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Abstract

A standard quadratic optimization problem (StQP) consists of finding the largest or

smallest value of a (possibly indefinite) quadratic form over the standard simplex which is

the intersection of a hyperplane with the positive orthant. This NP-hard problem has several

immediate real-world applications like the Maximum-Clique Problem, and it also occurs in a

natural way as a subproblem in quadratic programming with linear constraints. We propose

unconstrained reformulations of StQPs, by using different approaches. We test our method

on clique problems from the DIMACS challenge.
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1 Introduction and preliminaries

1.1 Standard quadratic optimization problems and related problems

In this paper we consider the standard quadratic optimization problem (StQP) of the form

min{ϕ(y) = 1
2y
>Ay : y ∈ ∆} (1)

where ∆ denotes the standard simplex in n-dimensional Euclidean space Rn, namely

∆ = {y ∈ Rn+ : e>y = 1} ,

and A = [aij ] ∈ Rn×n is a symmetric n× n matrix; e is the n-vector of all ones and y> denotes

the transposed vector while I denotes the n × n identity matrix. In the sequel, ‖x‖ =
√

x>x

always denotes the Euclidean norm of a vector x ∈ Rn.

StQP is an NP-hard problem that has arise many immediate applications, among them a

continuous formulation of the Maximum-Clique Problem. For more details about StQP, we refer

to [3] and [4].
∗Dept. of Statistics and Decision Support Systems, University of Vienna, Austria
†Università di Roma La Sapienza - Dipartimento di Informatica e Sistemistica A. Ruberti, Italy.
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In [6] a quartic formulation of the StQP has been proposed, which uses the substitution

yi = x2
i , to get rid of the sign constraints yi ≥ 0. Then the condition e>y = 1 reads ‖x‖2 = 1,

and we get the following ball constrained problem (BQP)

min{Φ(x) = 1
2x
>XAXx : ‖x‖2 = 1} (2)

where we denote by X the diagonal matrix with elements xi.

The two constrained problems (1) and (2) are not fully equivalent in the sense that spurious

points satisfying necessary optimality conditions can be created in passing from Problem (1) to

Problem (2). However, by using second-order conditions, we are able to identify such spurious

points.

Using the special structure of the constraint in (2), in [6] an simple unconstrained formulation

(UQP)of (2) has been proposed that in turn can be used to find a local solution of the StQP (1).

Thus problem (2) can be solved by means of a single unconstrained minimization as follows:

min
{
Pε(x) = Φ(x)(3− 2‖x‖2) +

1
ε

(‖x‖2 − 1)2 : x ∈ Rn
}
, (3)

where ε can be freely choosen within (0, ε̄], and the upper bound ε̄ is easily calculated (see [6] for

details).

The definition of an unconstrained formulation allows to use very efficient methods for the

solution able to tackle very large scale problems. In this paper we further exploit the possibil-

ities of defining two alternative unconstrained formulations of the StQP (a) using the quartic

formulation (2) and (b) revising a formulation proposed in [3].

The relations of the solution of the StQP with those of the two different unconstrained for-

mulations are studied. A numerical study of the performance on the DIMACS data set of the

maximum clique problems is performed.

After a review of notations, optimality conditions for StQP in Section 1.2, we introduce in

Section 2 a new unconstrained formulation based on the ball constrained Problem (2) is proposed.

In section 3 a new unconstrained formulation based on the simple formulation of StQP given in

[3] has been proposed. In Section 4, numerical results are reported with performance comparison.

1.2 Optimality conditions for StQP

Since the constraints are linear, the Karush-Kuhn-Tucker (KKT) conditions are necessary condi-

tions for local optimality and can be stated as follows.

Proposition 1 (KKT necessary condition for StQP problem (KTS)) Let ȳ be a local so-

lution of Problem (1), then scalar λ̄ exists such that{
(Aȳ)i + λ̄ = 0 for i : ȳi > 0,

(Aȳ)i + λ̄ ≥ 0 for i : ȳi = 0,
(4)
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Further the Lagrange multiplier is uniquely determined by ȳ and we have λ̄ = −ȳ>Aȳ = −2ϕ(ȳ)

We note that these conditions can be easily re-written as

ȳ>(Aȳ + λ̄) = 0

ȳ ≥ o

Aȳ + λ̄ ≥ o

In the sequel, we will invoke (weak) Second-order necessary optimality conditions for StQP

problem (WSS) (cf., e.g., [8], p.61). Note that there are exact second-order characterizations of

local optimality which we do not use here since they involve copositivity checks which are NP-

hard; see, e.g., [1], also for the close relation to characterizations of global optimality in general

quadratic optimization problems.

Proposition 2 (Weak second order necessary condition (WSS) for StQP) Let ȳ be a lo-

cal solution of Problem (1), then in addition to (4) we have that

z>Az ≥ 0 for all z ∈ Z(ȳ) = {z ∈ Rn :
∑
i∈I(ȳ)

zi = 0 , and zi = 0 for all i /∈ I(ȳ)} (5)

where I(ȳ) denotes the “inactive” variables, namely

I(ȳ) = {i : ȳi > 0} .

By reordering the vector z as (zI , zI)>, and according to this also the matrices, the condition

(5) can be rewritten as

z>IAIIzI ≥ 0 for all zI ∈ R|I| :
∑
i∈I(ȳ)

zi = 0 . (6)

2 Unconstrained quotient formulation

2.1 Optimality conditions

Starting from the quartic formulation (2) and taking inspiration from the ideas for finding eigen-

values of a matrix, we define a sort of Rayleigh quotient and introduce the following problem

inf
{
f(x) = 1

2

x>XAXx
‖x‖4

: x ∈ Rn \ {o}
}
. (7)

A similar idea has been used also in relaxation for the max cut problem [7, 10]. Note that

Júdice and coworkers consider a different generalized Rayleigh quotient function in their study [12]

of the Eigenvalue Complementarity Problem (EiCP). By squaring coordinates to get rid of the
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sign constraints as explained above before (2), the EiCP with positive-definite n × n matrix B

could be rephrased as the related but constrained problem

min
{

x>XAXx
x>XBXx

: ‖x‖ = 1 , x ∈ Rn
}
.

Some of the following results may apply also to this problem.

Let us consider the transformation ȳ = TR(x̄) with ȳi =
x̄2
i

‖x̄‖2
. The same type of consideration

made for the transformation T hold. Hence without loss of generality we can assume in the

following that x ≥ o. We denote by x = T−1
R (y) the (partial) inverse transformation, namely

x̄i = +
√
ȳi.

Since the function f is constant along rays from the origin (and discontinuous there, unless it

is overall constant), we may safely restrict our attention to a domain D which does not contain

a small neighborhood of o. Then f is twice continuously differentiable on D and we have for all

x ∈ D:1

∇f(x) = 2
XAXx
‖x‖4

− 2x>XAXx
‖x‖6

x =
2
‖x‖4

(
I − 1
‖x‖2

xx>
)
XAXx

= 2
XAXx
‖x‖4

− 4f(x)
‖x‖2

x =
2
‖x‖4

(
XAX − 2f(x)‖x‖2I

)
x

(8)

and

∇2f(x) = − 4
‖x‖2

(
x∇f(x)> +∇f(x)x>

)
− 4f(x)
‖x‖2

(
2
xx>

‖x‖2
+ I

)
+

2
‖x‖4

(2XAX + Diag {AXx}) .

(9)

The first order necessary optimality conditions for a feasible point x̄ to be a local solution of

Problem (7) require that ∇f(x̄) = o, that is:

2
‖x‖4

(
I − 1
‖x‖2

xx>
)
XAXx = o . (10)

Proposition 3 (First order necessary condition (FNR)) Let x̄ 6= o be a local minimizer

for Problem (7). Then for all i

x̄i = 0 or (AX̄x̄)i = 2f(x̄)‖x̄‖2 .

Proof. The assertion is immediate from (8).

We denote

I(x̄) = {i : x̄i 6= 0} = {i : ȳi > 0} ,

where the last equation follows easily by the definition of the transformation TR and its inverse.

The second-order necessary optimality conditions for Problem (7) involve the Hessian

− 4
‖x‖2

(
x∇f(x)> +∇f(x)x>

)
− 4f(x)
‖x‖2

(
2
xx>

‖x‖2
+ I

)
+

2
‖x‖4

(2XAX + Diag {AXx}) .

1We note that ∇(‖x‖4) = 4‖x‖2x and ∇(XAXx) = Diag {AXx}+ 2XAX.
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Theorem 4 (Second order necessary condition (SNR)) Let x̄ 6= o be a local minimizer for

Problem (7). Then

(AX̄x̄)i ≥ 2f(x̄)‖x̄‖2 with equality for all i where x̄i 6= 0

and

X̄IAIIX̄I � f(x̄)‖x̄‖2
(

2
x̄I x̄>I
‖x̄‖2

+ II

)
− 1

2Diag{AX̄x̄}I

where vector and matrices have been partitioned according to the definition of inactive variables.

Proof. Let us partition the vector x̄ in x̄ = (x̄0 x̄I)> where x̄0 denotes the components of x̄ such

that x̄i = 0, whereas (x̄I)i 6= 0. Recalling that ∇f(x̄) = o, we can write the Hessian ∇2f(x̄) as

follows

∇2f(x̄) = −4f(x)
‖x‖4

(
2

(
0 0

0 x̄I x̄>I

)
+ ‖x‖2I

)
+

2
‖x‖4

((
0 0

0 2XIAIIXI

)
+ Diag {AXx}

)

Hence the Hessian is a block diagonal matrix composed of two blocks:

∇2f(x̄) =

(
(∇2f(x̄))00 0

0 (∇2f(x̄))II

)
.

The first one is

(∇2f(x̄))00 =
2
‖x̄‖4

(
−2f(x̄)‖x̄‖2I0 + Diag {AX̄x̄}0

)
which is diagonal in itself. The second one is:

(∇2f(x̄))II = −4f(x)
‖x‖4

(
2x̄I x̄>I + ‖x‖2II

)
+

2
‖x‖4

(
2XIAIIXI + Diag {AXx}I

)
.

The unconstrained second order necessary conditions requires that ∇2f(x̄) � O, hence we must

have:

(AX̄x̄)i ≥ 2f(x̄)‖x̄‖2 for all i with x̄i = 0

and

2XIAIIXI + Diag {AXx}I − 2f(x)‖x‖2
(

2
x̄I x̄>I
‖x‖2

+ II

)
� O ,

which can be also written as

XIAIIXI � f(x)‖x‖2
(

2
x̄I x̄>I
‖x‖2

+ II

)
− 1

2Diag {AXx}I .

This establishes the assertion.

2.2 Quotient formulation vs. StQP: relations among solutions

Theorem 5 A point ȳ is a local minimizer of problem (1) if and only if x̄ = T−1
R (ȳ) is a local

minimizer of problem (7). Further, a point ȳ is a global minimizer of problem (1) if and only if

x̄ = T−1
R (ȳ) is a global minimizer of problem (7).
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Proof. The transformation y = TR(x) and its (partial) inverse x = T−1
R (y) is well-defined and

continuous. Moreover we have that y = TR(x) is feasible for Problem (1) and f(x) = ϕ(TR(x)).

Further f(T−1
R (y)) = ϕ(y), hence the result.

Theorem 6 Let ȳ be a KKT point of problem (1), then x̄ = TR(ȳ) is a stationary point of

problem (7).

Proof. Since ȳ is feasible, we have that ‖x̄‖2 = 1 and also that

f(x̄) = 1
2

x>XAXx
‖x‖42

= 1
2 ȳ
>Aȳ = ϕ(ȳ)

The proof follows easily by observing that we can re-write equation (10) coordinate-wise as

ȳi[(Aȳ)i − 2ϕ(ȳ)] = 0 ,

which is implied by (4) by identifying λ̄ = −2ϕ(ȳ).

The converse is not true, as the origin o is a stationary point. The loss of correspondence

between KKT points implies that spurious stationary points can be created in passing from

Problem (1) to Problem (7). However we can prove the following results.

Theorem 7 If ȳ is a KKT point for Problem (1) which satisfies the second-order necessary

condition (5), then x̄ = T−1
R (ȳ) is a stationary point for Problem (7), and the second-order

necessary conditions SNR given in Theorem 4 are satisfied.

Proof. Let ȳ be a second order stationary point for Problem (1). Hence x̄ =
√

ȳ is such that

‖x̄‖ = 1 and by Theorem 6, x̄ is a stationary point of Problem (7). Furthermore from (4), we get

also that

(AX̄x̄)i ≥ 2f(x̄) for all i such that x̄i = 0 .

Hence it remains to prove that

d>I
(
XIAIIXI − f(x)

(
2x̄I x̄>I + II

)
+ 1

2Diag {AXx}I
)
dI ≥ 0 for all d ∈ Rn .

First we observe that from the stationarity of x̄ we have that (AXx)i = 2f(x̄) for all i ∈ I, hence

we can write the above condition as follows

d>I
(
XIAIIXI − 2f(x̄)x̄x̄>

)
dI ≥ 0 for all d ∈ Rn . (11)

For any d ∈ Rn we can define the vector z with components

zi =
{ 0 if x̄i = 0,

x̄idi − (x̄>d)x̄2
i if x̄i > 0.

which can be written as z = X(d−αx) with α = x̄>d. Hence, taking into account that ‖x̄‖2 = 1,

we have ∑
i∈I(ȳ)

zi =
∑

i: x̄i>0

x̄idi − (x̄>d)
∑

i: x̄i>0

x̄2
i = 0 ,
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where, as usual, I(ȳ) = {i : ȳi > 0}. Hence, by (6), we can write

z>Az = (d− αx̄)>X̄AX̄(d− αx̄) = d>X̄AX̄d− 2αd>X̄AX̄x̄ + α2x̄>X̄AX̄x̄ ≥ 0 .

Recalling that X̄AX̄x̄ = 2‖x̄‖2f(x̄)x̄ we can write

d>X̄AX̄d− 4α‖x̄‖2f(x̄)d>x̄ + 2α2‖x̄‖2f(x̄)x̄>x̄ ≥ 0

recalling again ‖x̄‖ = 1

d>X̄AX̄d− 2f(x̄)(d>x̄)2 = d>
(
X̄AX̄ − 2f(x̄)x̄x̄>

)
d ≥ 0

which is exactly the condition (11).

Theorem 8 If x̄ 6= o is a stationary point for Problem (7), and the second-order necessary

conditions SNR given in Theorem 4 are satisfied, then ȳ = TR(x̄) is a KKT point of Problem (1)

which satisfies the second-order necessary condition (5).

Proof. The point ȳ = X̄x̄/‖x̄‖2 is feasible for problem (1). By the first condition of Theorem 4

we get immediately that ȳ is a KKT point of Problem (1). Now assume that (11) holds for any

d. Let z such that zi = 0 for i : x̄i = 0 and e>z = 0. Let us define a vector

di =


0 if x̄i = 0

zi
x̄i

if x̄i > 0

Then we get X̄d = z and furthermore, since di = 0 for all i /∈ I(ȳ) by definition,

d>x̄> =
∑

i: ȳi>0

dix̄i =
∑

i: x̄i>0

x̄i
zi
x̄i

=
∑
i∈I(ȳ)

zi = 0 .

Hence we can write

d>
[
X̄AX̄ − 2f(x̄)x̄x̄>

]
d = z>Az− 2f(x̄)d>x̄x̄>d = z>Az ≥ 0 ,

and the claim is proved.

3 A quartic unconstrained formulation

3.1 An exact penalization method for StQP

The unconstrained formulation of this section is based on results presented in [3]. In this paper,

equivalence between StQP and a the minimization of a quadratic function over the positive orthant

has been proved, which corresponds to an exact penalization of the linear constraint e>y = 1. To

be more precise, Problem (1) is equivalent to , the following quadratic problem over the positive

orthant (OQP)

min
{
h(p) = 1

2p
>Cp− e>p : p ≥ o

}
, (12)
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where C = 1
2A+ γee> and γ is chosen such that C is strictly Rn+-copositive.

In [3] has been proved the following result (note that the problem in [3] is in maximization

form).

Theorem 9 (Correspondence among minimizers of StQP and (OQP)) Assume that C

is strictly Rn+-copositive and C = 1
2A + γee>. Then local and global solution of the QP (12)

and of StQP (1) are related as follows.

(a) If ȳ ∈ ∆ is a local minimizer of Problem (1), then p̄ =
1

γ + ϕ(ȳ)
ȳ is a local minimizer of

Problem (12).

(b) If p̄ ≥ o is a local minimizer of Problem (12), then ȳ =
1

e>p̄
p̄ is a local minimizer of

Problem (1).

(c) The objective values in cases (a) and (b) are related by

1
γ + ϕ(ȳ)

= −2h(p̄).

We complement this result by a study of correspondence of the KKT points.

Theorem 10 (Correspondence among KKT points of StQP and (OQP))

(a) If ȳ ∈ ∆ is a KKT point of Problem (1), then p̄ =
1

γ + ϕ(ȳ)
ȳ is a KKT point of Problem (12).

(b) If p̄ ≥ o is a KKT point of Problem (12), then ȳ =
1

e>p̄
p̄ is a KKT point of Problem (1).

Proof. First let us write the KKT conditions for problem (12). A point p̄ is a KKT for problem

(12) if µ̄ ∈ Rn exists such that
Cp̄− e− µ̄ = o

µ̄>p̄ = 0

µ̄ ≥ o, p̄ ≥ o .

Hence we can also write
µ̄ = Cp̄− e ≥ o

p̄>(Cp̄− e) = p̄>µ̄ = 0

p̄ ≥ o .

(13)

Let us prove part (a). Let ȳ ∈ ∆ be a KKT point of Problem (1), and let p̄ = 1
γ+ϕ(ȳ) ȳ. First we

note that γ + ϕ(ȳ) = ȳ>Cȳ > 0 due to strict copositivity of C. Hence p̄i ≥ 0 iff ȳi ≥ 0. Now we

calculate the coordinates of Cp̄− e :

(Cp̄)i − 1 = 1
γ+ϕ(ȳ) (Cȳ)i − 1 = 1

γ+ϕ(ȳ)

[
(Cȳ)i − (γ + ϕ(ȳ))

]
= 1

γ+ϕ(ȳ)

[
1
2 (Aȳ)i + γe>ȳ − γ − ϕ(ȳ)

]
= 1

2(γ+ϕ(ȳ))

[
(Aȳ)i − 2ϕ(ȳ)

]
= 1

2(γ+ϕ(ȳ))

[
(Aȳ)i + λ̄

]
≥ 0 ,
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where the last inequality derives from KKT for the simplex problem, recalling that λ̄ = −2ϕ(ȳ).

Complementarity follows from the definition of p̄. Hence we get the first result. To prove part

(b), let now p̄ ≥ o be a KKT point of problem (12) and define ȳ = 1
e>p̄

p̄. Of course ȳ is feasible

for problem (1) and ȳi > 0 ⇐⇒ p̄i > 0 (note also that p̄ 6= o). Then we can write

(Aȳ)i + λ̄ =
1

e>p̄
(Ap̄)i − ȳ>Aȳ =

1
e>p̄

(Ap̄)i −
1

(e>p̄)2
p̄>Ap̄ =

1
e>p̄

[
(Ap̄)i −

1
(e>p̄)

p̄>Ap̄
]
.

¿From the KKT condition (13) we know that p̄>Cp̄ − p̄>e = 0 and substituting the expression

of C we get

p̄>Ap̄ = −2
[
γ(e>p̄)2 − p̄>e

]
.

Then we can further write

(Aȳ)i + λ̄ = 1
e>p̄

[
(Ap̄)i + 2

(e>p̄)
(γ(e>p̄)2 − p̄>e)

]
= 2

e>p̄

[
1
2 (Ap̄)i + γ(e>p̄)− 1)

]
= 2

e>p̄

[
( 1

2Ap̄ + γee>p̄)i − 1)
]

= 2
e>p̄

[(Cp̄)i − 1)] ≥ 0 .

Hence also the second part is proved.

Using formulation (12), we can define a new unconstrained formulation of the StQP.

By using the substitution pi = x2
i , to get rid of the sign constraints pi ≥ 0, we obtain the

following unconstrained quartic formulation (QUP)

min
{

Ψ(x) = 1
2x
>XCXx− ‖x‖2 : x ∈ Rn

}
. (14)

Using the definition of C, we can write also

Ψ(x) =
1
4
x>XAXx + ‖x‖2( 1

2γ‖x‖
2 − 1) = 1

2Φ(x) + 1
2γ‖x‖

4 − ‖x‖2 .

Theorem 11 (Existence of unconstrained minimizer) Assume that C is strictly Rn+-copositive

and C = 1
2A+ γee>. Then problem (14) admits a global minimizer.

Proof. We consider Problem (12) and consider the function ψy(t) = h(ty) along a ray emanating

from 0, where y ∈ ∆. Then ψy(t) = 1
2 t

2y>Cy − te>y is strictly convex and admits a minimizer

at ty = e>y
y>Cy

> 0, due to y>Cy > 0. The minimal value is ψy(ty) = − (e>y)2

2y>Cy
, which is well

defined and continuous in y over ∆, so that

min{Ψ(x) : x ∈ Rn} = min
y∈∆

min{ψy(t) : t ≥ 0} = −max
y∈∆

(e>y)2

2y>Cy

is attained at some y∗ ∈ ∆, so that a global solution to (14) is given by x∗i =
√
ty∗y∗i .

The quartic function Ψ is twice continuously differentiable with gradient

∇Ψ(x) = 1
2∇Φ(x) + 2(γ‖x‖2 − 1)x = XAXx + 2(γ‖x‖2 − 1)x = 2XCXx− 2x

and Hessian

∇2Ψ(x) = 1
2∇

2Φ(x) + 4γxx> + 2(γ‖x‖2 − 1)I

= 4XCX + 2Diag {CXx} − 2I = 2XAX + Diag {AXx}+ 4γxx> + 2γ‖x‖2I − 2I .
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Problem (14) is an unconstrained problem, hence we have the following well-known optimality

conditions:

Theorem 12 (First and second order necessary condition for (QUP)) Let x be a uncon-

strained local minimizer of (14), then we have

XAXx + 2(γ‖x‖2 − 1)x = o (15)

and

2XAX + Diag {AXx}+ 4γxx> + 2(γ‖x‖2 − 1)I � O . (16)

3.2 Quartic vs. StQPs: relationship among solutions

Given any ε ∈ R, we consider the sublevel set

Lε = {x ∈ Rn : Ψ(x) ≤ −ε} .

Obviously, the origin o ∈ Lε for any ε ≤ 0 but not for ε > 0. Next, by strict Rn+-copositivity of

C = 1
2A+ γee>, there are constants 0 < δ < ρ such that

δ2 ≤ y>Cy ≤ ρ2 for all y ∈ Rn+ with e>y = 1 . (17)

These constants can be estimated beforehand, and also somehow controlled by the choice of γ.

Now, for fixed x ∈ Rn, s ≥ 0 and y = Xx we again consider ψy(s) = h(sy) = Ψ(
√
sx) =

s2

2 y>Cy−se>y, which is a strictly convex quadratic function over R+ with right-sided derivative

d
ds

ψx(0+) = −‖x‖2 < 0 if x 6= o .

This corroborates the fact that the origin o is rather a local maximizer of Ψ. Moreover, we can

bound the sublevel set away from the origin, and at the same time establish compactness for

(small enough) positive ε:

Theorem 13 (Bounding sublevel sets) Let 0 < ε < 1
2ρ2 . Then

Lε ⊆
{
x ∈ Rn : δ−2 −

√
δ−4 − 2εδ−2 ≤ ‖x‖2 ≤ δ−2 +

√
δ−4 − 2εδ−2

}
.

Proof. Take any x ∈ Rn with ‖x‖2 = e>y = 1 and put t = (y>Cy)−1/2 ∈
[

1
ρ ,

1
δ

]
, due to (17).

Then it is easily checked that ψy(s) ≤ −ε if and only if

φ−(t) ≤ s ≤ φ+(t)

where φ±(t) = t2 ±
√
t4 − 2εt2. Evidently, we have d

dt φ±(t) = 2t
[
1± t2−ε√

t4−2εt2

]
, so that ε < 1

2ρ2

implies that φ− is decreasing and φ+ is increasing on the interval
[

1
ρ ,

1
δ

]
. Therefore

φ−(
1
δ

) ≤ φ−(t) ≤ s = ‖
√
sx‖2 ≤ φ+(t) ≤ φ+(

1
δ

) ,
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which establishes the assertion.

Next let us define the transformations y = TQ(x) with yi = 1
‖x‖2x

2
i and x = T̃Q(y) with

xi =
√

|yi|
γ+ϕ(y) .

Theorem 14 Let x be a (local) global minimizer of problem (14) then y = TQ(x) is a local

(global) minimizer of problem (1). Viceversa, let y be a local (global) minimizer of problem (1)

then x = T̃Q(y) is a local (global) minimizer of problem (14).

Proof. Follows the same line of argumentation as for Theorem 5.

Theorem 15 Let y be a KKT point of problem (1) then x = T̃Q(y) is a stationary point of

problem (14).

Proof. The proof easily follows by observing that (15) can be written componentwise as

xi
[
(AXx)i + 2γ‖x‖2 − 2

]
= 0 .

Substituting

x2
i =

|yi|
γ + ϕ(y)

=
|yi|

γ − 2λ̄
we get

1
γ + ϕ(y)

[
(Ay)i + λ̄

]
xi = 0

which is implied by (4).

The converse is not true. Actually the point x̄ = o is stationary for Problem (14) but has

obviously not a KKT counterpart for Problem (1). However, Theorem 13 tells us that the origin

can be spared from our considerations, given we stay in a (reasonable) level set Lε. More generally

speaking, the loss of correspondence between stationary/KKT points implies that spurious KKT

points can be created in passing from Problem (1) to Problem (14). Fortunately, the reverse

correspondence can be proved for refined KKT points of Problem (14) as follows.

Theorem 16 Let x̄ be a stationary point of problem (14) satisfying the second order necessary

conditions. Then x̄ 6= o and ȳ = 1
‖x̄‖2 X̄x̄ is a KKT point of problem (1).

Proof. First note that, if (16) are satisfied, x̄ 6= o. Let ȳi = 1
‖x̄‖2x

2
i ≥ 0 define a feasible point

for Problem (1). We show that a λ̄ exists such that (4) holds. First note that ȳi = 0 if and only

if x̄i = 0. Next simply define λ̄ = 2(γ‖x̄‖2 − 1). Then obviously (Aȳ)i = −λ̄ if ȳi > 0. Further,

if ȳi = 0, then by the second-order condition, we get for the ith diagonal element of the matrix

in (16)

(Aȳ)i + λ̄ = (AX̄x̄)i + 2(γ‖x‖2 − 1) ≥ 0 ,

which completes the proof.

11



4 Algorithmic aspects and numerical experience

On the basis of the unconstrained formulations above, we have recast the problem of locating

a constrained solution of the Standard Quadratic optimization problem (1) as the problem of

locating an unconstrained solution of the function Pε from (3) or f from (7) or Ψ from (14). Note

that the newly introduced unconstrained problems (7) and (14) have the advantage that they do

not depend on a penalty parameter ε. Although in the quartic formulation (14) a parameter γ

appears in the definition of the matrix C, this is easily set knowing a range for aij .

For the solution of problems (7) or (14), we can use any unconstrained algorithm. Obviously

standard unconstrained optimization methods produce stationary points and there is no guarantee

that these correspond to global minimizers of the unconstrained function and hence of Problem (1).

Then global optimization techniques must be adopted. We use a simple multi-start approach,

repeating many local minimization processes starting from different, randomly chosen points and

selecting the best obtained value. As for the unconstrained method, we use the non-monotone

Barzilai-Borwein gradient method proposed in [9]. We coded the two alternative formulations in

Fortran 90 and we test them on a set of benchmark problems arising from a continuous formulation

of the classical maximum clique problem in graph theory. Given an undirected graph G = (V,E)

with vertex V and edge set E ⊂ V × V , the max clique problem consists on finding a complete

subgraph of G of maximum cardinality ω∗. Among the different continuous formulation as a non

convex optimization problem [5], we use the continuous formulation given by Bomze [2]. This is a

regularization version of the Motzkin-Straus [13] formulation obtained by perturbing the objective

function adding the term 1
2‖y‖

2, so that the maximum clique problem can be written as:

max{y>(AG + 1
2I)y : y ∈ ∆} , (18)

where AG denotes the adjacency matrix of the graph, namely aij = 1 if (i, j) ∈ E. The regularized

version (18) avoids the drawback of the original Motzkin-Straus formulation of having spurious

solutions, namely of solutions that are not in a one-to-one correspondence with solutions of the

original combinatorial problems. Given a solution ȳ of (18), a vertex i is in the clique if and

only if ȳi > 0 and the corresponding cardinality is ω̄ = 1
2 (1− f̄)−1. Obviously σ∗ is a maximum

clique of G is and only if x∗ is the global solution of (18). In this case of problem (18) the choice

of the parameter γ in (14) is easily obtained noting that −2 ≤ aij ≤ 0 and aii = −1 (we have

transformed the max problem into a min one), hence to obtained a strictly Rn+-copositive matrix

with elements cij = 1
2aij + γ, we can set γ ≥ 1.

As a benchmark set, we use the 66 graph obtained from the DIMACS challenge [11]. Each

problem has been solved starting with a randomly generated point x0 with ‖x0‖ = 1. We

perform 150 random runs. We compare the performance in terms of value of the clique found and

computational time. In Table 1 we report the results in cumulative form. For each of the two

formulations (7) or (14), we count the number of wins, ties and defeats over the 66 problems in

terms of the largest clique size found, average clique size obtained, and cumulative computational

time over 150 runs. Here, any difference smaller than 20% of the times between the formulations

is considered as a tie.

12



best average less cpu time

results results over 150 runs

winner (7) 14 34 46

winner (14) 7 27 17

tie 45 5 3

Table 1: Cumulative results of two different formulations for the 66 max-clique problems

On most problems, the two formulations are equivalent regarding the clique size found on the

150 runs (interestingly, this value was detected much earlier, typically after less than 20 runs).

However, the quotient formulation (7) has better performance in terms of computational time.

In Tables 2 and 3 we report the detailed results on the 66 problems in terms of the largest clique

size found by using either the quotient formulation (7) or the quartic formulation (14). In the last

column we report the largest known clique size or the clique number (if no ≥ sign is reported).

Best results among the two formulations are shown in bold face.

References

[1] I.M. Bomze. Copositivity conditions for global optimality in indefinite quadratic programming

problems. Czechoslovak Journal of Operations Research 1 7–19 (1992).

[2] I.M. Bomze. Evolution towards the maximum clique. Journal of Global Optimization 10 143–164

(1997).

[3] I.M. Bomze. On standard quadratic optimization problems. Journal of Global Optimization 13

369–387 (1998).

[4] I.M. Bomze. Quadratic optimization: standard problems; I – theory; II – algorithms; III – applica-

tions. In Encyclopedia of Optimization, 2nd ed., C.A. Floudas, P.M. Pardalos (eds.), Springer, New

York, 2009.

[5] I.M. Bomze, M. Budinich, P. Pardalos, and M. Pelillo. The maximum clique problem. In Handbook

of Combinatorial Optimization, D.-Z. Du, P.M. Pardalos (eds.), supp.Vol. A, pp. 1–74. Kluwer, New

York, 1999.

[6] I. Bomze and L. Palagi. Quartic formulation of standard quadratic optimization. Journal of Global

Optimization 32 181–205 (2005).

[7] S. Burer, R.D.C. Monteiro. A nonlinear programming algortihm for solving semidefinite programs

via low-rank factorization. Mathematical Programming 95 329–357 (2003).

[8] R. Fletcher. Practical Methods of Optimization, Vol.2: Constrained Optimization. Wiley, New York,

1981.

[9] L. Grippo and M. Sciandrone. Nonmonotone globalization techniques for the Barzilai-Borwein gra-

dient method. Computational Optimization and Applications 23 143–169 (2002).

[10] S. Homer and M. Peinado. Design and performance of parallel and distributed approximation algo-

rtihms for maxcut. Journal of Parallel and Distributed Computing 46 48–61 (1997).

13



[11] D. Johnson and M.A. Trick, eds. Cliques Coloring and Satisfiability: Second DIMACS Implementa-

tion Challenge, vol. 26 of DIMACS Series, AMS 1996.
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quotient quartic best

graph n max max known

brock200 2 200 10 10 12

brock200 3 200 13 13 15

brock200 4 200 15 15 17

brock400 1 400 24 22 27

brock400 2 400 22 22 29

brock400 3 400 21 22 31

brock400 4 400 23 23 33

brock800 1 800 18 18 23

brock800 2 800 18 18 24

brock800 3 800 17 17 25

brock800 4 800 18 18 26

c-fat200-1 200 12 12 12

c-fat200-2 200 24 24 24

c-fat200-5 200 58 58 58

c-fat500-1 500 14 14 14

c-fat500-10 500 126 126 126

c-fat500-2 500 26 26 26

c-fat500-5 500 64 64 64

hamming10-2 1024 370 363 512

hamming10-4 1024 33 32 40

hamming6-2 64 32 32 32

hamming6-4 64 4 4 4

hamming8-2 256 121 128 128

hamming8-4 256 16 16 16

johnson16-2-4 120 8 8 8

johnson32-2-4 496 16 16 16

johnson8-2-4 28 4 4 4

johnson8-4-4 70 14 14 14

keller4 171 11 9 11

keller5 776 19 19 27

keller6 3361 38 38 ≥59

Table 2: DIMACS graphs: best results over 150 runs
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quotient quartic best

graph n max max known

MANN a27 378 122 122 126

MANN a45 1035 332 340 345

MANN a81 3321 1083 1092 1100

MANN a9 45 16 16 16

p hat1000-1 1000 10 10 ≥10

p hat1000-2 1000 45 45 ≥46

p hat1000-3 1000 63 63 ≥68

p hat1500-1 1500 10 10 ≥12

p hat1500-2 1500 62 61 ≥65

p hat1500-3 1500 89 89 ≥94

p hat300-1 300 8 8 8

p hat300-2 300 25 25 25

p hat300-3 300 34 34 36

p hat500-1 500 9 9 9

p hat500-2 500 35 34 36

p hat500-3 500 48 48 ≥50

p hat700-1 700 9 9 11

p hat700-2 700 43 43 ≥44

p hat700-3 700 60 61 ≥62

san1000 1000 9 8 15

san200 0.7 1 200 17 16 30

san200 0.7 2 200 14 13 18

san200 0.9 1 200 48 51 70

san200 0.9 2 200 47 44 60

san200 0.9 3 200 34 34 44

san400 0.5 1 400 8 7 13

san400 0.7 1 400 22 21 40

san400 0.7 2 400 17 17 30

san400 0.7 3 400 15 15 22

san400 0.9 1 400 56 55 100

sanr200 0.7 200 17 17 18

sanr200 0.9 200 39 38 42

sanr400 0.5 400 12 12 13

sanr400 0.7 400 18 19 22

Table 3: DIMACS graphs: best results over 150 runs
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