
Linear Time Analysis of Properties of Conflict-Free and
General Petri nets

Paola Alimonti
Esteban Feuerstein
Luigi Laura
Umberto Nanni

Technical Report n. 9, 2010

Linear Time Analysis of Properties

of Conflict-Free and General Petri nets

Paola Alimonti∗ Esteban Feuerstein† Luigi Laura∗ Umberto Nanni∗

June 2010

Abstract

We introduce the notion of T -path within Petri nets, and propose a simple approach,
based on previous work developed for directed hypergraphs, in order to determine structural
properties of nets; in particular, we study the relationships between T -paths in a Petri net
and firable sequences of transitions.

Let us consider a net P = 〈P, T,A,M0〉 and the set of places with a positive marking
in M0, i.e., P0 = {p | M0(p) > 0}. If we regard the net as a directed graph, the existence
of a simple path from any place in P0 to a transition t is, of course, a necessary condition
for the potential firability of t. This is sufficient only if the net is a State Machine, where
|•t| = |t•| = 1 for all t ∈ T . In this paper we show that the existence of a T -path from
any subset of P0 to a transition t is a more restrictive condition and is, again, a necessary
condition for the potential firability of t. But, in this case: (a) if P is a Conflict Free Petri
net, this is also a sufficient condition, (b) if P is a general Petri net, t is potentially firable
by increasing the number of tokens in P0.

For Conflict-Free nets (CFPN) we consider the following problems: (a) determining
the set of firable transitions, (b) determining the set of reachable places, (c) determining
the set of live transitions, (d) deciding the boundedness of the net. For all these problems
we provide algorithms requiring linear space and time, i.e., O(|A| + |P | + |T |), for a net
P = 〈P, T,A,M0〉. Previous results for this class of networks are given by Howell, Rosier
and Yen [18], providing algorithms for solving problems in Conflict-Free nets in O(|P |×|T |)
time and space.

Given a Petri net and a marking M , the well known coverability problem consists
in finding a reachable marking M ′ such that M ′ ≥ M ; this problem is known to be
EXPSPACE-hard [30]. For general Petri nets we provide a partial answer to this problem.
M is coverable by augmentation if it is coverable from an augmented marking M ′0 of the
initial marking M0: M ′0 ≥ M0 and, for all p ∈ P , M ′0(p) = 0 if M0(p) = 0. We solve this
problem in linear time.

The algorithms to compute T -paths are incremental: it is possible to modify the network
(adding new places, transitions, arcs, tokens), and update the set of potentially firable
transitions and reachable places without recomputing them from scratch. This feature
results meaningful when used during the interactive design of a system.

Keywords: Petri nets, conflict-free Petri nets, Marked Graphs, coverability, liveness, bound-
edness, directed hypergraphs, incremental algorithms

∗Dipartimento di Informatica e Sistemistica “Antonio Ruberti”, “Sapienza” University of Rome, via Ariosto
25, I-00185 Roma, Italy.
†Departamento de Computacion, Universidad de Buenos Aires, Pabellon I, Ciudad Universitaria, 1428

Buenos Aires, Argentina.

1

1 Introduction

Petri nets [28] are used to model basic properties of concurrent systems and to analyze their
behaviour. Petri nets have been used to capture the basic properties of systems in an increas-
ing number of areas, including: communication protocols, flexible manufactoring, workflow
management, chemical reaction networks, biological systems.

The analysis of Petri nets has proven to be a challenging task for the research community.
In general Petri nets, though less expressive than Turing machines (if we do not allow enhance-
ments, like inhibitor arcs, or time constraints), some problems result to be undecidable, such
as the containment (or equivalence) of the reachability set of two distinct nets (see, e.g., [27]).
Other problems have been proven to be decidable, such as reachability [25] (deciding whether a
given distribution of tokens can be reached), liveness [16, 25] (the property that all transitions
in a net can fire infinitely many times), boundedness [22] (deciding whether all places have
a bounded number of tokens in every reachable marking). Nevertheless, the computational
complexity is often far from being practical: for many of these problems finding a solution in
a general net requires at least exponential space [24]. For example the problems of deciding
whether a single transition is potentially firable, or whether a single place is reachable by some
token, require exponential space to be solved, since the coverability problem (given a marking
M , is it possible to reach a supermarking M ′ ≥M ?) that requires exponential space [30], in
general nets can be reduced to either of them. Due to the wide interest for Petri nets, the study
of this model has considered both specific subclasses of nets, and weaker problem formulations
providing at least partial answers to basic questions.

Several classes of Petri nets have been studied which, although lacking the expressive power
of the general model, still can be used in order to describe interesting concurrent systems, and
whose properties can be decided more efficiently than for arbitrary nets (see, e.g., [21, 12] for
surveys of results).

A situation of conflict in a Petri net arises when the firing of a transition may disable
another transition. In a persistent Petri net, there is no conflict in any reachable marking, but
deciding persistence of a Petri net is P -space hard [7]. In a Conflict-Free Petri net [11, 23]
(CF net) conflicts are avoided by a structural constraint, therefore CF nets are persistent for
any initial marking. CF nets lack the nondeterminism of the general Petri nets, but can still
be used to model certain kinds of distributed systems. For example, CF nets are equivalent
to the control of decision-free flow-chart schemata first studied in [22]. A massive research
activity and many monographs have been devoted to the application of Petri nets in Flexible
Manufactoring Systems (FMS). The Marked Graphs [9], i.e., Petri nets where |•p| = |p•| = 1
for all p, are a subset of CF-nets, and have been widely adopted to model FMS (see, e.g., [36]).

Deciding reachability in a CF net is still NP-complete [21]. Howell et al. show that both
liveness [17] and boundedness [18, 17] for this class of nets can be decided in polynomial time. In
particular Howell, Rosier, and Yen [18] provide algorithms for solving boundedness in conflict-
free Vector Replacement Systems, a model equivalent to Petri nets, which require O(n1.5) time
for a VRS with total size n, and O(|P | × |T |) time and space for a net P = 〈P, T,A,M0〉.

In this paper we propose to adopt strategies and algorithms devised for the model of directed
hypergraphs [2, 14] as an effective computational framework, useful to determine structural
properties of a Petri net. We introduce the notion of T -path within a Petri net, and relate this
to the notion of hyperpath in a directed hypergraph. This approach allows us to derive results
for specific classes of Petri nets and, in some extent, also for general nets. Based on efficient
algorithmic strategies that have been devised for directed hypergraphs [4, 14, 3, 34], the (non)-

2

existence of a T -path provides both partial answers to reachability questions in general Petri
nets, and optimal solutions for the class of Conflict-Free Petri nets.

Namely, we consider the following problems:
a) determining the set of firable transitions: a transition t is potentially firable if there

exists a marking M ∈ R(M0) such that t is enabled in M ;
b) determining the set of reachable places: a place p is reachable if there exists a marking

M ∈ R(M0) such that M(p) > 0;
c) determining the set of live transitions: a transition is live if it is potentially firable

in every reachable markings;
d) deciding the boundedness of the net: a net is bounded if there exists a constant k

such that, for each reachable marking M and each place p ∈ P , M(p) ≤ k.
For all these problems we provide algorithms requiring linear space and time, i.e., O(|A|+

|P |+ |T |), for a CF net P = 〈P, T,A,M0〉. As remarked before, previous algorithms for these
problems were proposed in [18, 17], and require O(|P | × |T |) space and time.

As already mentioned, the existence of a T -path from any subset of P0 to a transition t is
a necessary and sufficent condition for the potential firability of t. But, focusing on general
Petri nets, this is a necessary condition: we also show, in this paper, that if P is a general
Petri net, t is potentially firable by increasing the number of tokens in P0 if there is a T -path
from any subset of P0 to t.

Let us call augmented marking (or augmentation) M+
0 of M0 any marking such that

M+
0 ≥M0 and, for all p ∈ P , M+

0 (p) = 0 if M0(p) = 0.
Since analogous considerations can be made for transitions and places, for general nets

we provide an answer to the problem of coverability by augmentation: given a Petri net
P = 〈P, T,A,M0〉 and a target marking M , determine whether a supermarking M ′ ≥ M
is reachable in P from some augmentation M+

0 of the initial marking M0. Note that the cov-
erability problem is EXPSPACE hard. We can get an answer to coverability by augmentation
in linear time.

The algorithms proposed for finding T -paths, and then to compute the set of reachable
places and firable transitions are incremental: it is possible to incrementally modify the network
(adding new places, transitions, arcs, tokens), and update the set of reachable places and
potentially firable transitions without recomputing the solution from scratch. This feature
results meaningful when used during the interactive design of a system. The total time and
space requirements to handle a sequence ω of incremental operations of these kinds are bounded
by O(|ω|+ |A|+ |P |+ |T |).

The rest of this paper is organized as follows: after the presentation of the basic terminology
and the considered problems in Section 2, in Section 3 we detail the properties of CF nets.
Our T -paths based approach is introduced in Section 4, and applied to reachability of places
and firability of transitions in Section 5. Then, the problems of liveness and boundedness are
considered in Sections 6 and 7, respectively.

2 Basic definitions

Petri nets have been introduced to model concurrent systems and analyze their behavior [28].
In the following we give the basic definitions and notations about Petri nets [27, 31].

3

A Petri net P is a 4-tuple P = 〈P, T,A,M0〉, where P is a finite set of places, T is a finite
set of transitions, A ⊆ (P × T) ∪ (T × P) is a finite set of arcs, and M0 : P → N is the initial
marking, where N is the set of natural numbers. W.l.o.g., we consider the ordinary Petri nets,
i.e., all arcs have unitary weight.

If t is a transition in T , the two sets •t = {p | (p, t) ∈ A} and t• = {p | (t, p) ∈ A} are
respectively the input set and the output set of t. Notation and terminology are extended to
places: •p = {t | (t, p) ∈ A} and p• = {t | (p, t) ∈ A}.

The dynamic behavior of a Petri net is modeled by using tokens; a given distribution of
tokens on places is called marking of the net, i.e., a function M : P → N mapping places to
natural numbers, and such that, for each place p, the quantity M(p) is the number of tokens
in p. Transitions allow the net to change its state in the following way: a transition t is said
to be enabled when each place in its input set •t contains at least one token. If a transition
is enabled, it can fire: this implies the removal of one token from each place in •t and the
introduction of one additional token in each place in the output set t•.

For any t ∈ T , we write M
t−→ to denote that t is enabled on marking M . Furthermore

M
t−→M ′ means that the firing of t in M yields the marking M ′. The notation is extended to

a sequence of transitions σ = 〈t1, t2, . . . , tn〉 ∈ T ∗, called firing sequence: M
σ−→ is a shorthand

for M
t1−→M1

t2−→M2 . . .Mn−1
tn−→ .

The set of reachable markings or reachability set of a a Petri net P = 〈P, T,A,M0〉, is the
set R(M0) = {M | there exists a sequence σ ∈ T ∗ such that M0

σ−→M}.
A transition t is said to be potentially firable in a marking M if there exists a marking

M ′ ∈ R(M) such that M ′
t−→ . A transition t is said to be potentially firable if it is potentially

firable in M0, otherwise transition t is said to be dead. Analogously, a sequence σ is potentially
firable if there exists a marking M ∈ R(M0) such that M

σ−→ .
A transition t ∈ T is said to be live if it is potentially firable in any M ∈ R(M0)

1. A net
P is said to be live if every transition t ∈ T is live in P.

A place p is reachable if there exists a marking M ∈ R(M0) such that M(p) 6= 0. We use
the following notation to compare markings in a Petri net. A marking M covers a marking
M ′, written M ≥ M ′, if for every place p ∈ P , M(p) ≥ M ′(p). Furthermore the covering is
proper, written M > M ′, if M ≥M ′, and there exists a place p ∈ P such that M(p) > M ′(p).

A place p ∈ P is said to be bounded, if there exists a constant k such that, for any
M ∈ R(M0), M(p) ≤ k, otherwise it is unbounded. A Petri net is said to be bounded if every
place p ∈ P is bounded.

If we are given a Petri net P = 〈P, T,A,M0〉 and ignore the initial marking, we get a
bipartite directed graph that we refer to as the unmarked net P̂ = 〈P, T,A〉.

2.1 Connectivity and Strong Connectivity in Graphs

Here we provide few definitions about directed and undirected graphs. We recall that a graph
is a pair G = (V,E) of sets such that E ⊆ V 2. Elements of V are the vertices, or nodes, of the
graph, whilst elements of E are its edges. If there is an edge e = (x1, x2), we say that x1 and
x2 are connected.

A path is a non-empty graph P = (V,E) such that V = {x0, x1, . . . , xn}, E =
{(x0, x1), (x1, x2), . . . , (xn−1, xn)}, and all the xi are distinct.

1A consequence of this definition is that a live transition is firable infinitely many times from any marking
M ∈ R(M0). Beside this notion, also named l4-liveness, other definitions of liveness have been considered in
the literature (see, e.g., [15]).

4

A B

C

D

E

F

G H

I

J

K A B

C

D

E

F

G H

I

J

K

Figure 1: A directed graph (left) and its undirected version (right)

A graph is said to be connected if any two of its vertices are linked by a path. If a graph it is
not connected, then its maximal connected subgraphs are said to be its connected components.

A directed graph, or digraph, is a pair D = (V,A) of sets such that A ⊆ V 2. As before,
the elements of V are the vertices, or nodes, of the graph, whilst elements of A are its arc, or
directed edges, or oriented edges. If there is an arc a = x1 → x2, x1 can reach x2, but not vice
versa.

A directed path is a non-empty graph PD = (V,A) such that V = {x0, x1, . . . , xn},
A = {x0 → x1, x1 → x2, . . . , xn−1 → xn}, and all the xi are distinct.

A directed graph is said to be strongly connected, if there is a directed path from any of its
vertices to any other vertex. If a graph is not strongly connected, then its maximal strongly
connected subgraph are said its strongly connected components.

In Figure 1, it is shown an example of a directed graph (left) and its undirected version. It is
possible to observe that the directed version is not strongly connected, but it has three strongly
connected components (SCCs), respectively the sets {A,B,C,D}, {E,F,G}, and {H, I, J,K}.
Furthermore, its undirected version is not connected, but it has only two connected components
(CCs), respectively the sets {A,B,C,D} and {E,F,G,H, I, J,K}. We will use the number
of SCCs of a directed graph, together with the number of CCs of its undirected version, to
characterize the boundedness of a CF network (Section 7).

3 Conflict-free Petri nets

Many basic problems on Petri nets have been proven to be intractable, such as reachability
or boundedness, or even undecidable. For this reason, much attention has been devoted to
defining subclasses of Petri nets that, although lacking the expressive power of the general
model, capture interesting classes of concurrent systems, and allow efficient algorithms to be
devised for their analysis (see, e.g., [11, 21, 23, 18, 13]).

The behavior of a Petri net seems difficult to compute due to the intrinsic nondeterminism
associated to the (enabled) transitions: when a transition fires, this might disable some other
transition. Two transitions t1 and t2 are said to be in conflict whether both are enabled but
the firing of either t1 or t2 causes the other transition to be disabled.

A net is persistent if there is no conflict in any reachable marking. Therefore this is a
behavioural property, i.e., it depends on the initial marking. As for many problems of this
kind, deciding if a Petri net is persistent is P -space hard [7].

A more restricted class of nets are the Conflict-Free Petri nets [22, 11, 23]. These class of
nets, that are persistent for each possible initial marking, are defined by means of a structural
property that can be checked in linear time.

5

Definition 3.1 A Petri net P = 〈P, T,A,M0〉 is conflict-free (CF) if each place p ∈ P satisfies
one of the following:

a) |p•| ≤ 1, i.e., there is at most one arc leaving p (in this case p is said unbranched);

b) |p•| > 1 and, for each transition t ∈ p•, p ∈ t• (in this case p is said branched).

Some well known consequences of this definition are formally stated in the following, for a
convenient reference.

Lemma 3.1 In a CF net, if a transition t is enabled in a given marking M , then for any
marking M ′ such that M

σ−→M ′, either t ∈ σ, or t is still enabled in M ′.

Lemma 3.2 In a CF net, if a transition t is potentially firable in a marking M (if a place p
is reachable in M), then t is potentially firable (p is reachable) in any marking M ′ such that
for each place p, if M(p) > 0 then M ′(p) > 0.

Therefore, in order to determine the set of firable transitions and reachable places, it is
possible to consider without loss of generality only initial markings with at most one token
for each place. The next lemma states a basic property of CF nets that is exploited in our
algorithms; it is a consequence of a property proven by Howell, Rosier and Yen [18], Lemma 3.1,
that, for our purposes and with our notations, can be restated as follows: in any CF net P
there exists a firable sequence that contains exactly once all the potentially firable transitions
in P.

Lemma 3.3 In a CF net P, a transition t is potentially firable if and only if for each p ∈ •t,
p is reachable in P.

Proof. To prove the nontrivial side of the lemma (i.e., the “if” case), let us suppose that, for
a given t ∈ T , any place p ∈ •t is reachable, and let σF be a firable sequence that contains
exactly once all the potentially firable transitions in P. In this case note that firing sequence
σF must supply at least one token to each p ∈ •t; on the other side, for any place p in this
set, whether p is unbranched (i.e., t is the only transition in p•) or not, no other transition
different from t can remove a token from p. Hence t ∈ σF . 2

4 T -paths in Petri nets and related problems

In this section we introduce the notion of T -path in Petri nets. This concept captures some
structural properties of the net: finding T -paths allows various problems to be answered very
efficiently for CF, and in some cases also for general nets.

Different notions of “paths” have been considered to deal with properties of Petri nets.
Yen [35] proposes Petri net paths as a witness to prove the satisfiability of a formula which
is related to a firable sequence: this reduction is useful to prove in a uniform framework an
exponential space upper bound for a number of problems on Petri nets; this result follows the
work by Rackoff [30] (about covering and boundedness), and by Howell, Rosier and Yen [19]
(relating reachability and fair nontermination).

We now introduce the notion of T -paths, and show what information can be derived both
for CF nets and for general Petri nets. The algorithms to find T -paths are provided in Section 5.

6

4.1 T -paths in Petri nets

Definition 4.1 Let P̂ be an unmarked Petri net, and PM ⊆ P be a nonempty set of places.
A T -path from PM to a place p ∈ P is a (possibly empty) set τ(PM , p) ⊆ T of transitions such
that one of the following conditions holds:

• extended reflexivity: p ∈ PM ; in this case τ(PM , p) is empty;

• extended transitivity: there exists a transition t such that p ∈ t•, and there exists a
T -path τ(PM , t) from PM to t. In this case:

τ(PM , p) = τ(PM , t).

Analogously, a T -path from a set of places PM ⊆ P to a transition t ∈ T is a nonempty
set τ(PM , t) ⊆ T of transitions such that one of the following conditions holds:

• extended reflexivity: •t ⊆ PM (including the case |•t| = 0); in this case τ(PM , t) = {t};

• extended transitivity: for each pi ∈ •t there exists a T -path τ(PM , pi) from PM to pi; in
this case:

τ(PM , t) =
⋃
pi∈•t

τ(PM , pi) ∪ {t}.

Note that if a transition t has an empty input set, i.e., •t = ∅, then for any place p ∈ t•
by extended transitivity there exists a nonempty T -path from any set of places PM ⊆ P to p.
We also remark that, given a set of places PM and a transition t such that a T -path τ(PM , t)
exists, then for any place pi ∈ t• there exists a T -path τ(PM , pi) = τ(PM , t).

Our interest for T -paths is due to the relationships between T -paths and reachable mark-
ings: for general Petri nets a T -path from P0 to a transition t (the T -reachability of t from P0)
is a necessary condition for its potential firability, while in a CF net this is actually a necessary
and sufficient condition (analogous properties hold for reachability of places).

A Siphon [26] is a set S of places that cannot gain tokens, since any input transition of S
is also an output transition of S: •S ⊆ S•. A Trap is a set of places that remain marked once
they have gained at least one token, i.e. a trap is a set S such that S• ⊆ •S.

Siphons have been widely used as key tools for determining properties of a net, in particular,
to analyze deadlocks [20] or for deadlock prevention strategies [29]. As an example, for any
dead net, i.e., when no transition is enabled, the set of unmarked places is a siphon. A sufficient
condition for deadlock freeness [8] is the so called Commoner condition: every siphon contains
a trap marked by the initial marking M0.

The connection between T -path reachability and siphons is stated in the following lemma.

Lemma 4.1 Let us consider a Petri net P and an arbitrary marking M . The set of places
which are not T -path reachable from M are a siphon.

The following property may be considered an alternative definition of siphon.

Lemma 4.2 A set of places S ⊆ P is a siphon if and only if no place in S is T -reachable from
P − S.

7

4.2 T -path reachability and Coverability by Augmentation

Let us consider a general (i.e., not necessarily Conflict-Free) Petri net P = 〈P, T,A,M0〉. For
any given marking M , let us consider the set of augmented markings (M)+ obtained from M
by possibly adding tokens in any place p where M(p) > 0:

(M)+ = {M ′ | for any p ∈ P : M ′(p) ≥M(p), and M ′(p) = 0 if and only if M(p) = 0}.

Analogously, we can consider the set of nets (P)+ having the same structure as P, but an
augmented initial marking:

(P)+ = {〈P, T,A,M ′0〉 | M ′0 ∈ (M0)
+}.

Theorem 4.3 Let P = 〈P, T,A,M0〉 be a general Petri net, and P0 = {p | M0(p) > 0}.
If there exists a T -path τ(P0, t) from P0 to the transition t ∈ T , then transition t is poten-

tially firable in some net P ′ ∈ (P)+.
If there exists a T -path τ(P0, p) from P0 to the place p ∈ P , then place p is reachable in

some net P ′ ∈ (P)+.

On the other side, in a general Petri net P = 〈P, T,A,M0〉, the existence of a T -path from
P0 to a transition t is a necessary condition for the potential firability of transition t in P.

Theorem 4.4 Let P = 〈P, T,A,M0〉 be a general Petri net, and P0 = {p | M0(p) > 0}. If a
transition t ∈ T is potentially firable, then in P there exists a T -path τ(P0, t). Analogously, if
a place p ∈ P is reachable, then in P there exists a T -path τ(P0, p).

Proof. Let us consider a transition t ∈ T and a firable sequence σn = 〈t1, t2, . . . , tn〉 which

enables t, i.e., such that M0
σn−→Mn

t−→ . We will prove that the arcs used in σn build up a
T -path τ(P0, t).

We proceed by induction on the length of sequence σn. Let us consider its prefix sequences
σi = 〈t1, t2, . . . , ti〉, for i = 1, 2, . . . , n, and let σ0 be the empty sequence; furthermore, let us
denote markings so that for any i = 0, 1, 2, . . . , n: M0

σi−→Mi.

Basis. |σ| = 0. By hypothesis the empty sequence σ0 enables t and then •t ⊆ P0. In this case,
by Definition 4.1, the set τ(P0, t) = {t} is a T -path from P0 to t in P.

Inductive step. Let us suppose that for a given positive integer k < n, and for any nonnegative
j ≤ k, if the prefix sequence σj = 〈t1, t2, . . . , tj〉 is firable in P, then there exists a T -path
τ(P0, tj) from P0 to tj . We will show that the thesis also holds for the firable sequence sequence

σk+1 = σk · tk+1, with M0
σk−→Mk

tk+1−→Mk+1.
By inductive hypothesis, tk+1 is firable in Mk and furthermore, for each pi ∈ Mk, there

exists in P a T -path τ(P0, pi) from from P0 to pi. Hence, by Definition 4.1, a T -path from P0

to tk+1 can be built by considering the set of transitions:

τ(P0, tk+1) =
⋃

pi∈•tk+1

τ(P0, pi) ∪ {tk+1}.

In case of a reachable place p ∈ P , either p ∈ P0 (and the thesis is trivially true), or there
exists a transition t which is potentially firable and such that p ∈ t•. Hence the problem is
reduced to the above case.

8

2

For general nets, from Theorems 4.3 and 4.4 we know that if no T -path from P0 to a given
transition t exists, then we can conclude that the structure of the net makes impossible to
enable transition t starting from the given initial marking. On the contrary, if such a T -path
τ(P0, t) exists, we know that it is sufficient to increase the initial marking M0 (by possibly
adding tokens in places p such that M0(p) > 0) to make t potentially firable; Analogous
considerations apply to reachability of places. Furthermore, we can deal with a relaxed version
of the coverability problem.

Definition 4.2 Let P = 〈P, T,A,M0〉 be a general Petri net, and M be any marking for P.
We say that M is coverable by augmentation if there exist markings M+

0 ∈ (M0)
+ and M ′ ∈

R(M+
0) such that, for all p ∈ P :

M ′(p) ≥M(p).

In other words M is coverable by augmentation if and only if, starting from some augmented
net P+ ∈ (P)+, is it possible to reach a marking M ′ which covers M .

Lemma 4.5 In a general net P = 〈P, T,A,M0〉 a marking M is coverable by augmentation if
and only if, for each p ∈M , there exists a T -path τ(P0, p) in P.

In general Petri nets the problem of coverability by augmentation can be solved in linear
time in terms of T -paths, as shown in the next section. The coverability problem, instead,
requires exponential space [24].

4.3 T -paths in CF Petri nets

In the following, we fist prove that deciding the potential firability of a transition t (the
reachability of a place p) in CF nets can be reduced to verifying the existence of a T -path
τ(P0, t) (τ(P0, p)) from the set P0 of places in the initial marking to transition t (to place p).

Lemma 4.6 Let P = 〈P, T,A,M0〉 be a CF net, and P0 = {p | M0(p) > 0}.
a) If there exists a T -path τ ′(P0, t) from P0 to the transition t ∈ T , then transition t is
potentially firable in P.

b) If there exists a T -path τ ′(P0, p) from M0 to the place p ∈ P , then place p is reachable
in P.

Proof. By induction on the cardinality of the T -path.

Basis.

a) |τ(P0, t)| = 1. This means that the considered T -path consists only of the single
transition t, with •t ⊆ P0. Thus t is potentially firable in P.

b) |τ(P0, p)| = 0. This means that p ∈ P0; hence M0(p) > 0, and p is trivially reachable
in P (by an empty sequence of transitions).

Inductive step. Let us suppose that the lemma is true for any T -path containing less than n
transitions.

9

a) Let τ(P0, t) be a T -path containing n transitions. By Definition 4.1, τ(P0, t) =⋃
pi∈•t τ(P0, pi) ∪ {t} and then for each pi ∈ •t there exists a (possibly empty) T -

path τ(P0, pi) ⊂ τ(P0, t). Since the cardinality of such T -paths is less than n, then by
inductive hypothesis for any pi ∈ •t, pi is reachable in P; by Lemma 3.3 this implies that
transition t is potentially firable.

b) Analogously, if τ(P0, p) is a T -path containing n transitions then, by Definition 4.1,
there exists a transition t such that p ∈ t• and τ(P0, t) =

⋃
pi∈•t τ(P0, pi) ∪ {t}; fur-

thermore, for any i, |τ(P0, pi)| < n, then pi is reachable by inductive hypothesis and
transition t is potentially firable.

2

5 Algorithms for T -paths in Petri nets

Let P = 〈P, T,A,M0〉 be a general Petri net. In this section we provide linear time algorithms
to determine the portion of P reachable by T -path from P0 = {p | M0(p) > 0}, namely
the subnet PR = 〈PR, TR, AR,M0〉, where TR ⊆ T (respectively, PR ⊆ P) are the transitions
(respectively, the places) reachable by a T -path from P0 and AR ⊆ A is the set of arcs induced
by the sets TR and PR.

In a general Petri net, finding such sets provides a solution to the problem of coverability
by augmentation, as stated in Lemma 4.5. For a CF net, the sets TR and PR actually are the
set of potentially firable transitions and the set of reachable places, respectively.

The concepts proposed in this section are related to directed hypergraphs (see, e.g., [5, 6, 2]).
A directed hypergraph is a pair (V,H), where V is the set of nodes, and H ∈ S+(V) × V is
the set of hyperarcs, where S+(V) denotes the family of nonempty subsets of V . Directed
hypergraphs have been extensively used as a suitable mathematical representation model in
different areas of computer science, such as problem solving [6], functional dependencies in
relational databases [2], linear programming [14], and logic programming [3].

Efficient algorithms have been devised to efficiently update the structure of a directed
hypergraph while updates are performed [3, 4]. In this section, beside the basic algorithms to
find the reachable portion of a CF net, we propose an incremental solution as well: we are
allowed to modify the net (by using the set of operations stated below), and recompute the
new sets PR, TR, and AR without recomputing them from scratch, but updating the previous
solution. The incremental version of these algorithms is intended to be an effective tool for
software systems using Petri nets. In particular, the following operations are supported by the
incremental version of the algorithms:

a) inserting a disconnected place in P ;

b) inserting a new transition t defined together with its input set •t;

c) inserting an arc (t, p) in A;

d) extending the initial marking M0, including a place p in the initially marked places P0;

e) asking whether there exists a T -path from P0 to any transition or place.

5.1 Data structures and algorithms

In our data structures, we represent a Petri net as a bipartite graph with adjacency lists, with
size O(|P | + |T | + |A|): for any node x ∈ P ∪ T , the nodes in the sets •x and x• are stored

10

Algorithm Reachability;
Input: P = 〈P, T,A,M0〉;
Output: PR = 〈PR, TR, AR,M0〉;

1. begin
2. P0 ← {p | p ∈ P and M0(p) > 0};
3. PR ← ∅;
4. TR ← ∅;
5. AR ← ∅;
6. for each p ∈ P do C(p)← 1;
7. for each t ∈ T do C(t)← |•t|;
8. for each p ∈ P0 do ExtendMarking(p);
9. for each t ∈ T do
10. if |•t| = 0
11. then for each p ∈ t• do if C(p) > 0 then Reach(p);
12. end.

Figure 2: Algorithm Reachability to compute the reachable portion of a net.

Procedure ExtendMarking(p:place);
1. begin
2. if C(p) > 0 then
3. begin
4. C(p)← 0;
5. insert p in PR;
6. for each t ∈ p• do Reach(t);
7. end
8. end.

Figure 3: Procedure ExtendMarking extending the initial marking to a new place p.

as linked lists. Moreover, for any node x ∈ P ∪ T , a counter C(x), which is defined in the
following way, is maintained:

• for any transition t ∈ T : C(t) =
∣∣∣ {p | p ∈ •t and p is not reachable }

∣∣∣;
• for any place p ∈ P :

C(p) =

{
1 if p is not reachable
0 if p is reachable

Let us consider first the static computation performed by the Algorithm Reachability, shown
in Figure 2: this computes the subnet PR = 〈PR, TR, AR,M0〉 and sets the correct value for
the counters C(y) for every y ∈ P ∪ T . After the initialization (lines 2–7), the places in the
initial marking P0 are considered by calling the procedure ExtendMarking (see Figure 3). Then,
all the transitions with empty input set are taken into account: for every transition t having
|•t| = 0, we have that C(t) = 0, meaning that the transition is potentially firable, regardless
the initial marking.

Procedure Reach, shown in Figure 4, is in charge to visit the reachable portion of the net
and update the data structures according their definition: for any node x ∈ P ∪ T , the value

11

Procedure Reach(y:node);
1. begin
2. C(y)← C(y)− 1;
3. if C(y) = 0
4. then begin
5. if y is a place

6. then insert y in PR
7. else begin
8. insert y in TR;
9. for each p in •y do insert (p, y) in AR;
10. for each p in y• do insert (y, p) in AR;
11. end;
12. for each z in y• do
13. if C(z) > 0 then Reach(z);
14. end
15. end.

Figure 4: Procedure Reach.

Procedure Insert Place;
1. begin
2. p← Make New(place);
3. insert p into P;
4. •p← ∅;
5. p• ← ∅;
6. C(p)← 1;
7. return p;
8. end.

Figure 5: Procedure Insert Place inserting a new isolated place p.

of counter C(x) is set to zero if and only if node x is reachable (i.e., if there is a T -path from
P0 to x). Also note that an arc (x, y) is in AR if and only if the transition that must be one
of the endpoints of the arc is potentially firable.

The following incremental procedures allow the user to perform modifications of the net,
and update the reachable portion of the net accordingly:

ExtendMarking (in Figure 3) is the same procedure called by Algorithm Reachability, and
handles incremental updates to the initial marking, i.e., insert a place p given in input in the
set of initially marked places P0;

Insert Place, shown in Figure 5, carries out the insertion of an isolated place p in P ;

Insert Transition (see Figure 6) is in charge to perform the insertion of a new transition t in
T , together with its input set •t;

Insert Arc, shown in Figure 7, handles the insertion of a new arc (x, y) in A.

12

Procedure Insert Transition(InSet: set of places); {InSet is the input set •t}
1. begin
2. t← Make New(transition);
3. insert t into T;
4. •t← ∅;
5. t• ← ∅;
6. for each p ∈ InSet do
7. begin
8. insert p into •t;
9. insert t into p•;
10. insert (p, t) into A;
11. end;
12. C(t)←

∑
p∈InSetC(p);

13. return t;
14. end.

Figure 6: Procedure Insert Transition building up a new transition t with input set InSet.

Note that procedure Insert Arc updates the data structures while inserting in P an arc
either from a transition x to a place y, or from a place x to a transition y. We remark that,
using the procedures shown in this Section, only the insertion of an arc from a transition to a
place (and not vice-versa) can be performed efficiently.

This “asymmetric” behaviour is more evident by considering the consequence to the reach-
ability set R(M) due to the arc insertion. Inserting an arc from a transition t to a place p can
only extend the set of reachable markings: when t fires, an additional token is inserted in the
new connected place. On the contrary, inserting an arc from a place to a transition can only
reduce the set of reachable states, since this new arc plays the role of an additional constraint
for the firability of the connected transition. Therefore the insertion of an arc from a place to
a transition is not “incremental” but, by using a terminology adopted in dealing with dynamic
graphs, has to be considered “decremental”. This means that the linear time bound for any
sequence of updates to the net might not hold if one carries out insertion of arcs from places to
transitions, too. Nevertheless, procedure Insert Arc handles also this case in order to provide
a more comprehensive set of primitives. Namely, procedure Insert Arc requires a complete
recomputation from scratch of the reachable subnet PR (by calling Algorithm Reachability) in
the only case that all the following conditions holds:

1. the arc (x, y) has to be inserted from a place x ∈ P to a transition y ∈ T ;
2. x 6∈ PR, i.e., C(x) > 0;
3. y ∈ TR, i.e., C(y) = 0.

These conditions are verified in line 13, line 5 (through the “else” branch), and line 14,
respectively. In this case the insertion of an arc (x, y) requires to remove transition y from
the set TR, and in our approach this requires a complete recomputation from scratch of the
reachable portion of the net, which is executed by a call to algorithm Reachability (line 15).

Another nontrivial case holds when an arc (x, y) from a transition x ∈ TR to a place y 6∈ PR
has to be inserted: a call to procedure Reach is required to properly update the data structures
(line 11).

13

Procedure Insert Arc(x, y:node);
1. begin
2. insert y into x•;
3. insert x into •y;
4. insert (x, y) into A;
5. if C(x) = 0
6. then if C(y) = 0
7. then insert (x, y) into AR;
8. else if x is a transition

9. then begin
10. insert (x, y) into AR;
11. Reach(y);
12. end
13. else if x is a place

14. then if C(y) = 0
15. then Reachability;
16. else C(y)← C(y) + 1;
17. end.

Figure 7: Procedure Insert Arc to perform arc insertion.

5.2 On the complexity of finding and maintaining T -paths

Now we can state our results proving that finding and/or maintaining information about all
T -paths from the initially marked places P0 = {p | M0(p) > 0}, while performing incremental
updates to the net.

Theorem 5.1 Let P = 〈P, T,A,M0〉 be a general Petri net. Finding all the places p ∈ P
[transitions t ∈ T] such that there exists a T -path τ(P0, p) [τ(P0, t)] requires O(|P |+ |T |+ |A|)
time.

Proof. For each node y ∈ P ∪ T , testing the reachability by a T -path from P0 can be simply
checked as ownership to PR or TR, or also by checking C(x) = 0.

By inspection of the code of algorithm Reachability and procedure ExtendMarking it is
possible to verify that these require a time proportional to |P |+ |T |, plus at most |A| calls to
procedure Reach.

Any call to Reach(y) may require either constant time if C(y) > 0 after the update,
or additional work if C(y) = 0. In the latter case, all the arcs leaving node y are scanned,
performing a recursive call to Reach(z) for each z ∈ y• (line 13); furthermore, if y is a transition,
all arcs leaving or entering transition y are inserted in AR.

In conclusion, in any nontrivial call to Reach(y), a constant time is spent both for node y
and for each arc either leaving or entering node y: this can happen at most once for each node
y ∈ P ∪T . In fact, when a counter C(x) gets the value 0, no call to Reach(x) can be performed
any more: in the three procedures this test is performed before any call to procedure Reach.
2

Theorem 5.2 Let P = 〈P, T,A,M0〉 be a general Petri net. There exist data structures and
algorithms to perform the following operations:

14

a) inserting a disconnected place in P ;
b) inserting a new transition t defined together with its input set •t;
c) inserting an arc (t, p) in A;
d) extending the initial marking M0, including a place p in the initially marked places

P0;
e) asking whether there exists a T -path from P0 to any transition or place.

The total time required to perform an arbitrary sequence ω of operations of the above kinds,
starting from an empty net, is O(|ω|+ |P |+ |T |+ |A|), where the cardinalities of the sets refer
to the final net. In particular an operation of kind e), that is, asking whether there exists a
T -path from P0 to a given place or transition, requires constant worst case time.

Proof.
Let us consider the total time spent by each kind of operation along the whole sequence of

operations.
Each operation of the kinds a) and e) requires constant time, and the total work done for

such operations in a sequence ω is obviously O(|ω|).
Operations of kind b) require globally a total time bounded by |{•t | t ∈ T}|, and hence

O(|A|) on the whole sequence.
Let us consider operations c) and d): we have that both spend constant time plus zero or

more calls to procedure Reach2. The argument used in the proof of Theorem 5.1 to bound
the total work done by procedure Reach still holds, also in case of subsequent calls due to
incremental updates of the net. This lead to a bound of O(|P |+ |T |+ |A|) for the total time
spent by procedure Reach due to a sequence of update operations.

Therefore the total time spent for a sequence |ω| of calls to the procedures is cumulatively
bounded by the quantity O(|ω|+ |P |+ |T |+ |A|), where the cardinalities refer to the final net.
2

6 Liveness

In this section we examine the liveness problem for CF nets, and propose linear time algorithms
to determine the set of live transitions of a given net in this class. In particular, we will show
that for this class of nets the liveness problem can be reduced to the verification of structural
properties of the net. We introduce the notion of autonomous set, a set of potentially firable
transitions for which the input set is contained in the output set. An autonomous set is “self-
feeding” in the sense that, as its transitions can fire at least once, they are able to re-fill their
own input places, and hence fire infinitely many times. Autonomous sets are a kind of dual of
the notions of traps [26].

As already mentioned, a trap is a set of places which remain marked once they have gained
at least one token: a trap is a subset S of places s.t. S• ⊆ •S (i.e., any output transition of S
is also an input transition of S). In a dual fashion, at least one transition in an autonomous
set will be enabled, once some transition in the set has been enabled. Traps have been largely
used to analyze classes of Petri nets (see, e.g., [8, 20]). Usually results are stated by considering
“traps marked by M0”. In CF nets analogous properties (namely, the liveness) may be stated
by checking the potential firability of any transition in an autonomous set; in turn, this property
is related to the notion of T -path reachability from M0.

2As remarked above, here we do not take into account the insertion of arcs from places to transitions.

15

A simple variation of the topological sort algorithm (see, e.g., [10]), eliminating transitions
that are not part of autonomous sets, can be used to determine the live subnet PL of a given
net P = 〈P, T,A,M0〉. This is defined by the set of live transitions, together with the union
of all the input and output places of these: PL = 〈PL, TL, AL〉, where TL = {t|t ∈ T , and t is
live}, and PL = T •L ∪ •TL.

Definition 6.1 A set of transitions C ⊆ T is called an autonomous set if:

• for every t ∈ C, t is potentially firable in M0, and

•
⋃
t∈C

•t ⊆
⋃
t∈C t

•

The reminder of this section is organized as follows. We first show the relationship between
autonomous sets and sets of live transitions in CF nets and then we provide an algorithm that
determine the set of live transition.

In the following we use a characterization provided by Howell and Rosier in [17], Lemma 3.2:
in a CF net a transition t is live if and only if there exists a firable sequence that uses t infinitely
many times.

Lemma 6.1 Given a CF net P = 〈P, T,A,M0〉, a transition t ∈ T is live iff there exists an
autonomous set of transitions C ⊆ T such that t ∈ C.

Proof. (=⇒) Let σt be a firable sequence containing infinitely many times the live transition
t ∈ T . Let C(σt) be the set of transitions occurring infinitely many times in σt. For each
transition s ∈ C(σt), and each pi ∈ •s, since s fires infinitely many times in σt, there must be
a transition si, with pi ∈ s•i , which occurs infinitely many times in σt. Therefore, si ∈ C(σt),
and •s ⊆

⋃
i s
•
i ⊆

⋃
t∈C(σt) t

•. Since this is true for all s ∈ C(σt), we have that •C(σt) ⊆ C(σt)
•,

i.e., C(σt) is an autonomous set.
(⇐=) Let us consider an autonomous set C, and any transition t ∈ C. Since all tran-

sitions in C are potentially firable then there exists a sequence σF firable in M0 which
uses exactly once every transition in C. Let us consider the marking MC,0 such that

M0
σF−→MC,0, and the sequence σC built from σF by deleting all the transitions in the set

F − C, i.e., σC consists of a permutation of the transitions in C. Finally, let us consider
the infinite sequence σ = σFσCσCσC . . .: this sequence is firable in P; namely we have that
M0

σF−→MC,0
σC−→MC,1

σC−→MC,2
σC−→MC,3 . . ., with MC,i+1 ≥MC,i, for any i ≥ 0. Between any

two consecutive occurrences of a transition t in σ all the transitions in C−{t} are fired exactly
once, and a token has been placed in all the places in the set •t. Hence, by using the same
argument of Lemma 3.3, no token can be removed from •t by other transitions different from
t. 2

The algorithm Liveness given in Figure 8 determines the set of live transitions TL of a given
CF net. The algorithm, whose input is the reachable portion of the net, iteratively finds and
deletes from the net all the transitions whose input places will not be re-filled once they have
been emptied.

Theorem 6.2 Algorithm Liveness determines the live subnet PL = 〈PL, TL, AL〉 of a reachable
CF net PR = 〈PR, TR, AR,M0〉 in O(|P |+ |T |+ |A|) time.

Proof. (Correctness) We will show that, after the execution of algorithm Liveness in Figure 8,
the set TL contains exactly the set of live transitions. We will use the characterization of a

16

Algorithm Liveness;
Input:PR = 〈PR, TR, AR,M0〉; {Reachable subnet: ∃T -path from M0 to all x ∈ PR ∪ TR}
Output:PL = 〈PL, TL, AL〉; {Live subnet: TL = {t|t is live}; PL = T •L ∪ •TL}

1. begin
2. for each p ∈ PR do
3. count(p)← |•p|;
4. S ← {p ∈ PR | count(p) = 0};
5. PL ← PR − S;
6. TL ← TR;
7. while S is not empty do
8. begin
9. choose p ∈ S;
10. S ← S − {p};
11. for each t ∈ p• do
12. begin
13. TL ← TL − {t};
14. for each p′ ∈ t• do
15. begin
16. count(p′)← count(p′)− 1;
17. if count(p′) = 0
18. then begin
19. S ← S ∪ {p′}
20. PL ← PL − {p′}
21. end;
22. end;
23. end;
24. end;
25. AL ← {(p, t) | t ∈ TL} ∪ {(t, p) | t ∈ TL}
26. end.

Figure 8: algorithm Liveness to compute the live subnet.

live transition provided by Lemma 6.1: a transition t is live if and only if there exists an
autonomous set C containing t.

We first prove the completeness of the algorithm, i.e., all the live transitions are found.
After the initialization, all potentially firable transitions are part of TL, and the algorithm
proceeds by deleting transitions in each step (line 13). Suppose, by contradiction, that at least
one transition belonging to some autonomous set C is deleted by TL, and let t ∈ C be the first
of such transitions removed by the algorithm. This can only happen if there exists a place
p ∈ t• (lines 9–11) that was inserted in S (at lines 4 or 19) since count(p) = 0. But then no
transition t′ such that t′ ∈ •p is part of TL, and hence each one of those t′ must have been
deleted from TL before. But liveness conditions state that at least one of these t′ with p ∈ t′•
is in the same C as t, and t was the first transition belonging to an autonomous set to be
deleted, a contradiction.

On the other side all the transitions found by the algorithm are live. Consider a transition
t such that t ∈ TL: in this case every place p ∈ •t has count(p) 6= 0, and then, for each of such
places, there is a transition tp ∈ TL such that p ∈ t•p. This implies that ∪t∈TL•t ⊆ ∪t∈TLt•, and

17

then TL is an autonomous set.

(Time complexity) The initialization requires no more than one visit to the net, and hence
time O(|P |+ |T |+ |A|); the “while” loop (lines 8–24) is executed at most |P | times, and each
arc (x, y), with y ∈ x• (at lines 11, or 14), is considered at most once during the execution of
the algorithm, just after that node x has been deleted from the live subnet (lines 10, or 13).
Hence, the overall running time of the algorithm is O(|P |+ |T |+ |A|). 2

7 Boundedness

Karp and Miller [22] have shown that boundedness of Petri Nets is a decidable property, but
a solution for this problem may require exponential time and space for general nets [24]. For
CF nets, though, Howell et al. have shown that boundedness of a net P = 〈P, T,A,M0〉 can
be decided in O(|P | × |T |) time and space [18]; in this section we give algorithms and data
structures for deciding boundedness for the class of CF nets in O(|P |+|T |+|A|) time and space.
We determine necessary and sufficient conditions on the set of live transitions TL (determined
by algorithm Liveness provided above) for the net to be bounded. Following Karp and Miller’s
characterization, we have that a Petri net is unbounded if and only if it can execute a positive
loop, that is, if there exists a set C ⊆ T and a potentially firable sequence σ which uses exactly
once every transition in C, such that M

σ−→M ′ and M ′ > M .

Lemma 7.1 A CF net P = 〈P, T,A,M0〉 is bounded iff for every autonomous set C ⊆ T ,∑
t∈C |•t| =

∑
t∈C |t•|.

Proof. (=⇒) Let us consider and any autonomous set C in P. Then there exists a reachable
marking M and a potentially firable sequence σ such that M

σ−→M ′, with M ′ ≥ M , where
for all t ∈ C, t occurs exactly once in σ. Let δσ(p) be the displacement caused on place
p by sequence σ. Since the net is bounded, for all p ∈ P , δσ(p) = 0, that is the quantity of
tokens consumed by the firing of the transitions in C is exactly the number of tokens produced,
i.e.,

∑
p∈P |p• ∩ C| =

∑
p∈P |•p ∩ C|. Since trivially we have

∑
p∈P |p• ∩ C| =

∑
t∈C |•t|, and∑

p∈P |•p∩C| =
∑
t∈C |t•|, i.e., the number of output arcs for the places is equal to the number

of input arcs for the transitions and, conversely, the number of output arcs for the transitions
is equal to the number of input arcs for the places, then

∑
t∈C |•t| =

∑
t∈C |t•|.

(⇐=) By contradiction, let us consider an unbounded CF net P. There exists a potentially
firable sequence σ such that M

σ−→M ′, where each transition in σ is used exactly once, and
M ′ = M + δσ > M , with δσ > 0. Therefore, by similar arguments as those in the previous
step of this proof, there exists an autonomous set Cσ = {t ∈ T | t is used in σ} such that∑
t∈Cσ |

•t| <
∑
t∈Cσ |t

•|. 2

A possible algorithm to determine the boundedness of a Petri net in the considered classes,
would consist in verifying if the above equality holds for every autonomous set C; however, this
procedure could be extremely expensive. Instead, verifying the equality only for the entire set of
live transitions TL can be done in linear time. If it is not satisfied, then the net is unbounded.
Conversely, note that an unbounded net must contain some autonomous set that produces
more tokens than it consumes, so if the equality holds there must be some autonomous set
containing the former that “hides” the unboundedness by means of transitions that consume
more tokens than they produce.

Based on this idea, we will show that the notion of autonomous set allows us to reduce
the boundedness problem for CF nets to the verification of structural properties of the un-
derlying graph. More precisely, we will show that the boundedness property of a marked

18

CF net P = 〈P, T,A,M0〉 can be checked by examining the structure of the live subnet
P̂L = 〈PL, TL, AL〉.

We will construct an unmarked net, derived from the original one, where the presence of
autonomous sets that produce more tokens than they consume (leading to unboundedness) is
mapped into the presence of arcs that are part of no cycles (in a graph-theoretical sense), that
is, in the existence of connected components of the net that are not strongly connected.

Lemma 7.2 Let us consider a CF net P = 〈P, T,A,M0〉 and its live subnet
PL = 〈PL, TL, AL〉. If

∑
t∈TL |

•t| =
∑
t∈TL |t

•| then, for every place p ∈ P , |p•∩TL| = |•p∩TL|.

Proof. For any place p ∈ PL, |•p| > 0. Furthermore, since PL is live and conflict-free,
|•p| ≥ |p•| for each p ∈ PL. On the other side,

∑
t∈TL |

•t| =
∑
t∈TL |t

•| implies
∑
p∈PL |p

• ∩ TL| =∑
p∈PL |

•p ∩ TL|. The two relationships imply |p• ∩ TL| = |•p ∩ TL| for all p ∈ PL. 2

In order to decide efficiently the boundedness of CF nets, we need to introduce a transfor-
mation of the network, by splitting the branched places.

Definition 7.1 Let P̂L = 〈PL, TL, AL〉 be the live subnet of a CF such that
∑
t∈TL |

•t| =∑
t∈TL |t

•|. P̂ ′L = 〈P ′L, T ′L, A′L〉 is the unmarked net obtained from P̂L by splitting branched
places in the following way: given a branched place p, for every transition t such that p ∈ •t
we introduce a place pt with p•t = •pt = {t}; pt is said new and the original place p is removed
from the net together with all the incident arcs. Unbranched places in P̂ are left unchanged
and called old.

Note that this decomposition preserves the notion of autonomous set, since, for any set

C ⊆ T , if
⋃
t∈C

•t ⊆
⋃
t∈C t

• in P̂L, then
⋃
t∈C

•t ⊆
⋃
t∈C t

• in P̂ ′L.
In the remaining of this section, and when no confusion arise, the adjectives marked and

unmarked will be omitted.

Lemma 7.3 Let P = 〈P, T,A,M0〉 be a CF net. If in P̂ ′L there is an arc that is not part of a
cycle, then P is unbounded.

Proof. Consider an arc from a place p to a transition t that is not part of a cycle. Then p
can not be a new place, as by construction all arcs leaving new places are part of cycles. Then
p is old, and, as p is part of PL, there is at least one arc entering p. The arcs entering p are
not part of cycles and hence, if there is an arc that is not part of a cycle, there must be an
arc from a transition t to a place p that is not part of a cycle. Consider now such an arc and
suppose that the arcs entering t are part of cycles (if there is not such an arc, all arcs are part
of cycles). If •t = ∅, then clearly the net is unbounded, and if •t 6= ∅, then all the places in •t
can be filled without p been emptied, so the net is unbounded. 2

Lemma 7.4 If a CF net P is unbounded and
∑
t∈TL |

•t| =
∑
t∈TL |t

•|, then in

P̂ ′L = 〈P ′L, T ′L, A′L〉 there exists an arc that is not part of a cycle.

Proof. By Lemma 7.2, we have that for every place p ∈ P , |p• ∩ TL| = |•p ∩ TL|. But then,

by construction of the net P̂ ′L, for every place p, we have that |p•| = |•p| = 1.
On the other side, since the net is unbounded, there exists an autonomous set C such that∑

t∈C |•t| <
∑
t∈C |t•| and hence

∑
p∈P |p• ∩C| <

∑
p∈P |•p ∩C|. It follows that there must be

a place p ∈ P ′L such that |p• ∩ C| < |•p ∩ C|.

19

function Boundedness;
Input: PL = 〈PL, TL, AL〉;

1. begin
2. CIN ←

∑
t∈TL |

•t|;
3. COUT ←

∑
t∈TL |t

•|;
4. if CIN 6= COUT
5. then Boundedness← FALSE
6. else begin
7. CC ← Connected-Components(TL ∪ PL, AL)
8. SCC ← Strongly-Connected-Components(TL ∪ PL, AL)
9. if CC 6= SCC
10. then Boundedness← FALSE
11. else Boundedness← TRUE
12. end;
13. end.

Figure 9: Function Boundedness that determines the boundedness of a CF net.

This place p cannot be branched. In this case, for each transition t ∈ •p such that t ∈ C,
also transition corr(t) must be in C, with corr(t) ∈ p•. But then t and corr(t) together
contribute equally to the cardinality of •p and p•.

Therefore p can only be unbranched, hence |p• ∩ C| < |•p ∩ C| implies that |p• ∩ C| = 0
and |•p ∩ C| = 1, and p is an old place in PL. Let us consider the unique arc in A′L entering
p. If this arc were part of a cycle, this cycle should re-enter C either via a transition or via
a place. Both alternatives are impossible, because C is an autonomous set: then every place
in the input set of any transition in C must be also in the output set of some transition in C,
and every place in P ′L has only one input in T ′L. 2

Testing whether there is an arc that does not belong to a cycle can be easily done by
computing both the strongly connected components of the graph and the connected components
of its undirected version, as stated in the following lemma.

Lemma 7.5 Given a directed graph D = (V,A), and its undirected version G = (V,E), if
the number of strongly connected components of D is different than the number of connected
components of G, then there is at least one arc that it is not part of a cycle.

Proof. By contradiction, let us suppose that all arcs are part of a cycle. Let us consider two
vertices x and y in the same connected component, i.e., there exists a path in the undirected
graph G. For each edge (i, j) of this path, there exist both an arc i→ j in A and a path from
j to i (or viceversa) that build up a cycle. Since this is true for all edges in the path, if x and
y are in the same connected component of G then x and y are in the same strongly connected
component of D. This contradicts the fact that |SCC(D)| > |CC(G)|. 2

The main result of this section is provided in the following theorem, while an algorithm to
decide the boundedness of any CF net is shown in Figure 9.

Theorem 7.6 A CF net P = 〈P, T,A,M0〉 is bounded iff the live subnet PL of P fulfills the
following properties:

a)
∑
t∈TL |

•t| =
∑
t∈TL |t

•| and

20

b) every arc of P̂ ′L is part of a cycle.

The computation required to verify these conditions can be performed in O(|P | + |T | + |A|)
time.

Proof. The characterization for bounded CF nets is a straightforward consequence of Lem-
mas 7.3, 7.4, and 7.5.

In order to bound the complexity, we notice that the first step requires the computation of
the live subnet; then algorithm Boundedness, shown in Figure 9 requires linear time. Namely,
the algorithm first verifies whether condition a) is satisfied (line 4): in the negative case the
net is unbounded. This test can be carried out in linear time by exploring the live subnet P̂L.
Otherwise, if the number of output arcs from all transitions is equal to the number of input
arcs to transitions, the presence of arcs that are part of no cycles is checked, thus complying
condition b). As seen in Lemma7.5, this test can be carried out by computing the strongly
connected components and the connected components (of the undirected graph) in the live
subnet P̂L. This computation can be done using well known (linear time) algorithms (see,
e.g., [1, 10]). 2

We already mentioned that all the algorithms presented in this paper are incremental; it
is important to mention that, when we switch to a dynamic scenario, whilst the running time
of all the algorithm presented in the previous sections are linear, to evaluate the boundedness
we need to use dynamic versions of graph algorithms to compute both connected components
and strongly connected components, and the running time must be updated accordingly; more
precisely, we can use the classical algorithm of Tarjan [33] for the connected components, with
an amortized cost of O(α(m,n)), where α is a a very slowing function, a functional inverse of
the Ackermann’s function. The best approach is to use the algorithm, proposed by Roditty
and Zwick [32], for the dynamic maintaintance of the strongly connected components, whose
complexity is O(mα(m,n)). For a faster implementation, when an arc i → j is inserted, one
may simply visit the graph in order to check whether i is reachable from j, thus paying only
O(m).

Summing up, in a dynamic scenario, when we add an arc to the underlying graph, i.e.
a transition or an arc in the Petri Net, to compute the boundedness the cost per insertion
is O(α(m,n) + m) = O(m) whilst, as already mentioned, all the algorithm presented in the
previous sections have a constant cost (O(1) per insertion).

8 Conclusions

In this paper we propose an extension of techniques developed within the context of directed hy-
pergraphs to deal with Petri nets, and propose algorithms suitable for a practical and straight-
forward implementation; the incremental versions provided in this paper are tailored to be
embedded in applications supporting an interactive analysis and design of nets.

From a theoretical point of view, we propose an approach for analyzing structural properties
of Petri nets based on the notion of T -path reachability. For the class of CF Petri nets this
approach leads to linear time algorithms for determining the reachable places, the potentially
firable transitions, the live subnet, and for deciding the boundedness of the net. These results
improve the time and space bounds of the previous known solutions by Howell et al. [18, 17]
from O(|P | × |T |) to O(|P |+ |T |+ |A|).

In a general Petri net, the well known coverability problem requires exponential space [30].
By analyzing T -path reachability we provide a partial answer to a weaker formulation of this

21

problem, that we name coverability by augmentation: this is especially meaningful in situations
where one is more interested to the set of places with tokens, rather than to the actual number
of tokens; we determine an answer to this problem on general nets in linear time.

T -path reachability is a notion that might be further exploited for both structural and
behavioural problems.

As an example, given a net P = 〈P, T,A,M0〉 and a target marking M , the following
problems can be answered efficiently by analyzing T -path reachability: determining the subset
of places P ′0 ⊆ P0 = {p ∈ P |M0(p) > 0} that must be necessarily marked in order to let M be
coverable by augmentation (or a minimal set P ′0 ⊆ P0 with such property).

As shown in Section 4, T -path unreachability is related to siphons, widely used to analyze
deadlocks in Petri nets. The connections between T -reachability and deadlocks deserve further
study.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, 1974.

[2] Giorgio Ausiello, Alessandro D’Atri, and Domenico Saccá. Graph algorithms for functional
dependency manipulation. Journal of the ACM, 30:752–766, 1983.

[3] Giorgio Ausiello and Giuseppe F. Italiano. Online algorithms for polynomially solvable
satisfiability problems. Journal of Logic Programming, 10:69–90, 1991.

[4] Giorgio Ausiello, Giuseppe F. Italiano, and Umberto Nanni. Dynamic maintenance of
directed hypergraphs. Theoretical Computer Science, 72(2-3):97–117, 1990.

[5] C. Berge. Graphs and Hypergraphs. North Holland, Amsterdam, 1973.

[6] Harold Boley. Directed recursive labelnode hypergraphs: A new representation language.
Artificial Intelligence, 9:49–85, 1977.

[7] A. Cheng, J. Esparza, and J. Palsberg. Complexity Results for 1-safe Nets. Theoretical
Computer Science, 147(1-2):117–136, 1995.

[8] F. Chu and X. Xie. Deadlock Analysis of Petri Nets Using Siphons and Mathematical
Programming. IEEE Transactions on Robotics and Automation, 13(6):793–804, 1997.

[9] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked Directed Graphs. Journal of
Computer and System Sciences, 5(5):511–523, 1971.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, Cambridge, MA, Second edition, 2001.

[11] S. Crespi-Reghizzi and D. Mandrioli. A Decidability Theorem for a Class of Vector Ad-
ditions Systems. Information Processing Letters, 3(3):78–80, 1975.

[12] J. Esparza and M. Nielsen. Decidability Issues for Petri Nets - a survey. Bulletin EATCS,
52:245–262, 1994.

[13] J. Esparza and M. Silva. A polynomial-time algorithm to decide liveness of bounded
free-choice nets. Theoretical Computer Science, 102(1):185–205, 1992.

22

[14] G. Gallo, G. Longo, S. Nguyen, and S. Pallottino. Directed Hypergraphs and Applications.
Technical Report 3/90, Dip. di Informatica, Univ. of Pisa, Italy, January 1990.

[15] C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezzè. A unified high-level petri net formal-
ism for time-critical systems. IEEE Transactions on Software Engineering, 17(2):160–172,
1991.

[16] M. H. T. Hack. The recursive equivalence of the reachability problem and the liveness
problem for Petri nets and vector addition systems. In 15th swat, pages 156–164, 1974.

[17] R. Howell and L. Rosier. Problems concerning fairness and temporal logic for conflict-free
Petri nets. Theoretical Computer Science, 64(3):305–329, 1989.

[18] R. Howell, L. Rosier, and H. Yen. An O(n1.5) Algorithm to Decide Boundedness for
Conflict-Free Vector Replacement System. Information Processing Letters, 25(1):27–33,
1987.

[19] R. Howell, L. Rosier, and H. Yen. A taxonomy of fairness and temporal logic problems
for Petri nets. Theoretical Computer Science, 82(2):341–372, 1991.

[20] M. D. Jeng and X. Xie. Analysis of modularly composed nets by siphons. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 29(4):399–406,
1999.

[21] N. D. Jones, L. H. Landweber, and Y. E. Lien. Complexity of some Problem in Petri
Nets. Theoretical Computer Science, 4(3):277–299, 1977.

[22] R. M. Karp and R. Miller. Parallel Program Schemata. Journal of Computer and System
Sciences, 3(2):147–195, 1969.

[23] L. Landweber and E. Robertson. Properties of Conflict-Free and Persistent Petri Nets.
Journal of the ACM, 25(3):352–364, 1978.

[24] R. Lipton. The reachability problem requires exponential space. Technical Report 62,
Department of Computer Science, Yale University, 1976.

[25] E. Mayr. An algorithm for the general Petri net reachability problem. SIAM Journal on
Computing, 13(3):441–459, 1984.

[26] T. Murata. Petri nets: Properties, analysis and applications. In Proceedings of the IEEE,
pages 541–580, 1989.

[27] J. L. Peterson. Petri nets. Computing Surveys, 9(3):223–252, 1977.

[28] Carl Adam Petri. Communication with automata. Technical Report Supplement 1 to
Tech. Report RADC-TR-65-377, 1966, Rome Air Development Center (U.S. Air Force),
1962. Original in German: Kommunikation mit Automaten, Ph.D. Thesis, Univ. of Bonn,
1962.

[29] L. Piroddi, R. Cordone, and I. Fumagalli. Combined siphon and marking generation for
deadlock prevention in petri nets. IEEE Transactions on Systems, Man, and Cybernetics,
Part A: Systems and Humans, 39(3):650–661, 2009.

23

[30] C. Rackoff. The covering and boundedness problems for vector addition systems. Theo-
retical Computer Science, 6(2):223–231, 1978.

[31] W. Reisig. Petri Nets, an introduction. ETACS Monographs Theorethical Computer
Science. Springer-Verlag, 1985.

[32] L. Roditty and U. Zwick. A fully dynamic reachability algorithm for directed graphs with
an almost linear update time. In STOC ’04: Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 184–191, New York, NY, USA, 2004. ACM.

[33] R.E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22(2):215–
225, 1975.

[34] M. Thakur and R. Tripathi. Linear connectivity problems in directed hypergraphs. The-
oretical Computer Science, 410(27-29):2592–2618, 2009.

[35] H. Yen. A unified approach for deciding the existence of certain Petri nets paths. Infor-
mation and Computation, 96(1):119–137, 1992.

[36] M. C. Zhou and F. DiCesare. Parallel and sequential mutual exclusions for Petri net mod-
eling for manufacturing systems with shared resources. IEEE Transactions on Robotics
and Automation, 7(4):515–527, 1991.

24

	copertinaTR9 2010
	cfpn-TR

