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Abstract

We consider low-rank semidefinite programming (LRSDP) relaxations of ±1
quadratic problems that can be formulated as the nonconvex nonlinear program-
ming problem of minimizing a quadratic function subject to separable quadratic
equality constraints. We prove the equivalence of the LRSDP problem with the
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1 Introduction

We consider a semidefinite programming problem in the form

min
X

{Q ∙X : diag(X) = e, X ર 0} , (SDP)

whereQ ∈ Sn is given, X ∈ Sn and e ∈ Rn is the vector of all ones. Here Sn denotes the
space of n×n symmetric matrices, and X ર 0 indicates that X is positive semidefinite.
Semidefinite Programming (SDP) problems of this form arise as relaxations of {−1, 1}
quadratic problems (see e.g. [6], [8], [14]) :

min xTQx (1)

s.t. x ∈ {−1, 1}n.

Efficient solution of problem (SDP) is of great interest because it can be exploited in
a branch and bound scheme for solving the corresponding integer problem (1) (see e.g.
[16, 17]).

Problem (SDP) may be solved in principle by any interior point method. How-
ever, this approach becomes impractical when the size of the combinatorial problem
becomes larger than few thousand variables. For this reason, the special structure of
the constraints of problem (SDP) has been exploited in the literature to define ad-hoc
algorithms based on nonlinear programming reformulations. The first idea goes back
to Homer and Peinado [12], where the change of variables Xij = vTi vj/∥vi∥∥vj∥ for the
elements of X enabled to formulate (SDP) as the unconstrained optimization problem

min
v∈IRn2

fn(v) =
n∑

i=1

n∑

j=1

qij
vTi vj

∥vi∥∥vj∥
(Qn)

in n2 new variables vi ∈ IRn, i = 1, . . . , n. In order to tackle the large dimension
of the resulting problem a parallel gradient method was proposed. Later Burer and
Monteiro in [4, 5] recast a general linear semidefinite programming problem as a low
rank semidefinite programming problem (LRSDP) by applying the change of variables
X = V V T , where V is an n× r, r < n, rectangular matrix. This new formulation leads
to a nonlinear optimization problem with dimension nr, which is solved in [4, 5] by
means of an Augmented Lagrangian approach. In the computational result section of
[4], in connection with the special problem (SDP), Burer and Monteiro resumed the un-
constrained formulation proposed by by Homer and Peinado and mixed it with the low
rank idea by introducing the change of variables Xij = vTi vj/∥vi∥∥vj∥ where vi ∈ IRr,
i = 1, . . . , n, with r << n. The resulting algorithm SDPLR-MC was computationally
efficient, but the theory was not deeply investigated.

In [9] a specialized approach was proposed for solving problem (LRSDP): it was
reformulated as the unconstrained minimization of an exact penalty function and a
globally convergent algorithm was defined. Furthermore, the exactness of the merit

2



function implied that a single minimization for a fixed positive value of a penalty pa-
rameter was enough to provide a stationary point of the LRSDP problem. Computa-
tional experiments in [9] showed that this unconstrained approach compares favorably
with the best codes available in literature.

In this paper, we use the change of variables adopted in [4] for problem (SDP) to
get a different unconstrained formulation, for which we prove equivalence with problem
(SDP). The specific feature of this formulation is that we add to the function fr(v),
where v ∈ IRnr as in [4], a shifted barrier penalty term that ensures compactness of
the level sets of the new merit function. This allows us to use standard unconstrained
optimization algorithms. In particular, we define a globally convergent algorithm based
on the nonmonotone Barzilai-Borwein gradient method proposed in [11]. Numerical
results show that the proposed approach outperforms the best existing methods for
solving problem (SDP).

The paper is structured as follows: in Section 2, we report some useful results about the
low rank reformulation of problem (SDP). In Section 3, we define the new unconstrained
reformulation of problem (LRSDP), while in section 4 we define the solution algorithm
employed for solving this formulation. In Section 5 we define the solution scheme for
(SDP) and, finally, in Section 6 we report the numerical results.

Throughout the paper, given a matrix M we denote by diag(M) the vector containing
its diagonal and by vec(M) the vector obtained columnwise by the matrix M . Given
a vector v, we denote by Diag(v) the diagonal matrix having as diagonal the vector v
and by B�(v) the closed ball centered in v with radius � > 0, namely B�(v) = {y ∈
ℜm : ∥y − v∥ ≤ �}. For a given scalar x we denote by (x)+ the maximum between x
and zero, namely (x)+ ≡ max(x, 0).

2 Some useful results about the low rank SDP formula-

tion

Using the Gramian representation, any given matrix X ર 0 with rank r can be written
as X = V V T , where V is a n × r real matrix. Therefore the positive semidefiniteness
constraint can be eliminated, and problem (SDP) reduces to

min
V

{
Q ∙ V V T : diag(V V T ) = e

}
. (2)

A global minimum point of problem (2) is a solution of problem (SDP) provided that

r ≥ rmin = min
X∈X ∗

SDP

rank(X),

where X ∗
SDP denotes the optimal solution set of problem (SDP). Although the value

of rmin is not known, an upper bound can easily be computed by exploiting the result
proved in [1, 15], that gives

rmin ≤ r̂ = max{k ∈ N : k(k + 1)/2 ≤ n}. (3)
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Thus, to get equivalence with (SDP), the dimension of the matrix V in problem (2)
can be fixed to n× r with r ≥ r̂. For a fixed r, problem (2) can be written as

min
v

⎧
⎨
⎩qr(v) =

n∑

i=1

n∑

j=1

qijv
T
i vj : ∥vi∥

2 = 1, i = 1, . . . , n

⎫
⎬
⎭ (NLPr),

where vi, i = 1, . . . , n, are the columns of the matrix V T and v = vec(V T ) ∈ IRnr. We
denote with ℱ the feasible set of problem (NLPr), namely

ℱ = {v ∈ ℜnr : ∥vi∥
2 = 1, i = 1, . . . , n}.

We say that a point v∗ ∈ IRnr solves problem (SDP) if X∗ = V ∗V ∗T is an optimal
solution of problem (SDP). This implies, by definition, that r ≥ rmin.

Although reformulation (2) results in the non convex problem (NLPr), the primal-
dual optimality condition for (SDP) combined with necessary optimality conditions for
(NLPr) lead to some global optimality conditions [4, 9] that can be exploited from the
computational point of view.

The standard first order necessary optimality condition for problem (NLPr) states
that given a local minimizer v̂ ∈ IRnr of problem (NLPr), there exists a unique �̂ ∈ IRn

such that (v̂, �̂) satisfies

n∑

j=1

qij v̂j + �̂iv̂i = 0, i = 1, . . . , n

∥v̂i∥
2 = 1, i = 1, . . . , n

(4)

We define stationary point of problem (NLPr) a point v̂ ∈ IRnr satisfying (4) with a
suitable multiplier �̂ ∈ IRn.

We note that, given a pair (v̂, �̂) satisfying the conditions (4), the multiplier �̂ can
be expressed uniquely as a function of v̂ (see [9]), namely

�̂i = �i(v̂) = −v̂Ti

n∑

j=1

qij v̂j , i = 1, . . . , n. (5)

By substituting the expression of �̂ in the first condition of (4), we get

n∑

j=1

qij
(
Ir − v̂iv̂

T
i

)
v̂j = 0 i = 1, . . . , n. (6)

Next proposition, that extends the sufficient conditions given in [4], states the global
optimality conditions obtained by exploiting the primal-dual properties for problem
(SDP).

Proposition 2.1 (Global optimality conditions) A point v∗ ∈ IRnr is a global

minimizer of problem (NLPr) that solves problem (SDP) if and only if it is a stationary

point of problem (NLPr) and satisfies

Q+Diag(�(v∗)) ર 0,

where �(v∗) is computed according to (5)
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The proof of this result can be found in [9] and for more general problems in [10,
13]. According to the above proposition, given a stationary point v̂, we can prove its
optimality just checking that a certain matrix is positive semidefinite. Furthermore
in [12] it has been proved that, if r = n, there is no local minimum point of problem
(NLPr), which is not global.

3 A new unconstrained formulation of problem (SDP)

We consider the unconstrained problem

min
v∈IRnr

fr(v) ≡
n∑

i=1

n∑

j=1

qij
vTi vj

∥vi∥∥vj∥
, (Qr)

that has been used to obtain a solution of Problem (NLPr) in [4]. We note that problem
(Qr) presents some peculiarities that make standard convergence results not immedi-
ately applicable. Indeed, standard unconstrained algorithms can be proved to be glob-
ally convergent if the objective function is continuously differentiable and has compact
level sets. Function fr(v) is not even defined at points where ∥vi∥ = 0 for at least one
index i. In principle, it is possible to modify standard algorithms by looking not at
the sequence {(v1, . . . , vn)

k} but at the normalized sequence {(v1/∥v1∥, . . . , vn/∥vn∥)
k}.

However, this may cause difficulties in the use of many optimization algorithms.
In this paper, we propose to modify fr in such a way to get an unconstrained

problem that can be solved by standard methods. In particular, we add the term

n∑

i=1

(∥vi∥
2 − 1)2

d(vi)
, (7)

where

d(vi) ≡ �2 −
(
1− ∥vi∥

2
)2
+
, 0 < � < 1. (8)

Therefore, the function we propose is

f"(v) ≡ fr(v) +
1

"

n∑

i=1

(∥vi∥
2 − 1)2

d(vi)
, (9)

where " > 0. For a fixed " > 0 we consider the unconstrained minimization problem

min
v∈S�

f"(v), (RQr)

where the open set S� is defined as

S� ≡ {v ∈ IRnr : ∥vi∥
2 > 1− �, i = 1, . . . , n}.

The added term (7) ensures that the level sets of f" are contained in the set S� and are
compact. Hence, Problem (RQr) allows us to overcome all the theoretical drawbacks
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of Problem (Qr). In particular, we will show that solving problem (RQr) for a single
value of " is equivalent to solve problem (NLPr).

We start by investigating the theoretical properties of function f"(v). The gradient
of function f"(v) in the set S� is

∇vif"(v) = ∇vifr(v) +
4

"

(∥vi∥
2 − 1)

d(vi)

[
1−

(∥vi∥
2 − 1)(1 − ∥vi∥

2)+
d(vi)

]
vi

where

∇vifr(v) =
2

∥vi∥

⎡
⎣

n∑

j=1

qij

(
Ir −

vi
∥vi∥

vi
T

∥vi∥

)
vj
∥vj∥

⎤
⎦

The first important property is the compactness of the level sets of function f"(v), that
guarantees the existence of a solution of problem (RQr).

Proposition 3.1 For every v ∈ S� and for every given " > 0, the following condition

holds

f"(v) ≥ −C +
1

"

(∥vi∥
2 − 1)2

�2
, ∀ i = 1, . . . , n, (10)

where C =
n∑

i=1

n∑

j=1

∣qij ∣. Furthermore, for every given " > 0 and for every given v0 ∈ S�,

the level sets

ℒ"(v
0) = {v ∈ S� : f"(v) ≤ f"(v

0)}

of function f"(v) are compact.

Proof First, for every v, we have that

fr(v) =
n∑

i=1

n∑

j=1

qij
vTi vj

∥vi∥∥vj∥
≥ −

n∑

i=1

n∑

j=1

∣qij∣
∣vTi vj∣

∥vi∥∥vj∥

≥ −
n∑

i=1

n∑

j=1

∣qij ∣
∥vi∥∥vj∥

∥vi∥∥vj∥
= −C.

Hence, (10) follows from simple majorizations. Now, we prove boundedness of ℒ"(v
0).

Let {vk} ∈ ℒ"(v
0) be a sequence of points such that ∥vk∥ → ∞. Assume without loss

of generality that ∥vk1∥ → ∞. By using (10), we can write:

f"(v
k) ≥ −C +

1

"

(∥vk1∥
2 − 1)2

�2
,

so that f"(v) is coercive and the level set is bounded. On the other hand, any limit
point of a sequence cannot belong to the boundary of S�. Indeed, if ∥v̂i∥

2 = 1 − � for
some i, then (8) implies d(v̂i) = 0, and hence

lim
k→∞

f"(v
k) = ∞,

but this contradicts vk ∈ ℒ"(v
0) for k sufficiently large. Therefore the level set ℒ"(v

0)
is also closed, and the thesis follows.
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Next proposition gives a bound on the value of ∥vi∥ for all i = 1, . . . , n in the level set.

Proposition 3.2 Let " > 0 and v0 ∈ ℱ . Then, we have

ℒ"(v
0) ⊆

{
v ∈ ℜnr : ∥vi∥

2 ≤ (2C"�2)
1
2 + 1, i = 1, . . . , n

}
.

Proof
For any given v ∈ ℒ"(v

0), because v0 ∈ ℱ , we can write

f"(v) ≤ f"(v
0) = fr(v

0) ≤ C,

where C is defined in Proposition 3.1. Moreover, using (10), we have

f"(v) ≥ −C +
1

"

(∥vj∥
2 − 1)2

�2
, j = 1, . . . , n,

so that
∥vj∥

2 ≤ (2C"�2)
1
2 + 1, j = 1, . . . , n.

An interesting property of the objective function fr(v) of problem (Qr) is that, given a
point v in S�, its gradient with respect to vi is orthogonal to the vector vi, namely, for
every v ∈ S� and for every i = 1, . . . , n

vTi ∇vifr(v) = 2

⎡
⎣

n∑

j=1

qij

(
vTi
∥vi∥

−
vTi vi
∥vi∥2

vi
T

∥vi∥

)
vj

∥vj∥

⎤
⎦ = 0. (11)

The following theorem states the equivalence between stationary points, local/global
minimizers of (RQr) and the corresponding stationary points, local/global minimizers
of (NLPr).

Theorem 3.3 (Exactness properties of (RQr)) For any " > 0 the following corre-

spondences hold:

(i) a point v̂ ∈ IRnr is a stationary point of Problem (RQr) if and only if it is a

stationary point of problem (NLPr).

(ii) a point v̂ ∈ IRnr is a global minimizer of problem (RQr) if and only if it is a global

minimizer of problem (NLPr).

(iii) a point v̂ ∈ IRnr is a local minimizer of problem (RQr) if and only if it is a local

minimizer of problem (NLPr).

Proof First, we recall that, for every v ∈ S�, vi ∕= 0 for all i = 1, . . . , n. Furthermore,
by definition of ∇vif" and by (11), we get for every vi and for i = 1, . . . , n

vTi ∇vif"(v) =
4

"

(∥vi∥
2 − 1)vTi vi
d(vi)

(
1−

(∥vi∥
2 − 1)(1 − ∥vi∥

2)+
d(vi)

)
.
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Therefore we get, if ∥vi∥
2 ≥ 1,

vTi ∇vif"(v) =
4

"

(∥vi∥
2 − 1)∥vi∥

2

�2
, (12)

otherwise

vTi ∇vif"(v) =
4

"

(∥vi∥
2 − 1)∥vi∥

2

d(vi)

(
1 +

(∥vi∥
2 − 1)2

d(vi)

)
. (13)

Further, if v ∈ ℱ

f"(v) = fr(v) = qr(v) (14)

∇vif"(v) = 2
n∑

j=1

qij(Ir − vivi
T )vj , i = 1, . . . , n. (15)

Now we can prove the three statements.
(i) Sufficiency. Let v̂ be a stationary point for problem (NLPr). Therefore v̂ satisfies
(6) and v̂ ∈ ℱ . Then (15) implies

∇vif"(v̂) = 2
n∑

j=1

qij(Ir − v̂iv̂
T
i )v̂j = 0, i = 1, . . . , n.

Necessity. By (12) and (13), v̂ ∈ S� being a stationary point of f" implies v̂ ∈ ℱ .
Hence, as a result of (15), v̂ is stationary point also for problem (NLPr).

(ii) Necessity. By Proposition 3.1, the function f" admits a global minimizer v̂ , which is
obviously a stationary point of f" and hence we have that v̂ ∈ ℱ , so that f"(v̂) = qr(v̂).
We proceed by contradiction. Assume that a global minimizer v̂ of f" is not a global
minimizer of problem (NLPr). Then there exists a point v∗ ∈ ℱ , global minimizer of
problem (NLPr), such that

f"(v̂) = qr(v̂) > qr(v
∗) = f"(v

∗),

but this contradicts the assumption that v̂ is a global minimizer of f".
Sufficiency. True by similar arguments.

(iii) Necessity. Since v̂ is a local minimizer of f", it is a stationary point of f", so that
v̂ ∈ ℱ . Thus, f"(v̂) = qr(v̂). Since v̂ is a local minimizer of f", there exists a � > 0
such that for all v ∈ S� ∩B�(v̂) such that

qr(v̂) = f"(v̂) ≤ f"(v).

Therefore, by using (14), for all v ∈ v ∈ ℱ ∩B�(v̂) we have that

qr(v̂) ≤ f"(v) = qr(v).

and hence v̂ is a local minimizer for problem (NLPr).
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Sufficiency. Since v̂ ∈ ℱ and is a local minimizer of (NLPr), there exists a � > 0 such
that for all v ∈ ℱ ∩B�(v̂)

qr(v̂) = f"(v̂) ≤ qr(v) = f"(v).

We want to show that there exists 
 such that for all v ∈ S� ∩B
(v̂) we get

f"(v̂) ≤ f"(v).

It is sufficient to show that there is a 
 > 0 such that for all v ∈ S� ∩ B
(v̂), we have
that p(v) ∈ B
(v̂), where

p(v) ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v1
∥v1∥
...

vn
∥vn∥

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Actually in this case we have

qr(v̂) = f"(v̂) ≤ qr(p(v)) = f"(p(v)) ≤ f"(v).

It is well known that, given any point x ∕= 0 ∈ IRn, its projection over the unit norm

set is simply
x

∥x∥
. Hence, for any 
 ≤ �

2
we can write

∥p(v)− v̂∥2 =
n∑

i=1

∥v̂i −
vi

∥vi∥
∥2 =

n∑

i=1

∥v̂i −
vi

∥vi∥
+ vi − vi∥

2

≤
n∑

i=1

(
∥v̂i − vi∥

2 + ∥vi −
vi
∥vi∥

∥2 + 2∥v̂i − vi∥∥vi −
vi
∥vi∥

∥

)

≤
n∑

i=1

4∥v̂i − vi∥
2 = 4∥v̂ − v∥2 ≤ 4
2 ≤ �2

Therefore, for a proper 
, we have for all v ∈ S� ∩B
(v̂)

f"(v̂) ≤ f"(v),

so that v̂ is a local minimum also for (RQr).

Theorem 3.3 states a tight relation between Problem (RQr) and (NLPr) and hence
allows us to solve problem (NLPr) by minimizing f"(v). We stress that all the properties
of problem (RQr) hold for any given " > 0.

Proposition 3.3 implies that we can solve problem (NLPr) by solving problem (RQr),
and Proposition 3.1 implies that any standard minimization method can be used for
solving it. To be more precise, we assume that an unconstrained minimization proce-
dure UNC satisfying the following property is available.

Property A Given a continuously differentiable function with compact level sets, start-

ing from any initial point, procedure UNC produces a sequence of points belonging to

the initial level set such that:
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(i) it admits at least an accumulation point,

(ii) every accumulation point is a stationary point of the objective function.

In the literature there are many unconstrained minimization methods satisfying Prop-
erty A, see for example [3]. We note that the function f"(v) is continuously differentiable
over the set S� and, by Proposition 3.1, it has compact level sets. Hence we can apply
procedure UNC to find a stationary point of f". We can easily state the following
convergence result that does not require any further assumption.

Proposition 3.4 Let r be given and v0 ∈ ℱ . The Procedure UNC applied to the merit

function f" starting from v0 produces a sequence {vk} ∈ IRnr such that

(i) {vk} is bounded and it admits at least an accumulation point;

(ii) every accumulation point is a stationary point of problem (NLPr);

(iii) if v̂ is an accumulation point then qr(v̂) ≤ qr(v
0).

Proof Function f"(v) is continuously differentiable over the set S� and Proposition
3.1 implies that it has compact level sets. Therefore Property A implies that UNC
produces a sequence that has at least an accumulation point and all the accumulation
points are stationary points of problem (RQr). Finally Theorem 3.3 implies that the
stationary points of f" are stationary points of problem (NLPr), and we have

qr(v̂) = f"(v̂) ≤ f"(v
0) = qr(v

0).

4 A Gradient based method for solving problem (RQr)

The barrier term plays a key role to make standard optimization methods be globally
convergent for problem (RQr). Nevertheless, generally, a barrier term affects negatively
the performance behavior of any optimization method, especially when the produced
sequence gets closer to the boundary of S�.

Starting with v0 ∈ ℱ , we define an iteration of the form

vk+1
i = vki − �k∇vif"(v

k) i = 1, . . . , n, (16)

where �k > 0 is obtained by a suitable linesearch procedure satisfying

f"(v
k+1) ≤ f"(v

0), (17)

that is a mild standard assumption. We prove that for " sufficiently large, the produced
sequence stays in the set {v ∈ IRnr : ∥vi∥

2 ≥ 1, i = 1, . . . , n}. This result implies that
the term (7) reduces simply to a penalty term on the feasibility of problem (NLPr). In
particular, the following proposition holds.
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Proposition 4.1 Let v0 ∈ ℱ and let {vk} be the sequence generated with the iterative

scheme (16), where each �k satisfies (17) and �k ≤ �M . Then, there exists "̄ > 0 such

that, for any " ≥ "̄, we have for k = 1, 2, . . .

∥vki ∥ ≥ 1, i = 1, . . . , n.

Proof By (17), for a fixed value " > 0 the sequence {vk} stays in the compact level
set ℒ"(v

0). The proof is by induction. Assume that there exists "̄ > 0 such that, for
any " ≥ "̄, it is true that ∥vki ∥

2 ≥ 1. We show that is true also for k + 1. We can write

∥vk+1
i ∥2 = ∥vki ∥

2 + (�k)2∥∇vif"(v
k)∥2 − 2�k(vki )

T∇vif"(v
k)

= ∥vki ∥
2 + (�k)2∥∇vif"(v

k)∥2 −
8�k

"

(∥vki ∥
2 − 1)∥vki ∥

2

�2

≥ ∥vki ∥
2 −

8�M

"�2
(∥vki ∥

2 − 1)∥vki ∥
2,

where the second equality derives from (12), keeping in mind that ∥vki ∥ ≥ 1. If ∥vki ∥ = 1,
then ∥vk+1

i ∥2 ≥ 1. Otherwise, if ∥vki ∥ > 1, we need to verify that a value of "̄ exists
such that for all " ≥ "̄

(∥vki ∥
2 − 1)−

8�M

"�2
(∥vki ∥

2 − 1)∥vki ∥
2 ≥ 0,

namely

1−
8�M

"�2
∥vki ∥

2 ≥ 0. (18)

By Proposition 3.2, we have that for all k

∥vki ∥
2 ≤ (2C"�2)

1
2 + 1 i = 1, . . . , n. (19)

Therefore (19) combined with (18) implies

"− 8
�M

�2

(
(2C�")

1
2 + 1

)
≥ 0

which is satisfied for some " ≥ ".

5 A globally convergent algorithm for solving problem
(SDP)

In this section, we finally define an algorithm for solving problem (SDP) that makes
use of the results stated in the previous sections.

In Section 2 we have seen that for r ≥ rmin a global solution of problem (NLPr)
provides a solution of problem (SDP). Moreover, Proposition 3.3 states a complete
correspondence between problems (NLPr) and (RQr). Finally, Proposition 3.4 ensures
that we can find a stationary point of problem (RQr) by applying any unconstrained
minimization procedure satisfying Property A.
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The value of rmin is not known. In principle, the only value of r that can be
calculated and that guarantees the correspondence between solutions of (SDP) and
global solutions of (NLPr), is r̂ as defined in (3). However, this value is usually larger
than the actual value needed to obtain a solution of problem (SDP). Hence, following
the idea in [4] and [9], we choose r << r̂, and use the global optimality condition of
Proposition 2.1 to prove optimality. Our algorithmic scheme is the same as in algorithm
EXPA (see [9]) and is reported below.

Regularized Quotient Algorithm (ReQuA)

Data. Q ∈ Sn.

Inizialization. Find the value r̂ given by (3). Set integers 2 ≤ r1 < r2 < . . . < rp

with rp ∈ [r̂, n]. Choose " ≥ "̄.

For j = 1, . . . , p

Find a stationary point v̂ ∈ IRnrj of problem (NLPrj) by using the equivalent

formulation (RQrj ) and Procedure UNC starting from a point v0 ∈ IRnrj feasible
for problem (NLPrj).

Compute the minimum eigenvalue �min(v̂) of Q + Diag(�(v̂)). If �min(v̂) = 0,
then exit.

End

Return v̂ ∈ IRnrj and �min(v̂)

ReQuA returns v̂ ∈ IRnrj , and �min(v̂). If �min(v̂) = 0, then a solution for (SDP) is
obtained as X∗ = V̂ V̂ T . If the optimality condition is not met, a bound can be easily
computed on the optimal value of (SDP), that can be used in a branch and bound
scheme. Indeed, the value n�min [Q+Diag(�(v̂))] + qr(v̂), provides a lower bound on
the solution of problem (SDP)(see e.g, [9]).

In practice, however, in all the computational experiments performed the stopping
condition �min(v̄) = 0 was always met with satisfactory accuracy, so that ReQuA always
converged to a solution of (SDP), as we will illustrate in the next section.

6 Numerical Results

In this section, we describe our computational experience with algorithm ReQuA.
ReQuA is implemented in Fortran 90 and all the experiments have been run on a PC

with processor Core2 DUO E6750 2.66Ghz, and RAM of 2.00 GB.
As unconstrained optimization procedure a Fortran 90 implementation of the non

monotone Barzilai-Borwein gradient method proposed in [11] is used. This method
satisfies Property A stated in the previous section.
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The stopping criterion in the minimization procedure of f" is

∥∇f"(v
k)∥ ≤ tol ⋅ (1 + ∣f"(v

k)∣)

or

∥∇f"(v
k)∥ ≤ 10 ⋅ tol ⋅ (1 + ∣f"(v

k)∣) and ∣f"(v
k)− f"

best∣ ≤ 10−4 ⋅ tol ⋅ (1 + ∣f"(v
k)∣),

where f best
" is the best value of f" computed during the past iterations and tol will be

fixed depending on the desired accuracy, keeping in mind that the default value is 10−5.
The parameter " is set equal to 103 for all the tests. This value has been chosen

after some experiments for different values of ".
As for the choice of the starting value r1 of the rank of the solution we use the same

values as in [9], reported in Table 1. We remark that on all the considered test problems

n ≤ 200 > 200, < 800 ≥ 800, < 1000 ≥ 1000, < 5000 ≥ 5000

r
1 8 10 15 18 20

Table 1: Values of r1 depending on the dimension of the problem.

the output matrix Q+Diag(�(v̂)) turned out to be positive semidefinite for j = 1 , so

that the obtained point v̂ ∈ IRnrj is actually a global solution of (SDP) (similar behavior
was encountered in [9] for algorithm EXPA). In order to check positive semidefiniteness
of Q + Diag(�(v̂)), we use the ARPACK subroutines dsaupd and dseupd to compute
the minimum eigenvalue of this matrix.

In order to evaluate the performance of our algorithm ReQuA, we test it on 42 in-
stances of the Max-Cut problem. Indeed, the standard SDP relaxation of the Max-Cut
problem is exactly problem (SDP), where the matrix Q is equal to minus the Laplacian
of the graph divided by four. The number of nodes and edges of the considered graphs
range from 100 to 20000 and from 150 to 40000, respectively, with different degrees of
sparsity (see [9] for more details on the test set).

We compare ReQuA with the best codes in literature in the two main classes of
methods for solving (SDP) : interior point methods and low rank methods.

Up to our knowledge, the best low rank based methods are SDPLR−MC pro-
posed by Burer and Monteiro in [4], which can be downloaded from the web page
http://dollar.biz.uiowa.edu/˜ burer/software/SDPLR-MC, and EXPA proposed
in [9].

Both EXPA and SDPLR−MC have a structure similar to ReQuA. Indeed, the main
scheme differs in the way of finding a stationary point for (NLPr). For any fixed value
of r, EXPA uses the nonmonotone Barzilai-Borwein gradient proposed in [11] (the same
one used in ReQuA) to minimize an exact penalty function for (NLPr). SDPLR−MC
uses an L-BFGS method to obtain a stationary point of (Qr). Another difference is
that SDPLR−MC does not certify global optimality of the produced solution, while
EXPA (as ReQuA) checks the global optimality condition Q + Diag(�(v̂)) ર 0 at the
end.

Among the interior point methods, we choose DSDP (version 5.8) proposed in [2]
downloaded from the webpage http://www-unix.mcs.anl.gov/DSDP/. It is consid-
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Figure 1: Comparison among the low rank methods

ered the most efficient interior point method, especially for solving problems where the
solution is known to be low rank (as for the {−1, 1} quadratic problem). DSDP has
relatively low memory requirements for an interior-point method, and is indeed able
to solve all our instances up to 10000 nodes. We use the feasible starting point ver-
sion for all problems except for 8 graphs (mcp124-1, mcp250-1, mcp250-2, mcp500-1,
mcp500-2, G55, G60 and G70) where we had to allow an infeasible starting point to
get convergence.

ReQuA, EXPA and SDPLR−MC solve all the test problems, whereas DSDP runs
out of memory on the two biggest problems (G77 and G81 of the Gset collection).

We compare the different codes on the basis of the computational time and the level
of accuracy. We consider that the methods converge to the same solution whenever the
relative difference between the objective function values is less than 
 = 10−4.

In order to have a better flavor of the results, following the approach proposed
in [7], we draw the performance profile of the different methods with respect to the
computational time and to the accuracy in the solution. In particular, when we want
to evaluate the accuracy of the methods, we choose as a performance measure (keeping
into account that all the objective values are negative)

∣f∗
s (p)− f∗(p)∣+ 


where f∗(p) is the minimum objective value found by the best code on that problem,
f∗
s (p) is the objective value found by method s for problem p, and where 
 = 10−4. We
recall that the higher the method in the profile, the better the performance.

In Figure 1, we report the comparison among the three low rank based methods on
all the test problems, with respect to the computational time in Figure 1 (a), and with
respect to the accuracy in Figure 1 (b). It emerges from the profiles that ReQua out-
performs the other low rank methods with respect to both the performance measures.
Interior point methods are well known for ensuring high levels of accuracy. For this
reason, when we compare ReQua with DSDP, we require a higher level of accuracy, set-
ting tol to 10−7. We report the obtained results in Figure 2, where we compare ReQua
with DSDP, on all the problems except the two largest ones that DSDP could not solve.
In Figure 2 (a), we compare the two methods with respect to the computational time,
in Figure 2 (b) with respect to the accuracy. It emerges that in a significantly smaller
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Figure 2: Comparison between ReQuA and DSDP

amount of time ReQua finds solutions that are more accurate than the ones produced
by DSDP.

7 Concluding Remarks

In this paper, we have introduced a new merit function that allows us to recast the low
rank reformulation of problem (SDP) as an unconstrained minimization problem. We
have defined a globally convergent algorithm for solving problem (SDP), called ReQuA.
An extensive numerical test showed that ReQuA outperforms the best available methods
in terms of time, and it achieves an accuracy that favorably compares to the accuracy
achieved by the interior point method DSDP. Further improvement could be achieved
by defining a special unconstrained algorithm which further exploits the structure of
the problem.
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