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1 Introduction

Many real-world problems can be modeled as Mixed Integer Programming (MIP) problems,
namely as minimization problems where some (or all) of the variables only assume integer
values. Finding a first feasible solution quickly is crucial for solving this class of problems. In
fact, many local-search approaches for MIP problems such as Local Branching [11], guide dives
and RINS [8] can be used only if a feasible solution is available.
In the literature, several heuristics methods for finding a first feasible solution for a MIP problem
have been proposed (see e.g. [2]-[4], [6], [13]-[18] ). Recently, Fischetti, Glover and Lodi [10]
proposed a new heuristic, the well-known Feasibility Pump, that turned out to be very useful in
finding a first feasible solution even when dealing with hard MIP instances. The FP heuristic is
implemented in various MIP solvers such as BONMIN [7].
The basic idea of the FP is that of generating two sequences of points {x̄k} and {x̃k} such
that x̄k is LP-feasible, but may not be integer feasible, and x̃k is integer, but not necessarily
LP-feasible. To be more specific the algorithm starts with a solution of the LP relaxation x̄0

and sets x̃0 equal to the rounding of x̄0. Then, at each iteration x̄k+1 is chosen as the nearest
LP-feasible point in ℓ1-norm to x̃k, and x̃k+1 is obtained as the rounding of x̄k+1. The aim of the
algorithm is to reduce at each iteration the distance between the points of the two sequences,
until the two points are the same and an integer feasible solution is found. Unfortunately, it
can happen that the distance between x̄k+1 and x̃k is greater than zero and x̃k+1 = x̃k, and
the strategy can stall. In order to overcome this drawback, random perturbations and restart
procedures are performed.
As the algorithm has proved to be effective in practice, various papers devoted to its further
improvements have been developed. Fischetti, Bertacco and Lodi [5] extended the ideas on which
the FP is based in two different directions: handling MIP problems with both 0-1 and integer
variables, and exploiting the FP information to drive a subsequent enumeration phase. In [1], in
order to improve the quality of the feasible solution found, Achterberg and Berthold consider an
alternative distance function which takes into account the original objective function. In [12],
Fischetti and Salvagnin proposed a new rounding heuristic based on a diving-like procedure and
constraint propagation.
An interesting interpretation of the FP has been given by J.Eckstein and M.Nediak in [6]. In
this work they noticed that the FP heuristic may be seen as a form of Frank-Wolfe procedure
applied to a nonsmooth merit function which penalizes the violation of the 0-1 constraints.
In this paper, we extend to the case of general MIP problems the approach described in [9] for
finding a first feasible solution to binary MIP problems.
The paper is organized as follows. In Section 2, we give a brief review of the Feasibility Pump
heuristic for general MIP problems. In Section 3, we show the equivalence between the FP
heuristic and the Frank-Wolfe algorithm applied to a nonsmooth merit function. In Section 4,
we introduce new nonsmooth merit functions for dealing with general integer variables. Finally,
we present our algorithm in Section 5.

In the following, given a concave function f : Rn → R, we denote by ∂f(x) the set of supergra-
dients of f at the point x, namely

∂f(x) = {v ∈ Rn : f(y)− f(x) ≤ vT (y − x), ∀ y ∈ Rn}.
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2 The Feasibility Pump Heuristic for General MIP Problems

We consider a MIP problem of the form:

min cTx

s.t.Ax ≥ b (MIP)

l ≤ x ≤ u

xj ∈ ℤ ∀j ∈ I,

where A ∈ Rm×n and I ⊂ {1, 2, . . . , n} is the set of indices of integer variables. Let P = {x :
Ax ≥ b, l ≤ x ≤ u} denote the polyhedron of the LP-relaxation of (MIP). The Feasibility
Pump starts from the solution of the LP relaxation problem x̄0 := argmin{cTx : x ∈ P} and
generates two sequences of points x̄k and x̃k: x̄k is LP-feasible, but may be integer infeasible;
x̃k is integer, but not necessarily LP-feasible. At each iteration x̄k+1 ∈ P is the nearest point in
ℓ1-norm to x̃k:

x̄k+1 := argmin
x∈P

Δ(x, x̃k) (1)

where
Δ(x, x̃k) =

∑

j∈I

∣xj − x̃kj ∣.

It is easy to notice that solving problem (1) is equivalent to solve the following LP-problem:

min
∑

j∈I:x̃k
j=lj

(xj − lj) +
∑

j∈I:x̃k
j=uj

(uj − xj) +
∑

j∈I:lj<x̃k
j<uj

dj

s.t. Ax ≥ b

l ≤ x ≤ u

−dj ≤ xj − x̃kj ≤ dj ∀j ∈ I : lj < x̃kj < uj ,

(2)

where the variables dj are introduced to model the nonlinear function dj = ∣xj − x̃kj ∣ for integer

variables xj that are not equal to one of their bounds in the rounded solution x̃k.
The point x̃k+1 is obtained as the rounding of x̄k+1. The procedure stops if at some iteration
l, x̄l is integer or, in case of failing, if it reaches a time or iteration limit. In order to avoid
stalling issues and loops, the Feasibility Pump performs a perturbation step. Here we report a
brief outline of the basic scheme:
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The Feasibility Pump (FP) for general MIPs - basic version

Initialization: Set k = 0, let x̄0 := argmin{cTx : x ∈ P}

If (x̄0 is integer) return x̄0

Compute x̃0 = round(x̄0)

While (not stopping condition) do

Step 1 Compute x̄k+1 := argmin{Δ(x, x̃k) : x ∈ P}

Step 2 If (x̄k+1 is integer) return x̄k+1

Step 3 Compute x̃k+1 = round(x̄k+1)

Step 4 If (cycle detected) x̃k+1 = perturb(x̃k)

Step 5 Update k = k + 1

End While

Now we give a better description of the rounding and the perturbing procedures used respectively
at Step 3 and at Step 4:

Round: This function transforms a given point x̄k into an integer one, x̃k. The easiest
choice is that of rounding each component x̄kj with j ∈ I to the nearest integer, while
leaving the continuous components of the solution unchanged. Formally,

x̃kj =

⎧

⎨

⎩

[x̄kj ] = ⌊x̄kj + �⌋ if j ∈ I

x̄kj otherwise
(3)

where � = 0.5, and ⌊⋅⌋ represents the floor function (a function which maps a real number
to the largest previous integer). Another possibility is that of using a random � like that
described in [5]:

�(!) =

⎧



⎨



⎩

2!(1− !), if ! ≤
1

2

1− 2!(1− !), otherwise

(4)

where ! is a uniform random variable in [0, 1). Using the definition (4), threshold � can
assume a value between 0 and 1, but values close to 0.5 are more likely than those close
to 0 or 1.

Perturb: The aim of the perturbation procedure is to avoid cycling and it consists in two
heuristics. To be more specific:

– if x̃kj = x̃k+1

j for all j ∈ I a weak perturbation is performed, namely, a random number
of integer constrained components, chosen as to minimize the increase in the distance
Δ(x̄k+1, x̃k+1), is moved using the following rule:

x̃k+1

j =

⎧

⎨

⎩

x̃kj + 1, if x̄k+1

j > x̃kj

x̃kj − 1, if x̄k+1

j < x̃kj

(5)
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– A restart operation, consisting of random perturbation of some entries of x̃k+1, is
performed if one of the following situations occur:

- the point x̃k+1 is equal, in its integer components, to a previously generated
point;

- the distance Δ(x̄k+1, x̃k+1) did not decrease by at least 10% in the last KK
iterations.

3 The FP heuristic and the Frank-Wolfe method

In this section, following a similar reasoning as in [6, 9], we point out the equivalence between
the FP heuristic and the Frank-Wolfe method for the general integer case. In order to better
understand this equivalence we briefly recall the unitary stepsize Frank-Wolfe method for concave
non-differentiable functions. Let us consider the problem

min f(x)
x ∈ P

(6)

where P ⊂ Rn is a non empty polyhedral set that does not contain lines going to infinity in
both directions, f : Rn → R is a concave, non-differentiable function, bounded below on P .
The Frank-Wolfe algorithm with unitary stepsize (see [9] for further details) at each iteration k
produces a new point

xk+1 = argmin
x∈P

(gk)Tx

where gk ∈ ∂f(xk). Then, the algorithm involves only the solution of linear programming
problems, and it is proved in [20] that it converges to a stationary point x★ in a finite number
of iterations.
Now we consider the basic FP heuristic without any perturbation (i.e. without Step 4) and we
show that it can be interpreted as the Frank-Wolfe algorithm with unitary stepsize applied to a
concave, nondifferentiable merit function.
First of all, we can rewrite the distance as follows:

Δ(x, x̃k) =
∑

j∈I:x̃k
j=lj

xj −
∑

j∈I:x̃k
j=uj

xj +
∑

j∈I:lj<x̃k
j<uj

dj .

At each iteration, the Feasibility Pump for MILP problems with general integers computes, at
Step 1, the solution of the LP problem (2), then, at Step 3, it rounds the solution x̄k, thus giving
x̃k+1.
These two operations can be included in the unique step of calculating the solution of the
following LP problem:

min
∑

j∈I:x̄k
j≤lj+

1

2

xj −
∑

j∈I:x̄k
j>uj−

1

2

xj +
∑

j∈I:lj+
1

2
<x̄k

j≤uj−
1

2

dj

s.t. Ax ≥ b

l ≤ x ≤ u

−dj ≤ xj − [x̄kj ] ≤ dj ∀j ∈ I : lj +
1

2
< x̄kj ≤ uj −

1

2
.

(7)
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It can be proved that problem (7) is equivalent to

min
∑

j∈I:x̄k
j≤lj+

1

2

xj −
∑

j∈I:x̄k
j>uj−

1

2

xj +
∑

j∈I, i=1,...,mj :

sij−
1
2
<x̄k

j
≤sij+

1
2

dij

s.t. Ax ≥ b

l ≤ x ≤ u

−dij ≤ xj − sij ≤ dij ∀j ∈ I, i = 1, . . . ,mj ,

(8)

with {sij : i = 1, . . . ,mj} = (lj , uj) ∩ Z.

Proposition 1 Problem (7) is equivalent to problem (8).

Proof. We can easily notice that for each j ∈ I there exists only one index ij ∈ {1, . . . ,mj}
such that

sijj = [x̄kj ],

then we can rewrite the objective function of problem (8) as follows

∑

j∈I:x̄k
j≤lj+

1

2

xj −
∑

j∈I:x̄k
j>uj−

1

2

xj +
∑

j∈I:lj+
1

2
<x̄k

j≤uj−
1

2

dijj .

The other variables dij can assume an arbitrarily large value, so that the related constraints are
trivially satisfied. Then problem (8) becomes

min
∑

j∈I:x̄k
j≤lj+

1

2

xj −
∑

j∈I:x̄k
j>uj−

1

2

xj +
∑

j∈I:lj+
1

2
<x̄k

j≤uj−
1

2

dijj

s.t. Ax ≥ b

l ≤ x ≤ u

−dijj ≤ xj − [x̄kj ] ≤ dijj ∀j ∈ I : lj +
1

2
< x̄kj ≤ uj −

1

2
.

(9)

By setting variables dijj equal to dj in (9), we have problem (7). □

Problem (8) can be seen as the iteration of the Frank Wolfe method with unitary stepsize applied
to the following minimization problem

min
∑

j∈I

min{xj − lj , uj − xj , d1j , . . . , dmjj}

s.t. Ax ≥ b (10)

l ≤ x ≤ u

− dij ≤ xj − sij ≤ dij ∀j ∈ I, i = 1, . . . ,mj .
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4 Nonsmooth merit functions for solving general MIPs

In the previous section, we have seen that the Feasibility Pump for general MIP problems is
equivalent to the Frank Wolfe algorithm applied to the following problem

min  (x, d) =
∑

j∈I

min{�(xj − lj), �(uj − xj), �(d1j), . . . , �(dmjj)}

s.t. Ax ≥ b (11)

l ≤ x ≤ u

− dij ≤ xj − sij ≤ dij ∀j ∈ I, i = 1, . . . ,mj .

where d = (d11, . . . , dm11, d12, . . . , dm22, . . . , d1N , . . . , dmNN ) and N = ∣I∣.
The function � : R→ R is the identity function

�(t) = t.

Following the idea in [9, 19], we replace the linear terms in � with suitable nonlinear terms that
lead to a merit function whose feature is that of encouraging the change of a bunch of variables
rather than distributing this change over all the variables.

Here are the terms we use:

Logarithmic function
�(t) = ln(t+ ") (12)

Hyperbolic function
�(t) = −(t+ ")−p (13)

Concave function
�(t) = 1− exp(−�t) (14)

Logistic function
�(t) = [1 + exp(−�t)]−1 (15)

where ", �, p > 0.

5 The Reweighted Feasibility Pump for MIPs

As in [9], the use of the � functions (12)-(15) leads to a new FP scheme in which the ℓ1-norm
used for calculating the next LP-feasible point is replaced with a “weighted” ℓ1-norm of the form

ΔW (x, x̃) =
∑

j∈I:x̃k
j=lj

wj(xj − lj) +
∑

j∈I:x̃k
j=uj

wj(uj − xj) +
∑

j∈I:lj<x̃k
j<uj

wjdj (16)

where the variables dj = ∣xj − x̃j ∣ satisfy the constraints

−dj ≤ xj − x̃j ≤ dj ∀j ∈ I : lj < x̃j < uj , (17)

and wj , j = 1, . . . , n are positive weights depending on the � term chosen. Here we report an
outline of the algorithm:
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Reweighted Feasibility Pump (RFP) for general MIPs - basic version

Initialization: Set k = 0, let x̄0 := argmin{cTx : Ax ≥ b}

If (x̄0 is integer) return x̄0

Compute x̃0 = round(x̄0)

While (not stopping condition) do

Step 1 Compute x̄k+1 := argmin{ΔW k(x, x̃k) : Ax ≥ b}

Step 2 If (x̄k+1 is integer) return x̄k+1

Step 3 Compute x̃k+1 = round(x̄k+1)

Step 4 If (cycle detected) (x̃k+1, x̄k+1) = perturb(x̃k, x̄k)

Step 5 Update k = k + 1

End While

We assume that the round procedure is the same as that described in Section 2 for the original
version of the FP heuristic. As regards the perturb procedure, we first perturb the point x̃k

using the same procedure as that described in Section 2, then for all indices j ∈ I such that
x̃k+1 ∕= x̃k, we add 0.5 to x̄k+1

j (if x̄k+1

j > x̃kj ) or subtract 0.5 to x̄k+1

j (if x̄k+1

j < x̃kj ). Anyway,
different rounding and perturbing procedures can be suitably developed.
Following the same reasoning of Section 3, we can reinterpret the reweighted FP heuristic without
perturbation as the unitary stepsize Frank-Wolfe algorithm applied to the merit function  . Let
us now consider a generic iteration k of the reweighted FP. At Step 1, the algorithm computes
the solution of the LP problem

min
∑

j∈I:x̄k
j≤lj+

1

2

wk
j xj −

∑

j∈I:x̄k
j>uj−

1

2

wk
j xj +

∑

j∈I:lj+
1

2
<x̄k

j≤uj−
1

2

wk
j dj

s.t. Ax ≥ b

l ≤ x ≤ u

−dj ≤ xj − [x̄kj ] ≤ dj ∀j ∈ I : lj +
1

2
< x̄kj ≤ uj −

1

2
.

(18)

As in Section 3, we can prove that problem (18) is equivalent to

min
∑

j∈I:x̄k
j≤lj+

1

2

w̃k
j xj −

∑

j∈I:x̄k
j>uj−

1

2

w̃k
j xj +

∑

j∈I, i=1,...,mj :

sij−
1
2
<x̄k

j
≤sij+

1
2

w̃k
ij dij

s.t. Ax ≥ b

l ≤ x ≤ u

−dij ≤ xj − sij ≤ dij ∀j ∈ I, i = 1, . . . ,mj ,

(19)
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with {sij : i = 1, . . . ,mj} = (lj , uj) ∩ Z.

By setting
w̃k
j = ∣gkxj

∣

w̃k
ij = ∣gkdij ∣

with gk ∈ ∂ (x̄k, d̄k), and d̄kij = ∣xj − sij ∣, ∀j ∈ I, i = 1, . . . ,mj .
Problem (19) can be seen as the iteration of the Frank Wolfe method with unitary stepsize
applied to the following minimization problem

min (x, d) =
∑

j∈I

min{�(xj − lj), �(uj − xj), �(d1j), . . . , �(dmjj)}

s.t. Ax ≥ b (20)

l ≤ x ≤ u

− dij ≤ xj − sij ≤ dij ∀j ∈ I, i = 1, . . . ,mj .

In order to better understand the meaning of the Reweighted Feasibility Pump we give an
example.

Example 1 By choosing � equal to the logarithmic function, we can write problem (20) as
follows:

min (x, d) =
∑

j∈I

min{log(xj − lj + �), log(uj − xj + �), log(d1j + �), . . . , log(dmjj + �)}

s.t. Ax ≥ b (21)

l ≤ x ≤ u

− dij ≤ xj − sij ≤ dij ∀j ∈ I, i = 1, . . . ,mj .

Then, at an iteration k of the Reweighted Feasibility Pump heuristic, we have

wk
j =

⎧





















⎨





















⎩

w̃k
j =

1

x̄kj − lj + �
if x̄kj ≤ lj + 1/2

w̃k
j =

1

uj − x̄kj + �
if x̄kj ≥ uj − 1/2

w̃k
ij =

1

d̄kij + �
if sij − 1/2 ≤ x̄kj ≤ sij + 1/2

(22)
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