be represented by a family of linear constraints in
the p variables, by introducing, for each t ∈ T and each b ∈ B(t), a binary
variable xtb, with xtb = 1 i� t is served by b. Then, for each β ∈ B(t), the
following constraint is introduced:

atβ · pβ −
∑

b∈B(t)\{β}
etb · pb + M · (1− xtβ) ≥ δ (3)

where M is a large positive constant. Indeed, if xtβ = 1 then (3) reduces to
(1); if instead xtβ = 0 and M is su�ciently large (for example, we can set
M = δ+

∑
b∈B\{β} etb·Pmax), then (3) is satis�ed for any feasible power vector

p and becomes redundant. Constraints of type (3) appear in the Mixed-
Integer Linear Programs (MILPs) for the WND presented in several papers
in di�erent application contexts, such as Radio and Video Broadcasting (e.g.
[16, 17]), GSM (e.g. [18]), UMTS (e.g. [3, 10, 15, 19]), WiMAX [7].

WND instances of some practical interest typically correspond to very
large MILP formulations. In principle, such formulations can be solved by
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standard techniques like Branch&Cut and by means of e�ective commercial
solvers such as ILOG Cplex [6]. However, it is well-known that the pres-
ence of a great number of constraints of type (3) results in ill-conditioned
instances, due to the large variability of the fading coe�cients, and weak
bounds, due to the presence of the big-M coe�cients. In practice, only
small-sized instances can actually be solved to optimality.

In a paper from 1990 [9], Dyer and Wolsey introduced the Time-Indexed
formulation (TI) for machine scheduling, obtained by discretizing the con-
tinuous time variables associated with jobs. Similarly, we introduce a new
class of formulations for the WND by considering, for all b ∈ B, only a �nite
number of feasible values P = {P1, . . . , P|P|} for the power variable pb, with
P1 = 0, P|P| = Pmax and Pi > Pi−1, for i = 2, . . . , |P|: by analogy with the
(TI), we call such formulations Power-Indexed (PI). A binary variable zbl is
introduced for each transmitter b ∈ B and each power value Pl ∈ P, with
zbl = 1 i� pb = Pl, and zbl = 0 otherwise. Like in the case of the (TI), this
allows for a pure binary linear program, which, at the cost of increasing the
number of binary variables and constraints, yields stronger relaxations and,
consequently, tighter bounds. In contrast with the (TI), the number of new
binary variables is a design parameter, which only a�ects the quality of the
approximation error. This observation is exploited in the solution approach
to the WND described in Section 3.

It is worth noting that, in the design of real-life wireless networks, it is
common practice for network engineers to consider only a small number of
possible power values. In particular, the useful power values are expressed
by integer decibels w.r.t. a reference value (e.g., 1 milliwatt (mW) in mobile
applications), that is the power is indicated by an integer P dBm whereas the
actual power in mW is computed as P = 10P dBm/10. Using such a subset of
well spaced power values typically results in more robust plans and corre-
sponds to a more cautious design approach. This conservative approach is
also a practical response to the uncertainty characterizing radio-wave propa-
gation, that is a�ected by several factors which are hard to estimate exactly.
Also, in some real-life applications the number of feasible power values is
limited by the technology. Indeed, another nice feature of the (PI) formula-
tions is that it can immediately handle the case where powers are actually
discretized, and easily model alternative objectives to coverage revenue (e.g.,
non-linear power consumption costs).

4



The Power-Indexed formulation for the WND is introduced in the next
section, by deriving it from the classical big-M formulation. In Section 3
we describe our solution approach to the WND. In Section 4 we show a
speci�c application to the planning of WiMAX networks. Finally, extensive
computational results on realistic WND instances are presented in Section
5. Such results show that the new approach outperforms the one based on
the big-M formulation in terms of quality of the solutions (i.e., coverage of
receivers), upper bounds and running times.

2 A Power-Indexed formulation for the Wireless
Network Design Problem

A classical and much exploited model for the WND belongs to the class of
the so called big-M formulations. We now present such a type of formulation
(BM) by introducing a parameter rt to denote revenue (e.g., population,
number of customers, expected tra�c demand) associated with receiver t ∈
T . The notation introduced so far is summarized in Table 1.

max
∑

t∈T

∑

b∈B(t)

rt · xtb (BM)

s.t. atβ · pβ −
∑

b∈B(t)\{β}
etb · pb + M · (1− xtβ) ≥ δ t ∈ T, β ∈ B(t) (4)

∑

b∈B(t)

xtb ≤ 1 t ∈ T (5)

pb ≤ Pmax b ∈ B

pb ≥ 0 b ∈ B

xtb ∈ {0, 1} t ∈ T, b ∈ B(t)

The objective function is to maximize total revenue, constraint (4) is the SIR
inequality (3) introduced in Section 1, while constraint (5) ensures that each
receiver is served at most once. Technology-dependent versions of (BM) can
be obtained from the basic formulation by including suitable constraints or
even new variables.

We now consider a di�erent version of (BM) by restricting pb to assume
value in the �nite set P = {P1, . . . , P|P|} of feasible power values, with P1 = 0
(switched-o� value), P|P| = Pmax and Pi > Pi−1, for i = 2, . . . , |P|. To this
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end, we introduce a binary variable zbl, which is 1 i� b emits at power Pl.
Since b is either switched-o� or emitting at a positive value in P, we have:

∑

l∈L

zbl = 1 b ∈ B

where L = {1, . . . , |P|} is the set of power value indices or simply power
levels. Then we can write:

pb =
∑

l∈L

Pl · zbl b ∈ B (6)

By substituting (6) in (4), we obtain the following SIR constraint that only
involves 0-1 variables:

atβ ·
∑

l∈L

Pl · zβl −
∑

b∈B(t)\{β}
etb ·

∑

l∈L

Pl · zbl + M · (1− xtβ) ≥ δ

So, a formulation for the WND with a �nite number of power values is the
following (DM):

max
∑

t∈T

∑

b∈B(t)

rt · xtb (DM)

s.t. atβ ·
∑

l∈L

Pl · zβl −
∑

b∈B(t)\{β}
etb ·

∑

l∈L

Pl · zbl + M · (1− xtβ) ≥ δ

t ∈ T, β ∈ B(t) (7)∑

b∈B(t)

xtb ≤ 1 t ∈ T

∑

l∈L

zbl = 1 b ∈ B

xtb ∈ {0, 1} t ∈ T, b ∈ B(t)

zbl ∈ {0, 1} b ∈ B, l ∈ L

Note that, thanks to (6), pb also satis�es 0 ≤ pb ≤ Pmax. As a consequence,
the box constraints on pb and thus variable pb is dropped from the formula-
tion.

The Power-Indexed formulation is obtained from (DM) by substituting
each constraint (7) with a suitable set of lifted cover inequalities. Before
showing this, we recall some basic concepts related to cover inequalities:
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given a knapsack constraint (KP )
∑

i∈N aixi ≤ b with non-negative coe�-
cients, a cover of (KP ) is a subset of indices C ⊆ N such that

∑
i∈C ai > b.

Denoting by C the set of covers of (KP ), it is well known (see [20]) that the
set of feasible solutions to {x ∈ {0, 1}n :

∑
i∈N aixi ≤ b} coincides with the

set of feasible solutions to {x ∈ {0, 1}n :
∑

i∈C xi ≤ |C| − 1, ∀C ∈ C}.
We now de�ne some notation that is necessary to introduce the speci�c

form of the lifted cover inequalities. Consider the coverage condition (1)
associated to a receiver t ∈ T with server β ∈ B(t). Let Γ = {b1, . . . , b|Γ|} ⊆
B(t)\{β} be a subset of interferers. Suppose that the server β is emitting
at power value pβ = Pλ, for some λ ∈ L. Denote by LI(t, β, λ,Γ) the set of
|Γ|-tuples q ∈ L|Γ| such that atβPλ − etb1Pq1 − · · · − etb|Γ|Pq|Γ| < δ. In other
words, receiver t is not served when t is assigned to server β emitting at
power value Pλ, and the interferers b1, . . . , b|Γ| are emitting at power values
pb1 = Pq1 , . . . , pb|Γ| = Pq|Γ| , respectively. Finally, by letting z̄βl = 1− zβl for
l ∈ L, we rewrite (7) as the following knapsack constraint with non-negative
coe�cients:

atβ ·
∑

l∈L

Pl · z̄βl +
∑

b∈B(t)\{β}
etb ·

∑

l∈L

Pl ·zbl +M ·xtβ ≤ M +atβ ·
∑

l∈L

Pl−δ (8)

Theorem 1 Every cover inequality of (8) is dominated by the following fam-
ilies of constraints:

xtβ +
λ∑

l=1

zβl +
|Γ|∑

i=1

|P|∑

j=qi

zbij ≤ |Γ|+ 1 t ∈ T, β ∈ B(t), Γ ⊆ B(t)\{β},

λ ∈ L, q ∈ LI(t, β, λ,Γ) (9)∑

l∈L

zbl = 1 b ∈ B (10)

xtb ≤ 1 t ∈ T, b ∈ B(t) (11)
zbl ≤ 1 b ∈ B, l ∈ L (12)

Proof. For M su�ciently large, variable xtβ is trivially contained in every
cover inequality of (8). In order to �nd the remaining variables of a cover
inequality, we can thus consider covers of the following knapsack constraint:

atβ ·
∑

l∈L

Pl · z̄βl +
∑

b∈B(t)\{β}
etb ·

∑

l∈L

Pl · zbl ≤ atβ ·
∑

l∈L

Pl − δ (13)
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Table 1: Summary of notation

T set of receivers
B set of transmitters
B(t) set of transmitters (signals) received in t ∈ T
Γ ⊆ B(t)\{β} subset of interfering transmitters of t ∈ T
rt revenue of t ∈ T
atb, etb fading coe�cients of signals sent to t ∈ T from b ∈ B(t)
δ SIR threshold
M large coe�cient (big-M)
Pmax maximum emitted power
P set of power values (P1 = 0, ..., P|P| = Pmax)
L set of power levels
LI(t, β, λ,Γ) set of power level vectors of Γ ⊆ B(t)\{β}

interfering t ∈ T served by β ∈ B(t) emitting at λ ∈ L
pb ∈ [0, Pmax] power variable of b ∈ B
xtb ∈ {0, 1} service variable of t ∈ T served by b ∈ B
zbl ∈ {0, 1} discrete power variable of b ∈ B emitting at l ∈ L

We use the standard notation denoting a cover of (13) by a set of indices
C ⊆ {(b, l) : b ∈ B(t), l ∈ L}. In particular, we partition C into classes
C1 and C2, where C1 contains all the indices of type (β, l) (i.e., the indices
relative to server β), whereas C2 contains all the others. Then, C = C1 ∪C2

is a cover of (13) i� it satis�es:
∑

(β,l)∈C1

atβ · Pl +
∑

(b,l)∈C2

etb · Pl > atβ ·
∑

l∈L

Pl − δ (14)

and the corresponding cover inequality I(C) (including variable xtβ) is:
∑

(β,l)∈C1

z̄βl +
∑

(b,l)∈C2

zbl + xtβ ≤ |C| (15)

Assume now that the cover inequality I(C) is not dominated by the con-
straints (9)-(12).
Claim 1. C2 = {(b1, q1), . . . , (b|Γ|, q|Γ|)}, with Γ = {b1, . . . , b|Γ|} ⊆ B(t) \ {β}
subset of distinct interferers and q = {q1, . . . , q|Γ|} ∈ L|Γ| a corresponding set
of power levels. In other words, a non-dominated cover inequality contains
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exactly one variable for each interferer b ∈ Γ and thus |C2| = |Γ|). By
contradiction, suppose that for some b ∈ B(t)\{β}, we have (b, q) ∈ C2 and
(b, r) ∈ C2, with q 6= r. It follows that I(C) is implied by constraints (10)-
(12). In fact, from (10) we have zbq + zbr ≤ 1 while all other variables in
I(C) are less than or equal to 1. By summing up all these box constraints
to constraint zbq + zbr ≤ 1, we immediately obtain (15), and the claim is
proved.
By Claim 1, if we denote by L1 = {l ∈ L : (β, l) ∈ C1} the set of power
levels of server β appearing in C, we can write (14) as:

atβ ·
∑

l∈L1

Pl +
|Γ|∑

i=1

etbi · Pqi > atβ ·
∑

l∈L

Pl − δ

or equivalently as:

atβ ·
∑

l∈L\L1

Pl −
|Γ|∑

i=1

etbi · Pqi < δ

By letting λ = max {l ∈ L\L1}, the above inequality implies:

atβ · Pλ −
|Γ|∑

i=1

etbi · Pqi < δ

which shows that q ∈ LI(t, β, λ,Γ), that is receiver t is not covered when
server β emits at power level λ and b1, . . . , b|Γ| emit at power levels q1, . . . , q|Γ|,
respectively.

Now, by using this notation and complementing variables z̄, we rewrite
the cover inequality (15) as:

−
∑

l∈L1

zβl +
|Γ|∑

i=1

zbiqi
+ xtβ ≤ |C2| = |Γ|

which, by (10), can be rewritten as:

∑

l∈L\L1

zβl +
|Γ|∑

i=1

zbiqi + xtβ ≤ |Γ|+ 1

Since L\L1 ⊆ {1, . . . , λ}, we thus obtain the contradiction that a generic
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non-dominated cover inequality of (13) is dominated by the inequality (9)
corresponding with server β emitting at power level λ = max {l ∈ L\L1}.

Next theorem shows that constraints (9) are indeed valid for the 0-1 so-
lutions to (DM). In fact, they can be derived as a conic combination of
non-dominated cover inequalities followed by round down.

Theorem 2 Constraints (9) are satis�ed by every 0-1 solution to (DM).

Proof. We use the same notation of the proof of Theorem 1. Let t ∈ T ,
β ∈ B(t), Γ = {b1, . . . , b|Γ|}, and consider a non-dominated cover C =
C1 ∪ C2 of (8), where C1 = {(β, l) ∈ C}, and C2 = {(b1, q1), . . . , (b|Γ|, q|Γ|)}
(Claim 1 of Theorem 1). Again we let L1 = {l ∈ L : (β, l) ∈ C1} and
λ = max {l ∈ L\L1}. As we show in the proof of Theorem 1, it follows
that q = (q1, . . . , q|Γ|) ∈ LI(t, β, λ,Γ). Now, observe that if q̃ ∈ L|Γ| and
q̃ ≥ q then q̃ ∈ LI(t, β, λ,Γ). In fact, Pq̃i ≥ Pqi , for i = 1, . . . , |Γ|, and
(14) is satis�ed. As a consequence, the following constraints are also cover
inequalities of (8):

∑

l∈L\L1

zβl + zb1j +
|Γ|∑

i=2

zbiqi + xtβ ≤ |Γ|+ 1 j = q1, q1 + 1, . . . , |P| (16)

From (10) we have:
|P|∑

j=q1

zb1j ≤ 1 (17)

If the previous inequality is multiplied by |P|−q1 and summed to constraints
(16), we obtain:

(|P|−q1+1)·

 ∑

l∈L\L1

zβl +
|P|∑

j=q1

zb1j +
|Γ|∑

i=2

zbiqi + xtβ


 ≤ (|P|−q1+1)·(|Γ|+ 1)+|P|−q1

(18)
Both members of the above inequality can be divided by the positive quantity
|P| − q1 + 1 and then rounded down thus obtaining the following inequality,
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which is valid for the 0-1 solutions to (DM):

∑

l∈L\L1

zβl +
|P|∑

j=q1

zb1j +
|Γ|∑

i=2

zbiqi + xtβ ≤ |Γ|+ 1 (19)

By starting from the above inequality and by applying inductively the same
argument to (b2, q2), . . . (b|Γ|, q|Γ|), it is easy to obtain the following valid
inequality:

∑

l∈L\L1

zβl +
|Γ|∑

i=1

|P|∑

j=qi

zbij + xtβ ≤ |Γ|+ 1 (20)

A similar reasoning can also be applied to terms associated to server β.
Observe �rst that if q ∈ LI(t, β, λ,Γ) then q ∈ LI(t, β, l,Γ), ∀ l ∈ L : l ≤ λ.
In fact, Pl ≤ Pλ, for l ≤ λ, and (14) is satis�ed. As a consequence, the
following family of constraints are cover inequalities of (8):

zβl +
|Γ|∑

i=1

zbiqi + xtβ ≤ |Γ|+ 1 l = 1, . . . , λ

Analogously to (20), the following inequalities are also valid for the 0-1 so-
lutions to (DM):

zβl +
|Γ|∑

i=1

|P|∑

j=qi

zbij + xtβ ≤ |Γ|+ 1 l = 1, . . . , λ (21)

Letting L2 = {l ∈ L : l ≤ λ, l /∈ L\L1}, we can �nally obtain (9) by: (i)
summing up the constraints (21) associated to l ∈ L2, the constraint (20) and
the constraint

∑λ
j=1 zβj ≤ 1 multiplied by |L2|; (ii) dividing both members

by the quantity |L2|+ 1; (iii) rounding down.

We have already observed that inequality (7) can be replaced by the family
of its cover inequalities. On the other hand, by Theorem 1 every cover
inequality is dominated by constraints (9)-(12), which are also valid for the 0-
1 solutions to (DM). So, the following is a valid (Power-Indexed) formulation
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for the WND problem (with �nite set of power values):

max
∑

t∈T

∑

b∈B(t)

rt · xtb (PI)

s.t. xtβ +
λ∑

l=1

zβl +
|Γ|∑

i=1

|P|∑

j=qi

zbij ≤ |Γ|+ 1 t ∈ T, β ∈ B(t),Γ ⊆ B(t)\{β},

λ ∈ L, q ∈ LI(t, β, λ,Γ) (22)∑

b∈B(t)

xtb ≤ 1 t ∈ T (23)

∑

l∈L

zbl = 1 b ∈ B (24)

xtb ∈ {0, 1} t ∈ T, b ∈ B(t) (25)
zbl ∈ {0, 1} b ∈ B, l ∈ L (26)

3 Solution Algorithm
The solution algorithm is based on the (PI) formulation for the WND and
consists of two basic steps: (i) the set P of feasible power values is es-
tablished; (ii) the associated formulation is solved by row generation and
Branch&Cut. We start by describing step (ii) and we come back to step (i)
later in this section.

In the following, for a �xed power set P, we denote the solution algorithm
for the associated (PI) formulation as SOLVE-PI(P). Since the (PI) formu-
lation has in general an exponential number (in the input size) of constraints
of type (22), we adopt row generation. Namely, we start by considering only
a suitable subset of constraints and we solve the associated relaxation. We
then check if any of the neglected rows is violated by the current fractional
solution. If so, we add the violated row to the formulation and solve again,
otherwise we proceed with standard Branch&Cut (as implemented by the
commercial solver ILOG Cplex [6]). The separation of violated constraints
is repeated in each branching node.

At node 0, the initial formulation includes only a subset of constraints
(22), namely the constraints (22) including at most one interferer (i.e. Γ ≤
1).
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3.1 Separation

We now proceed to show how violated constraints are separated. Let (x∗, z∗)
be the current fractional solution. In Section 2 we have showed that con-
straints (22) are indeed lifted cover inequalities of (8). In order to separate a
violated inequality of type (22), we extend the standard heuristic approach
to the separation of cover inequalities described in [20].

To this end, let us �rst select a receiver t ∈ T and one of its servers,
say β ∈ B(t). We want to �nd a constraint of type (22) that is associated
with t and β, and is violated by the current solution (x∗, z∗). In other
words, we want to identify a power level λ ∈ L for β, a set of interferers
Γ = {b1, . . . , b|Γ|} ⊆ B(t)\{β} and an interfering |Γ|-tuple of power levels
q = (q1, . . . , q|Γ|) ∈ LI(t, β, λ,Γ), such that:

x∗tβ +
λ∑

l=1

z∗βl +
|Γ|∑

i=1

|P|∑

j=qi

z∗bij
> |Γ|+ 1 (27)

Recall that q ∈ LI(t, β, λ,Γ) i�

atβ · Pλ −
|Γ|∑

i=1

etbi · Pqi < δ (28)

We solve the above separation problem by de�ning a suitable 0-1 linear
program. In particular, in order to identify a suitable pair (β, l) we introduce,
for all power levels l ∈ L, a binary variable uβl, which is 1 i� l = λ. Similarly,
we introduce binary variables ubl for all b ∈ B(t)\{β} and l ∈ L, with
ubl = 1 i� (b, l) = (bi, qi), where bi ∈ Γ and qi is the corresponding interfering
power level. Then u ∈ {0, 1}|B(t)|×|L| satis�es the following system of linear
inequalities:

atβ

∑

l∈L

Pl · uβl −
∑

b∈B(t)\{β}
etb

∑

l∈L

Pl · ubl < δ (29)

∑

l∈L

ubl = 1 b ∈ B(t) (30)

Constraint (29) ensures that the combination of emitted power values is not
su�cient to allow transmitter β to serve receiver t, whereas constraint (30)
states that each transmitter emits at exactly one power level.
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Observe now that |Γ| = ∑
b∈B(t)\{β}

∑
l∈L ubl. So, if u identi�es a violated

constraint of type (27), we also have:

∑

l∈L

uβl

l∑

k=1

z∗βk +
∑

b∈B(t)\{β}

∑

l∈L

ubl

|P|∑

k=l

z∗bk >
∑

b∈B(t)\{β}

∑

l∈L

ubl + 1− x∗tβ (31)

In order to (heuristically) search for a violated inequality, we proceed in a
way which resembles the classical approach for standard cover inequalities
(see [20]), by writing the following linear program (SEP):

Z = max
∑

l∈L

uβl

l∑

k=1

z∗βk +
∑

b∈B(t)\{β}

∑

l∈L

ubl ·


|P|∑

k=l

z∗bk − 1


 (SEP )

s.t. atβ

∑

l∈L

Pl · uβl −
∑

b∈B(t)\{β}
etb

∑

l∈L

Pl · ubl ≤ δ (32)

∑

l∈L

ubl = 1 b ∈ B(t)

ubl ≥ 0 b ∈ B(t), l ∈ L

It is easy to notice that the feasible region of (SEP) contains all binary
vectors satisfying (29) and (30). Let Z be the optimum value to (SEP).
If Z ≤ 1 − x∗tβ then no binary vector u satis�es (31) and consequently no
violated constraint exists. If Z > 1 − x∗tβ then a violated constraint may
exist, and we resort to a heuristic approach to �nd it. In particular, observe
�rst that Z can be computed by relaxing the knapsack constraint (32) in
a Lagrangian fashion and then by solving the resulting Lagrangian dual,
namely:

Z = min
η≥0

Z(η)

s.t.
∑

l∈L

ubl = 1 b ∈ B(t)
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where η ∈ R is the Lagrangian multiplier and:

Z(η) = max
u≥0

∑

l∈L

uβl

l∑

k=1

z∗βk +
∑

b∈B\{β}

∑

l∈L

ubl ·


|P|∑

k=l

z∗bk − 1


 +

+ η ·

δ − atβ

∑

l∈L

Pl · uβl +
∑

b∈B\{β}
etb

∑

l∈L

Pl · ubl




For �xed η ≥ 0, the objective Z(η) can be easily computed by inspection.
In particular, we introduce the following coe�cient for every b ∈ B(t), l ∈ L:

cbl(η) =





∑l
k=1 z∗βk − η · atβ · Pl if b = β

∑|P|
k=l z

∗
bk − 1 + η · etb · Pl if b ∈ B(t)\{β}

then Z(η) rewrites as:

Z(η) = δ · η + max
u≥0

∑

b∈B(t)

∑

l∈L

cbl(η) · ubl

s.t.
∑

l∈L

ubl = 1 b ∈ B(t) (33)

For �xed η ≥ 0, an optimal solution u(η) to the inner maximization problem
can be found by inspection as follows:

(i) for each b ∈ B(t), identify a power level lb ∈ L which maximizes the
coe�cient in the objective function, namely cblb(η) = maxl∈L cbl(η).

(ii) for each b ∈ B(t) and each l ∈ L, let

ubl(η) =

{
1 if l = lb

0 otherwise

It is straightforward to see that, for all η ≥ 0, u(η) ≥ 0 satis�es all constraints
(33) and maximizes the function

∑
b∈B(t)

∑
l∈L cbl(η) · ubl(η). For η = η̄, we

have Z(η̄) = δ · η̄ +
∑

b∈B(t)

∑
l∈L cbl(η̄) · ubl(η̄).

For η ≥ 0, the function Z(η) is convex and unimodal (see [20]), and the
optimum solution η∗ can be found e�ciently by applying the Golden Section
Search Method (see [11]). Suppose now that Z(η∗) > 1 − x∗tβ (otherwise no
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violated constraints exist). If, in addition, u(η∗) also satis�es (29), then the
positive components of the binary solution u(η∗) are in one-to-one corre-
spondence with the variables of a violated constraint. Otherwise the oracle
returns no violated cover.

3.2 The Algorithm

We come back now to the �rst step in our algorithm, namely the choice of
the set of admissible power values P. Large sets are in principle more likely
to produce better quality solutions. However, the ability of the solution
algorithm to �nd optimal or simply good-quality solutions is strongly a�ected
by |P|, as we will show in more detail in the computational section. Thus, the
size and the elements of P should represent a suitable compromise between
these two opposite behaviors. Moreover, the e�ectiveness of the Branch&Cut
is typically a�ected by the availability of a good initial feasible solution. In
order to take all these questions into account, we decided to iteratively apply
SOLVE-PI(P) to a sequence of feasible power sets P0 ⊂ P1 ⊂ · · · ⊂ Pr.
Each invocation inherits all the generated cuts, the best solution found so
far and the corresponding lower bound from the previous invocation. More
precisely, if we denote by -99 the switched-o� state (in dBm), and P dBm

min ,
P dBm

max are the (integer) minimum and maximum power values (in dBm), then
we have P0 = {−99, P dBm

max }, P1 = {−99, P dBm
min ,

⌊
P dBm

max −P dBm
min

2

⌋
, P dBm

max } and
Pr = {−99, P dBm

min , P dBm
min + 1, . . . , P dBm

max }. The structure of the intermediate
power sets will be described in Section 5.

The overall approach, denominated WPLAN, is summarized in Algo-
rithm 1, where i denotes the current iteration, along with the associated
best solution found xi, the corresponding value LBi, and the set of feasible
powers Pi. If SOLVE-PI(Pi) is executed in less than the iteration time limit
TLi then the residual time τi is used to increase the time limit of the fol-
lowing iteration (i.e., TLi+1:= TLi+1 + τi). The initial incumbent solution
x−1 corresponds with all transmitters switched o� and no receiver served
(LB−1 = 0).
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Algorithm 1 WPLAN
Input: the power sets P0,P1, . . . ,Pr , the iteration time limit TLi for i =

0, . . . , r
Output: the best solution xr

LB−1 := 0
for i = 0 to r do
1. Invoke SOLVE-PI(Pi) with LBi−1 and TLi

2. Get xi, LBi and τi

3. TLi+1 := TLi+1 + τi

end for
Return xr

4 WiMAX network planning
The model introduced so far to solve the WND is a basic one and applies to
most technologies, both in cellular and in broadcasting network design. Each
technology is characterized by speci�c values for the constants appearing in
the model. Also, each technology may require additional constraints and/or
variables to model speci�c features.

In this section we introduce the technological elements and the modeling
assumptions characterizing the speci�c technology addressed in this paper,
namely the IEEE Standard 802.16, better known as WiMAX [13]. The ma-
jor amendments concern the introduction of di�erent frequency channels,
channel capacity and tra�c demand. In particular, each antenna emits at
a speci�c frequency channel, and only iso-channel signals are considered as
interfering. Also, a tra�c demand is associated to each receiver, and the
amount of total tra�c served by an antenna is limited by the channel ca-
pacity. We note that the resulting formulation incorporates the common
features of the so-called Next Generation Networks, which adopt Orthogonal
Frequency Division Multiplexing (OFDM) [22].

Speci�cally, we consider the design of a Fixed WiMAX Network [13]: it
consists of a set of installations - the base stations (BS ) - distributed over
a number of sites in order to provide connectivity to a set of customers'
equipments - the subscriber stations (SS ) - located in a target area. The
target area is decomposed into a grid of approximately squared elementary
areas called testpoints (TPs). All SSs located in a TP are aggregated in a
single �ctitious SS located in the centre of the TP. Each TP thus corresponds
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to a single receiver and the set of all the TPs corresponds to the set of
receivers T in the basic model. For each TP t ∈ T we introduce the quantity
dt to represent the joint bandwidth request (tra�c demand) of all the SSs
located in t.

A BS typically consists of a pylon accommodating a number of transceivers
(TRXs). The set of all the TRXs that can be deployed in the target area cor-
responds to the set of transmitters B of our basic model. Every TRX b ∈ B

is characterized by a position (the TP in which the TRX is located) and by
two radio-electrical parameters: i) frequency channel f , which belongs to a
�nite set of available channels F , each having a constant bandwidth D ; ii)
emitted power P f

b ∈ [Pmin, Pmax] on frequency f ∈ F .
Just like other Next Generation Networks, WiMAX supports the so-

called Adaptive Modulation and Coding (AMC), which allows to change
transmission scheme (burst pro�le) according to radio channel condition [4].
Each TRX can select a speci�c burst pro�le to serve each testpoint. The se-
lected burst pro�le a�ects both the SIR threshold and the fraction of channel
capacity exploited to ful�l the tra�c demand of a testpoint. So, by denoting
the set of available burst pro�les as H, we introduce two new parameters
for every h ∈ H: the SIR threshold δh that must be satis�ed to ensure ser-
vice coverage according to (1), and the spectral e�ciency sh, which is the
bandwidth required to satisfy one unit of demand.

We are now able to write a modi�ed version of the SIR inequality that
takes into account the WiMAX speci�c features. In particular, TP t ∈ T is
served by β ∈ B(t) if the following constraint is satis�ed:

atβ · pf(β)
β − δh(t)

∑

b∈B(t)\{β}
atb · pf(β)

b ≥ δh(t). (34)

where f(β) ∈ F is the transmission frequency assigned to β, whereas h(t) ∈
H is the burst pro�le used to serve t. If we denote by T (β) the family of
testpoints served by β ∈ B, the limited channel capacity is expressed by the
following constraint: ∑

t∈T (β)

dt · 1
sh
≤ D (35)

In order to represent these new features into our basic 0-1 program, we need
to introduce new binary variables, obtained by slightly modifying the original
ones to take into account multiple frequencies and burst pro�les. We thus
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let:

xfh
tb =





1 if testpoint t ∈ T is served by TRX b ∈ B

on channel f ∈ F with burst pro�le h ∈ H

0 otherwise

zf
bl =

{
1 if TRX b ∈ B emits at power level l ∈ L on frequency f ∈ F

0 otherwise

We also need to introduce a new version of the set of interfering levels
LI(t, β, λ,Γ), that now depends also on the used burst pro�le h ∈ H, in
addition to the TP t ∈ T , the server β ∈ B(t), the server emitted power
λ ∈ L and the set of interferers Γ ⊆ B(t)\{β}:

LI(t, β, h, λ,Γ) = {q ∈ L|Γ| : atβ · Pλ − δh

|Γ|∑

i=1

atbi · Pqi < δh}

We can �nally state the Power-Indexed formulation for WiMAX network
design:

max
∑

t∈T

∑

b∈B(t)

∑

f∈F

∑

h∈H

rt · xfh
tb (WiMAX − PI)

s.t. xfh
tb +

λ∑

k=1

zf
βk +

|Γ|∑

i=1

|P|∑

j=qi

zf
bij
≤ |Γ|+ 1 t ∈ T, β ∈ B(t), f ∈ F, h ∈ H,

λ ∈ L,Γ ⊆ B(t)\{β},
q ∈ LI(t, β, h, λ,Γ) (36)∑

b∈B(t)

∑

f∈F

∑

h∈H

xfh
tb ≤ 1 t ∈ T (37)

∑

l∈L

zf
bl = 1 b ∈ B, f ∈ F (38)

∑

t∈T

∑

h∈H

dt · 1
sh
· xfh

tb ≤ D b ∈ B, f ∈ F (39)

xfh
tb ∈ {0, 1} t ∈ T, b ∈ B(t), f ∈ F, h ∈ H (40)

zf
bl ∈ {0, 1} b ∈ B, l ∈ L, f ∈ F (41)

Note that constraint (39) models the capacity constraint (35). All other
constraints are simple generalizations of the basic ones.
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5 Computational Results
In this section we present computational results over a set of realistic in-
stances, developed with the Technical Strategy & Innovations Unit of British
Telecom (BT).

The target of these tests is manyfold. First, we compare the new (PI)
formulation to the (BM) formulation and show that (PI) outperforms (BM)
in terms of quality of produced bounds and solutions found. Then, we il-
lustrate speci�c features of the solution algorithm WPLAN, in particular
we motivate the iterative approach with increasing power sets. Finally, we
assess the ability of WPLAN to tackle realistic WiMAX network design in-
stances. The tests were performed under Windows XP 5.1 operating system,
with 1.80 GHz Intel Core 2 Duo processor and 2×1024 MB DDR2-SD RAM.
The algorithm is implemented in C++ (under Microsoft Visual Studio 2005
8.0), whereas the commercial MILP solver ILOG Cplex 10.1 is invoked by
ILOG Concert Technology 2.3.

5.1 The test-bed

All our instances correspond to an urban area located in the North Eastern
part of Rome (Italy) selected in agreement with the engineers at BT, who
considered it as a representative residential tra�c scenario. All instances are
available online [8].

Physical data of the target area are provided by a Digital Elevation Model
(DEM) that represents the territory as a raster with a resolution of about
100 meters. The set of instances refers to an area of about 2.5 Km × 2.5
Km, corresponding to a residential neighborhood of Rome: according to the
DEM resolution, the area is decomposed into a 25×25 testpoints grid. Nine
instances of increasing dimension are drawn out of this basic area, that is
classi�ed as an urban environment.

In conformity with the regulations established by the Italian Communica-
tions Regulatory Authority (Agcom) for the deployment of WiMAX networks
in Italy [2], we carry out the planning study for one of the provided trans-
mission licenses. The frequency set F thus includes three 7 Mhz channels in
the (3.4 ÷ 3.6) GHz band.

A set H of four burst pro�les is available for transmissions and the band-
width demand dt of each testpoint t ∈ T is estimated according to the
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methodology described in [23], considering an urban scenario where cus-
tomers are mainly residential.

On the basis of the target area size and considering an average spacing
of about 0.6 Km, a number of potential BSs can be activated: each BS
may install up to 3 directional TRXs with 120◦ antennas emitting in the
power range [20,40] dBm. We refer to commercial devices operating in the
3.5 GHz frequency band. The azimuth of each antenna may vary in the
range [0◦, 360◦] with a step of 10◦, thus allowing 36 distinct orientations
for each TRX. So, in principle, we may have up to 12 di�erent orientations
associated with each directional TRX. However, similarly to [10], in order to
limit the size of our instances, we choose to reduce the number of possible
installations by selecting one most promising orientation in advance: for
each directive antenna, we select the direction which maximizes coverage
(an exact description of the selection strategy can be found at our WiMAX
web page [8]).

The fading coe�cients atb are computed by means of the path loss model
COST-231 Hata [5], that is widely used and taken as reference for predictions
in WiMAX networks [1, 12, 14]. However, we remind that the optimization
model is independent of the particular propagation model that is used, as it
only a�ects the coe�cients of the fading matrix.

We de�ne two types of instances, denoted by Sx with x = {1, . . . , 5}
and Rx with x = {1, . . . , 4}. For the Sx instances, the tra�c is uniformly
distributed among the testpoints and we assign unitary revenue to each TP
(i.e. rt = 1). Finding optimal coverage plan thus corresponds to de�ne the
plan with the maximum number of covered TPs. Only one frequency and
one burst modulation are allowed.

For the Rx instances, we consider a tra�c distribution based on the
actual distribution of the buildings. We also introduce multiple frequencies
and modulations. In this case, the revenue of each testpoint is proportional
to the tra�c generated.

5.2 Numerical Results and Comparisons

In order to evaluate the quality of our approach we compare the iterative
procedure WPLAN with the direct application of Cplex to the (BM) formu-
lation. In the �rst experiment we focus on a single instance of our test-bed
and detail the behaviour of WPLAN for each invocation of SOLVE-PI(P).
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Table 2: Description of the test-bed instances

ID |T| |B| |F| |H|
S1 100 12 1 1
S2 169 12 1 1
S3 225 12 1 1
S4 289 12 1 1
S5 361 12 1 1
R1 400 18 3 4
R2 441 18 3 4
R3 484 27 3 4
R4 529 27 3 4

The table refers to the 225 testpoints instance introduced in Table 2 (in-
stance S3), with 12 candidate TRXs, one frequency and one burst pro�le.
The sets of power values in the �rst three invocations of SOLVE-PI(P) are (in
dBm) P1 = {−99, 40},P2 = {−99, 20, 30, 40},P3 = {−99, 20, 25, 30, 35, 40},
respectively. Then, in each of the following invocations, the set of power
values is expanded by including two more values (suitably spaced).

In Table 3 we report, for each invocation of SOLVE-PI(P), the number
|L| of considered power levels, the number of constraints of type (22) included
in the initial formulation (node 0), the number of constraints of type (22)
separated during the current iteration, the upper bound at node 0, the value
|T*| of the �nal solution and the �nal gap. On the �rst line of the table,
the third column shows the number of SIR (big-M) constraints (24) included
in (BM). For the solution of (BM) we set a time limit of 3 hours. In order
to evaluate the behaviour of the single iterations of WPLAN, and establish
the correct sequence of power sets, in these experiments we set, for each
invocation of SOLVE-PI(P), a time limit of 1 hour.

The �gures in Table 3 are actually representative of the typical behaviour
of WPLAN on all instances of our test-bed. In particular, some relevant
observations can be derived from the results. First, the size of the (PI)
formulation grows quickly with the number of power levels, and is typically
much larger than that of (BM). This is counterbalanced by the quality of the
upper bounds, which are constantly better for (PI) and, most important, the
quality of the solutions found. Interestingly, the best solution is found quite
early in the iterative procedure, namely for |P| ≤ 6. A similar behaviour is
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Table 3: Behaviour of WPLAN

|T|=225, |B|=12, |F|=1, |H|=1

No. coverage No. added UB
Method |L| constraints cuts (node 0) |T*| gap%
(BM) - 1170 - 221.3925 93 97.18

2 5743 17 199.2193 106 0.00
4 9035 7 204.2500 111 0.00
6 14312 13 206.6261 111 59.03
8 17142 45 209.4200 111 67.51
10 24638 6 210.0000 111 79.99

WPLAN 12 27799 1 211.7000 111 82.05
14 35944 0 212.0000 111 83.46
16 38496 10 214.5930 111 85.48
18 45425 2 215.8000 111 86.44
20 48918 2 218.0000 111 89.99
22 57753 3 218.0000 111 90.83

observed for the other instances reported in Table 4 as well. This motivated
our choice of the sequence of feasible power values in the �nal version of
WPLAN, where most of the computational e�ort is concentrated on small
cardinality power sets, and only one large set. In particular, there will be
only 4 iterations, corresponding to 2, 4, 6 and 22 power levels, respectively.
Concerning the number of generated cuts, it is interesting to observe that
in general they are not too many. Also, in most cases they include only two
interferers, and in any case never more than three. In other words, even if
several interferers can reach a given testpoint, still only very few of them
gives a signi�cant contribution to the actual overall interfering signal.

Table 4 reports the full set of results over our benchmark instances. In
this case, we set a time limit of 3 hours both for the solution of (BM) and
for WPLAN. The value of the best solutions found within the time limit
are shown in column |T*|: two values are presented for (BM), namely the
nominal value of the best solution returned by Cplex (in brackets) and its ac-
tual value computed by re-evaluating o�-line the solution. The gap columns
report the gap between upper and lower bound at termination, whereas the
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last column |L*| is the number of power levels used in the iteration in which
WPLAN obtains the best solution.

Table 4: Comparisons between (BM) and WPLAN formulations

(BM) WPLAN
ID |T| |T*| gap% time (sec) |T*| time (sec) |L*|
S1 100 63 (78) 43.72 10698 74 10565 6
S2 169 99 (100) 56.18 10705 107 5591 4
S3 225 93 (93) 103.43 10761 111 7935 4
S4 289 77 (77) 202.24 10002 86 10329 6
S5 361 154 (154) 130.76 8110 170 8723 4
R1 400 370 (370) 7.57 10626 400 1579 2
R2 441 302 (303) 45.03 3595 441 1244 4
R3 484 99 (99) 385.86 10757 427 3472 2
R4 529 283 (286) 84.96 10765 529 2984 2

The results show that WPLAN outperforms (BM) in terms of quality of
the solutions found and running times to obtain them. Even if in principle
the reduced and quite small number of power values considered by WPLAN
could result in poorer coverage w.r.t. the (BM), the �gures clearly show
that this is not the case. On one hand, this happens as a small number of
well-spaced power values su�ces in practice to obtain good coverage; indeed,
it is common practice in WiMAX network planning to neglect intermediate
values, i.e. a device is either switched-o� or activated at its maximum power.

On the other hand, the size of the (BM) formulation and the ill-conditioning
of the constraint matrix, along with the presence of the big-M coe�cient,
makes the solution process quite unstable, the solutions found unreliable and
the branching tree extremely large. Due to rounding errors, Cplex tends to
overestimate the actual value of the solutions found and is often lower than
the one returned by the solver. All these di�culties are overcome by the
new formulation (PI) and the overall solution approach WPLAN. This is
particularly apparent for the R-instances, which seem to be quite easy for
WPLAN but very di�cult for (BM). Indeed, when no time limit is imposed
to the solution of (BM), Cplex runs out of memory after about ten hours
of computation without getting sensible improvements in the bounds. On
the contrary, for R1, R2 and R4 less than 1 hour su�ces to SOLVE-PI(P)
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to terminate with the optimum solution (when |P| = 2).
Table 5 shows the impact of the iterative approach on the quality of the

solutions found. In particular we compare cold starts, which correspond to
invoking SOLVE-PI(P) without bene�ting from cuts and lower bounds ob-
tained at former invocations, with warm starts which, in contrast, make use
of such information. The value of the best solutions found during successive
invocations of SOLVE-PI both under warm and cold starts are shown in the
columns identi�ed by |L| = n, where n denotes the number of corresponding
power levels. The value of the best solution found at the �rst invocation is
in column |L| = 2, while the value of the best solution and the number of
levels used to �nd it are shown in column |T ∗| and |L∗|, respectively.

Table 5: Comparisons between warm and cold starts

WARM START COLD START
ID |T*| |L*| |L|=2 |L|=4 |L|=6 |L|=4 |L|=6
S1 74 6 69 72 74 71 58
S2 107 4 72 107 107 80 63
S3 111 4 75 111 111 100 97
S4 86 6 76 84 86 83 81
S4 170 4 127 170 170 110 127
R1 400 2 400 \ \ 399 304
R2 441 4 416 441 \ 394 355
R3 484 2 427 427 427 414 *
R4 529 2 529 \ \ 512 *

For all S-instances the best solution can be found only thanks to warm
start. Apparently SOLVE-PI encounters increasing di�culties to �nd good
solutions as the number of power levels increases. This is mainly due to the
large size of the corresponding instances, that, in two cases denoted by *,
makes Cplex run out of memory while building the model. However, when
a good initial solution is provided to SOLVE-PI, then this solution can be
improved in most cases. We have already observed that for a larger number
of levels (i.e. > 6), no improved solutions can be found for all instances in
our test-bed. Finally, for R1 and R4 a solution covering the entire target
area is found already with |L| = 2, while for R2 such a solution is found with
|L| = 4 (and warm-start).
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