
Classification and Traversal Algorithmic Techniques
for Optimization Problems on Directed Hyperpaths

Giorgio Ausiello
Giuseppe F. Italiano
Luigi Laura
Umberto Nanni
Fabiano Sarracco

Technical Report n. 18, 2010

Classification and Traversal Algorithmic Techniques for

Optimization Problems on Directed Hyperpaths

Giorgio Ausiello∗ Giuseppe F. Italiano† Luigi Laura∗ Umberto Nanni∗‡

Fabiano Sarracco∗

Abstract

Directed hypergraphs are used in several applications to model different combinatorial struc-
tures. A directed hypergraph is defined by a set of nodes and a set of hyperarcs, each connecting
a set of source nodes to a single target node. A hyperpath, similarly to the notion of path in
directed graphs, consists of a connection among nodes using hyperarcs. Unlike paths in graphs,
however, hyperpaths are suitable of many different definitions of measure, which have been used
in a wide set of applications. Not surprisingly, depending on the considered measure function
the cost of finding optimal hyperpaths may range from NP-hard to linear time.

A first solution for finding optimal hyperpaths in case of a superior functions (SUP) can be
found in a seminal work by Knuth [Knu77], which generalizes Dijkstra’s Algorithm [Dij59]
to deal with a grammar problem. This solution is further extended by Ramalingam and
Reps [RR96] to deal with weakly superior functions (WSUP). Dijkstra’s priority queue can
find optimal paths or hyperpaths if the measure function complies two hypotheses: it is mono-
tone with respect to all its arguments and (multidimensional) triangle inequality holds. We
show that monotonicity - alone - is sufficient to guarantee interesting properties, and to make
some optimization algorithms effective. Hence we introduce the generalized superior function
(GSUP), and consider the symmetrical classes of inferior functions, giving rise to a hierarchy
of classes of optimization problems on directed hypergraphs.

After showing that some measure functions might induce cycles in optimal hyperpaths, we
come up to another taxonomy of measure functions, based on the structure of the optimal
hyperpaths they determine, and relate the two hierarchies.

Finally we introduce a general algorithmic pattern for the single-source optimal hyperpath
problem encompassing existing and new algorithms, and compare their effectiveness in various
cases, including the case of optimal cyclic hyperpaths.

Keywords: hyperpath algorithm, directed hypergraph, optimal hyperpath, cyclic hyperpath,
measure function, algorithmic pattern

∗Dipartimento di Informatica e Sistemistica “Antonio Ruberti”, Università di Roma “La Sapienza”, via Ariosto
25, 00185, Roma, Italy. {ausiello,laura,nanni,sarracco}@dis.uniroma1.it
†Dipartimento di Informatica, Sistemi e Produzione, Università di Roma “Tor Vergata”, via del Politecnico 1,

00133, Roma, Italy. italiano@disp.uniroma2.it
‡Centro di Ricerca per il Trasporto e la Logistica, Università di Roma “La Sapienza”, via Eudossiana 18, 00184,

Roma, Italy.

1

Contents

1 Introduction . 3

2 Basic Definitions . 5

3 Cycles in Hypergraphs and Hyperpaths . 8

4 Tractable and Untractable Measure Functions 13

5 Generalized Superior and Inferior Functions . 16

6 On the Structure of Optimal Hyperpaths . 23

7 Representation of Optimal Hyperpaths . 31

8 Algorithmic Approaches to Hyperpath Problems 36

9 Conclusions and Open Issues . 45

2

1 Introduction

Directed hypergraphs are a generalization of directed graphs. While directed graphs are normally
used for representing one-to-one relations over finite sets, in several areas of computer science the
need for more general relations arises; a directed hypergraph is useful exactly in these scenarios.

A directed hypergraph H is a pair 〈N,H〉 where N is a set of nodes and H is a set of hyper-
arcs. Based on the possible definitions of hyperarcs, different models have been considered in the
literature with corresponding different properties, expressivity, and computational costs. Gallo et
al. [GLNP92, GLNP93] provide an extensive coverage of alternatives.

In the definition that we consider throughout this paper, each hyperarc connects a set of source
nodes to a single target node. This is the case of a many-to-one relation, including as a special case
the concept of function.

In several applications where directed hypergraphs have been adopted, the notions of path and
of traversal are required. A hyperpath, similarly to the notion of path in directed graphs, consists
of a connection among nodes using hyperarcs. However, while paths and shortest paths in directed
graphs are standard concepts, and efficient algorithms for their computations are well known, for
hypergraphs the corresponding notions of hyperpaths and optimal hyperpaths are very subtle. In
particular, hyperpaths are susceptible of different definitions of measure, each capturing concepts
arising in various applications. Not surprisingly, some of these measures make the problem of finding
optimal hyperpaths NP-hard.

Directed hypergraphs have been used in several contexts to model problems in an increas-
ing number of areas, such as: functional dependencies in databases [ADS83], transportation net-
works [NP88, NPG98, MN98, Pre00], Horn clauses in propositional calculus [AI91], computational
linguistics and automated speech recognition [KM04, Ned03], analysis of RDF (Resource Descrip-
tion Framework) documents [MV07, WLHW09, JHY10], Datalog formulae [GR90], machine learn-
ing [GMKT97], rule-based expert systems [RSC97], association rules in data mining [CDP04], man-
agement of authorizations in privacy protection [MMZ06], circuit drawing [EGB06], chemical re-
action networks [Ozt08], protein pathways [EKC+08], composition of web services [Fra07], quality
indicators in business processes [MY07], assembly lines [GP92], cellular networks [KHT09].

Furthermore, hypergraphs and related problems on hyperpaths, have been used as a key tool
to derive properties of combinatorial structures having, in turn, a wide coverage of applications,
namely AND-OR graphs [MM73, Nil82, MSS04], and Petri nets [AFN92, AFLN10].

Classical works on hypergraphs, such as [Ber73, Ber89], cover partially directed hypergraphs,
and some surveys, e.g., [Aus88, GLNP93, GS98, GS99] provide an early overview of applications
and techniques, but a unified view relating common problems on hyperpaths in these areas seems
to be missing.

Classifying measures over directed hyperpaths, the consequences which these have on the struc-
ture of the “optimal” hyperpaths, the corresponding computational cost, and the algorithms that
are available to compute statically and dynamically optimal (or suboptimal) hyperpaths is a re-
search challenge aiming at creating synergies among a number of different areas by means of an
unifying view of problems whose abstract formulation is essentially the same, or is reducible one
another. The main goals are:

• collecting, classifying and exchanging solutions from different areas within a unified frame-
work;

• providing evidence to the possible outcomes of algorithmic problems, focusing research to-
wards targets with high rewards;

• creating the best premises in order to exploit new solutions to their full potential as soon
they are devised.

Algorithms and data structures to find optimal hyperpaths have been developed by Knuth in
the context of a grammar problem [Knu77]. In this succinct but seminal work, Knuth introduces
an approach based on two balancing levers:

- a generalization of the metrics over directed hyperpaths, based on functions associated to
production rules of a context-free grammar: in our point of view, each of such rules plays the
role of a directed hyperarc;

3

- a restriction on the functions, which must comply certain properties, in order to preserve some
form of monotonicity to be exploited in finding a solution with combinatorial algorithms: at
this aim he introduces the superior functions.

Although Knuth does not mention explicitly the notion of “hypergraph” (but cites AND/OR graphs
among the applications of his results), the generalization of Dijkstra’s algorithm [Dij59] proposed
in that paper can be considered the first solution for finding optimal hyperpaths, and works if we
measure the hyperpaths by means of a superior function. In this case, for a hypergraph with |N |
nodes, |H| hyperarcs, and an overall size of |H|, this algorithm requires O(|H| log |N |+ |H|) worst
case time, that can be reduced to O(|N | log |N | + |H|) by using Fibonacci heaps [FT87] for the
implementation of priority queues.

The possible use of this algorithm has been extended beyond the superior functions. Ramalingam
and Reps considered several problems in [RR96], where they primarily introduce the output bounded
complexity and propose a dynamic algorithm for the single source shortest path problem. In the
same paper they introduce the weakly superior functions (WSUP) and, discussing the grammar
problem based on Knuth, they stressed that “this problem also subsumes the problem of finding
optimal hyperpaths in directed hypergraphs under varying optimization criteria” [RR96]. Hence,
they show that this algorithm actually works correctly for the larger class of WSUP functions as
well.

Many further contributions to the knowledge of directed hypergraphs and to connectivity and
optimization problems have been developed as within specific applicative contexts. As an example,
this is the case of transitive closure of functional dependencies in databases [ADS83], or traffic
assignment in transportation problems [NP88, MN98].

In this paper we analize the possible formulations of a “measure” function over directed hyper-
paths. According to how we define this measure, the problem of finding an optimal hyperpath can
be NP-hard, or tractable. We show that a source of “hardness” is due to a combinatorial constraint
over the set of hyperarcs. If one is interested to optimize only the “measure” of the resulting hy-
perpath, i.e., if the function is value-based, the resulting problem is tractable. But there are more
problems: for many interesting cases, even with naive measure functions (such as minimizing the
weight of the last hyperarc), the optimal hyperpaths can be cyclic. If one want to deal with these
cases, an explicit representation of cycles cannot be avoided.

In order to capture these cases that, although tractable, still lack a solution in the literature,
and following the work by Knuth and Ramalingam-Reps, we extend their work in various ways.

The superior functions introduced by Knuth are based on two properties: (i) a multidimensional
triangle inequality, which is partially relaxed in the WSUP functions by Ramalingam and Reps,
and (ii) the monotonicity with respect to all arguments. We prove that this last property - alone
- is generic enough in order to model a variety of interesting functions arising in practice, whereas
triangle inequality does not hold. Hence monotonicity is sufficient in order to guarantee fundamental
properties, and to make some optimization algorithms effective: if this property holds we have a
generalized superior function (GSUP). We also consider the symmetrical classes of inferior functions,
building up a hierarchy of optimization problems over directed hyperpaths.

Then we analyze optimal hyperpaths and introduce forms of equivalence coming up to another
hierarchy of optimization problems based on the structure that they induce on the optimal hyper-
paths; hence we relate the two hierarchies. We discuss forms of canonical representation of optimal
hyperpaths, and show that, for any optimization problem of a GSUP/GINF measure function,
there exists an optimal hyperpath that can be represented unambiguously in linear space. Such
canonical representations are interesting both for the design and analysis of algorithms to find op-
timal hyperpaths, since it is sufficient to consider few cases having a regular well known (minimal)
structure.

Finally we analyze within a common algorithmic pattern some existing and new algorithms to
deal with the problem of finding optimal hyperpaths, comparing and discussing their effectiveness
within the various classes of problems. One of these algorithms can find and return optimal cyclic
hyperpaths in O(|H| log |N |+ |H|) worst case time.

4

2 Basic Definitions

Different definitions of directed hypergraph are presented in literature. For instance, Gallo et
al. [GLNP93] provide quite a general definition of directed hypergraph by allowing both the source
and the target of a hyperarc to be non-singleton sets of nodes.

According to their terminology, particular cases of hyperarcs are: backward hyperarcs (or B-
arcs), having a single node as a target, forward hyperarcs (or F-arcs), having a single node as
a source, and BF-hyperarcs, with multiple source and sink nodes. Depending on the types of
allowed hyperarcs, one may have B-Hypergraphs, F-Hypergraphs, or BF-Hypergraphs. Within this
nomenclature, in this paper we are considering only B-Hypergraphs.

If we are given a certain type of hyperarcs, there are different ways of defining hyperpaths, i.e.,
connections based on a suitable collection of hyperarcs. As an example the several notions of “hyper-
path” proposed in the classical work by Gallo et al. [GLNP92] do not include the “L-hyperpaths”,
considered in the recent work by Thakur and Tripathi [TT09], that provide a comparison of various
definitions.

Finally, for a given hyperpath, there are still many possible ways to “measure” it; this issue and
its consequences will be considered in the following sections.

Definition 2.1 A directed hypergraph H is a pair 〈N,H〉, where N is a set of nodes and H ⊂ 2N ×N
is a set of hyperarcs. Each hyperarc is an ordered pair h = 〈S, t〉, where the source set (or tail)
S ⊆ N is an arbitrary nonempty set of nodes, and the target node (or head) t ∈ N is a single node.

In many cases, given a hypergraph, we need to discuss the topological properties of the under-
lying graph, resulting from the transformation of each hyperarc in a set of arcs. An example is
provided in Figure 1.

Definition 2.2 Given a directed hypergraph H = 〈N,H〉, its graph reduction is the directed graph
G(H) = 〈N,A〉, where A = {(xi, y) | ∃X ⊆ N such that 〈X, y〉 ∈ H and xi ∈ X}.

f

b

a

c

d

g

h
e

a

b

g

f
c

d

e
h

(a) (b)

Figure 1: (a) A directed hypergraph and (b) its corresponding graph reduction G(H).

Definition 2.3 A weighted directed hypergraph HW is a triple 〈N,H;w〉, where 〈N,H〉 is a di-
rected hypergraph and each hyperarc 〈S, t〉 ∈ H is associated to a real value w〈S,t〉 ∈ < called weight
of the hyperarc.

Note that a directed graph is a special case of directed hypergraph in which all the source sets have
cardinality one.

Definition 2.4 Given a node n, the forward star of n, or fstar(n), is the set of all its outgoing
hyperarcs (i.e., hyperarcs having node n in the source set), while the backward star of n, or bstar(n),
is the set of all its incoming hyperarcs, i.e., hyperarcs whose target node is n.

The outdegree of n is the cardinality of its forward star, while the indegree of n is the cardinality
of its backward star, i.e., outdegree(n) = |fstar(n)| and indegree(n) = |bstar(n)|.

5

An example including the previous definitions is presented in Figure 1. Observe that fstar(b) =
{〈bf, e〉, 〈bfg, h〉}, hence outdegree(b) = 2; bstar(b) = {〈a, b〉, 〈f, b〉} (indegree(b) = 2), while bstar(c) =
∅, hence indegree(c) = 0.

Since the source set of a hyperarc may have cardinality greater than one, the property that the
sum of the indegree of all nodes is equal to the sum of the outdegree of all nodes cannot be extended
from directed graphs to directed hypergraphs.

A self-loop is a hyperarc whose target node appears also in the source set.

Definition 2.5 A directed hypergraph H′ = 〈N ′, H ′〉 is a subhypergraph of H = 〈N,H〉 (denoted
as H′ ⊆ H) if:

a) N ′ ⊆ N ,

b) H ′ ⊆ H, and, for each hyperarc 〈S, t〉 ∈ H ′, S ⊆ N ′ and t ∈ N ′,

Furthermore, let H ′ ⊆ H be a set of hyperarcs in H. Let N ′ ⊆ N be the union of source sets and
target nodes of hyperarcs in H ′. The hypergraph H′ = 〈N ′, H ′〉 is said to be the subhypergraph of
H induced by H ′.

Before defining the notion of hyperpath in directed hypergraphs, we relate some simple graphs
definitions, like paths, walks and cycles, to directed hypergraphs, since they will be recalled after-
wards.

Definition 2.6 A (directed) walk of length k in a directed hypergraph from a node x to a node y,
is a sequence of nodes and hyperarcs

[x ≡ n1, h1, n2, h2, . . . , hk, nk+1 ≡ y]

such that, for each j = 1, . . . , k, hj = 〈Sj , nj+1〉 ∈ H, and nj ∈ Sj. A (directed) cycle is a walk of
length k ≥ 1 having n1 = nk+1. A walk is acyclic, or simple, if it does not contain any cycle (i.e.,
if all nodes are distinct).

We remark that a walk in a hypergraphH is bijectively associated with a path in its graph reduction
G(H). Unlike the definition of path, we define (the existence of) a hyperpath in a recursive way.

Definition 2.7 Let H = 〈N,H〉 be a directed hypergraph, X ⊆ N be a non-empty subset of nodes,
and y be a node in N . There is a hyperpath from X to y in H if either

a) y ∈ X (extended reflexivity);

b) there is a hyperarc 〈Z, y〉 ∈ H and hyperpaths from X to each node zi ∈ Z (extended transi-
tivity).

If there exists a hyperpath from X to y we say that y is reachable from X and, in case b), that
hyperarc 〈Z, y〉 is traversable.

The above recursive definition of hyperpath can be naturally represented by a tree defined as
follows:

Definition 2.8 Let H = 〈N,H〉 be a directed hypergraph, X ⊆ N be a non-empty subset of nodes,
and y be a node in N . A hyperpath (or unfolded hyperpath or hyperpath tree) from X to y (if it
exists) is a tree tX,y recursively defined as follows:

a) for each (sub)hyperpath obtained by extended reflexivity, the corresponding (sub)tree is empty;

b) if, by extended transitivity, there is a hyperarc 〈Z, y〉 ∈ H and hyperpaths from X to each
node zi ∈ Z, then tX,y consists of a root labeled with hyperarc 〈Z, y〉 having as subtrees the
hyperpath trees tX,zi from X to each node zi ∈ Z;

A branch of tX,y is a path from the root to a leaf node of tX,y.

6

f

b

a

c

d

g

e
h

<b f g , h>

<f , b> <c , f> <c d , g>

<c , f> <c , d>

(a) (b)

Figure 2: A hyperpath from c to h is highlighted with bolded hyperarcs in (a). The corresponding
hyperpath tree (tc,h) is shown in (b).

Note that the root of the hyperpath tree tX,y is a hyperarc in bstar(y). Furthermore if 〈S, t〉 is
a leaf in the hyperpath tree, then it must be S ⊆ X. An example of hyperpath tree is presented in
Figure 2.

This representation explicitly describes the sequence of hyperarcs as traversed while going from
X to y. There is however an alternative and more concise way of describing hyperpaths, defined as
follows:

Definition 2.9 Let H = 〈N,H〉 be a directed hypergraph and let tX,y be a hyperpath from a set of
nodes X ⊆ N to a target node y ∈ N . The folded hyperpath h(tX,y) corresponding to tX,y is the
subhypergraph of H induced by the hyperarcs in tX,y.

It is interesting to observe that there is not a one-to-one relationship between unfolded and
folded hyperpaths, since distinct (unfolded) hyperpaths may have the same folded representation.

Note also that these two representations can be used in the case of paths in a directed graph as
well: given a path π from a node x to a node y, we can describe π either by providing the sequence
of all the edges in π as traversed while going from x to y (unfolded description), or by providing the
subgraph of G containing exactly the edges of π (folded description) (see, for instance, Figure 3).
While the former description may contain the same edge more than once and may not even be
finite, since it may contain a cycle which is traversed an unbounded number of times, the latter
description is more compact but it may hide some features of the actual path.

<e , d>

<e , f>

<c , e>
<b , c>

<d , b>
<b , e>

<a , b>

<e , d>

<e , f>
<c , e>
<b , c>
<d , b>

<b , e>
<a , b>

b

a

d

c e

f

(a) (b) (c)

Figure 3: In a directed graph, the unfolded representation of two different paths from a to f , such
as (a) and (b), may have the same folded representation (c).

While turning from graphs to hypergraphs, we can notice moreover that there is an even deeper
difference between folded and unfolded hyperpaths: unlike simple paths, in fact, there are even
acyclic hyperpaths whose unfolded tree representation is exponentially larger than the corresponding
folded representation. An example is shown in Figure 4. Nevertheless, compared to the traditional
folded version, unfolded hyperpaths are a sharp and unambiguous representation; therefore, first of
all we must analyze cyclic hypergraphs and hyperpaths, that is the topic of the following section.

7

h

i

j

f

g

d

e

b

c

a

(a)

<h i , j>

<f g , h>

<d e , f> <d e , g>

<f g , i>

<b c , d> <b c , e> <b c , d> <b c , e>

<a , b> <a , c> <a , b> <a , c>

.

.

.

(b)

Figure 4: A folded hyperpath ha,j and, below, its unfolded representation ta,j of exponential size.

3 Cycles in Hypergraphs and Hyperpaths

In this section we address the structure of hyperpaths in presence of cycles. Analysis of several
alternative definition of cycles and acyclicity in directed hypergraphs has been considered in many
studies (see, e.g., [ADS86, GLNP93, TT09]).

Definition 3.1 A directed hypergraph H = 〈N,H〉 is cyclic if it contains at least one directed cycle,
otherwise it is acyclic.

Also for directed hypergraphs we can relate the acyclicity of a hypergraph with the existence of a
topological ordering of its nodes.

Lemma 3.1 [GLNP93] A directed hypergraph H = 〈N,H〉 is acyclic if and only if there exists a
topological ordering of its nodes 〈ni1 , ni2 , . . . , nin〉 such that, for each hyperarc h = 〈S, t〉 ∈ H, each
node in S precedes t in the ordering.

Now we extend the notion of cyclicity to hyperpaths. The following definition relies upon the
trivial observation that a folded hyperpath is - anyway - a hypergraph.

Definition 3.2 A hyperpath tX,y is cyclic if and only if the corresponding folded hyperpath h(tX,y)
is cyclic, otherwise it is acyclic.

Since we need to deal with cyclic optimal hyperpaths, it would be useful to have a definition of
cyclicity that can be directly applied (and checked) on hyperpath trees. However, unlike simple
graphs, this task is not trivial, and requires a deeper understanding of such structures. The rest
of this section is therefore devoted to introduce some concepts which will help us to efficiently
characterize and manipulate hyperpaths. First we define basic measures.

Definition 3.3 Let H = 〈N,H〉 be a directed hyperpath, and let us consider any hyperpath tree
tX,y in H and its corresponding folded hyperpath h(tX,y). We define:

• Node-indegree of a node n: the indegree of node n in h(tX,y), denoted as N-indegtX,y
(n);

• Node-outdegree of a node n: the outdegree of node n in h(tX,y), denoted as N-outdegtX,y
(n);

• Node-multiplicity of a node n in the unfolded hyperpath tX,y, denoted as N-multtX,y
(n): this

is the maximum number of times that node n appears as target in a single branch of tX,y.

8

Each of these quantities, Node-indegree, Node-outdegree, and Node-multiplicity, are defined on the
hyperpath tX,y as the maximum of the corresponding quantity over all the nodes.

The representation of a hyperpath tX,y has singularities when there is a cycle passing through the
extremal nodes: xi ∈ X, and/or y. In such situations we will consider a dummy “start” node with
dummy input arcs for every xi ∈ X, and - symmetrically - a dummy output arc from node y to a
dummy “end” node. These will not affect the structure or the measure of the hyperpaths at hand:
we will address these special cases when required.

Note that both node-indegree and node-outdegree are defined on the folded and unfolded hy-
perpath representations. Actually, the node-indegree of a hyperpath tX,y is the maximum number
of distinct hyperarcs in tX,y having the same node as target, and the outdegree is the maximum
number of distinct hyperarcs in tX,y having the same node in the source.

Lemma 3.2 Any hyperpath tX,y having N-mult(tX,y) ≥ 2 is cyclic.

Proof. Let h and h′ be two hyperarcs having the same node, say n, as target and belonging to
the same branch of tX,y (we assume that h is the deeper hyperarc). The sequence of hyperarcs
belonging to the subbranch delimited by h and h′, 〈h = h1, . . . , hk = h′〉 contains a directed path
from n to itself in h(tX,y). Therefore, according to Definition 3.2, the hyperpath tX,y is cyclic. �

Note that the converse of Lemma 3.2 does not hold. There are cyclic hyperpaths whose unfolded
structure does not have the same target on the same branch, i.e., N-mult = 1: an example is
shown in Figure 5. Let us consider any nonempty hyperpath tree tX,y and the corresponding folded

f

d

e

b

c

a

<d e , f>

<b , d> <c , e>

<a , b><a , c>

<c , b> <b , c>

(a) (b)

Figure 5: (a) folded and (b) unfolded representation of a cyclic hyperpath ta,f with N-indeg(ta,f) =
2 (since indegree(b) = indegree(c) = 2), but N-mult(ta,f) = 1.

hyperpath h(tX,y). Since any hyperarc in h(tX,y) must appear (at least once) in tX,y, any walk
in the unfolded hyperpath either is entirely within a single branch of the tree, or is is fragmented
among more branches: the latter case occurs when there are at least two nodes with indegree and/or
outdegree larger than 1. More precisely, let us suppose that a node n in an unfolded hyperpath
h(tX,y) has indegree(n) = k; then each hyperarc in (Xi, n) ∈ bstar(n), with i = 1, 2, . . . , k, appears
(at least) once in different branches of tX,y. Analogously, if a node n in an unfolded hyperpath
h(tX,y) has has outdegree(n) = k, then each hyperarc in (. . . n . . . , yi) ∈ fstar(n) appears (at least)
once in different branches of tX,y.

If we consider the nodes along a cycle, if any node n has N-indeg(n) > 1 then it is an input
node for that cycle, and if N-outdeg(n) > 1 then it is an output node. For any hyperpath tX,y
and any cycle C, a branch of tX,y can contain a portion of cycle C which starts from an input node
(the lower bound of cycle C in the branch) and ends at an output node (the upper bound of C in
the branch). In order to avoid a paradox while accounting for the degree, for any hyperpath tX,y,
if a cycle C includes also a node xi in the source set X, then xi is also an input node for C; if the
cycle contains the target node y, this is an output node for C. In this way, any cycle has at least
one input node and at least one output node.

An example of cycle fragmented in a hyperpath tree with N-mult = 1 is given in Figure 6).
The next Lemma formalizes the properties discussed above.

9

ba

c
d

<..., a>

<..., b>

<..., c>

<..., d>

<..., a>

e

<..., e>

<..., c>
<..., d>

<..., e>

<..., b>

Figure 6: A cycle and a possible fragmentation within a hyperpath tree: the input nodes of the
cycle (possible lower bounds of chains in a hyperpath tree) are a, c, d, whilst output nodes (possible
upper bounds in a tree) are b, c, e.

Lemma 3.3 Let us consider any nonempty cyclic hyperpath tree tX,y and the corresponding folded
hyperpath h(tX,y). Any cycle in h(tX,y) is contained within the branches tX,y as a collection of one
or more chains which cover the cycle.

Any chain has a lower end at an input node of the cycle (including the source nodes in X) and
an upper end at an output node (including the target node t).

In order to investigate the structure of cyclic hyperpaths, we need to introduce operations which
transform their structure.

Definition 3.4 Let tX,y be a hyperpath, and let sX,z and s′X,z be two distinct (possibly empty if
z ∈ X) subtrees of tX,y, representing two (distinct) hyperpaths from X to z. We define as (internal)
subtree replacement the operation of removing the subtree sX,z and replacing it with a copy of s′X,z.

Note that, if we replace a subtree sX,z with another generic hyperpath tree from X to z, we might
introduce new hyperarcs taken from the set H in the original hyperpath. On the contrary, an
internal replacement (considered in the previous definition) can only reduce the set of distinct
hyperarcs used in tX,y. The notation tX,y t′X,y denotes the fact that hyperpath t′X,y is obtained
by a (possibly empty) sequence of subtree replacements on the originary hyperpath tX,y. Note that
tX,y t′X,y implies h(t′X,y) ⊆ h(tX,y).

In the hyperpath tree ta,f shown in Figure 5(a), we can replace the subtree sa,c = {〈b, c〉, 〈a, b〉}
(on the right branch), with the subtree s′a,c = {〈a, c〉} (copied from the left branch), leading to a
new acyclic hyperpath tree t′a,f , with N-indeg(t′) = 1. In this case, the following relationships
hold: ta,f t′a,f , but t′a,f 6 ta,f ; furthermore h(t′a,f) (h(ta,f), and N-indeg(t′) < N-indeg(t).
On the other side, the opposite replacement, i.e., if we replace subtree s′a,c = {〈a, c〉} in the left
branch with subtree sa,c = {〈b, c〉, 〈a, b〉} on the right, we get a new hyperpath tree t′′a,f with
N-indeg(t′′) > N-indeg(t).

The examples show that, as a consequence of subtree replacements, node indegree can only
decrease, whilst node multiplicity can decrease or increase: the latter case may occur only if node
indegree is greater than one.

Lemma 3.4 A hyperpath tX,y is cyclic if and only if there exists a hyperpath t′X,y, such that
tX,y t′X,y and N-mult(t′X,y) ≥ 2.

Proof.
(=⇒) If tX,y is cyclic, then let us consider any cycle in h(tX,y): according to Lemma 3.3 either this
cycle is within a unique branch in tX,y, or it is split in at most k chains on as many branches. In
the first case, the node multiplicity of the hyperpath tree is already larger than 1. In the latter
case, any of these chains, say ci, consists of a walk between an input node ni−1 and an output node
ni, for i = 1, 2, . . . , k, n0 ≡ nk and nk+1 ≡ n1; we will denote as shigh,i and slow,i the two subtrees
whose root is, respectively, a hyperarc with target ni−1 and ni (see Figure 7(a)).

10

Let us consider two consecutive of these chains, in two different branches, ci and ci+1. We can
replace slow,i+1 with shigh,i, since the have the same target node ni (see Figure 7). The effect of
this replacement, which is still a hyperpath from X to y, is to concatenate two successive chains.
Therefore, after a sequence of at most k internal subtree replacements, we can collate all the cycle
in a unique branch, hence the node multiplicity of the new hyperpath tree is at least 2.

<..., n >i-1

<..., n >i <..., n >i+1

<..., n >i

s
high,i

s
low,i

s
high,i+1

s
low,i+1

<..., n >i+1

s
high,i+1

<..., n >i-1

<..., n >i

s
high,i

s
low,i

(a) (b)

Figure 7: A subtree replacement within a cyclic hyperpath, as proposed in Lemma 3.4: (a) before
and (b) after the replacement.

(⇐=) Let us suppose now that, starting form a hyperpath tX,y, we have obtained, by means of a
finite sequence of subtree replacements, a new hyperpath t′X,y such that N-mult(t′X,y) ≥ 2. By
Lemma 3.2, h(t′X,y) is cyclic, and since h(t′X,y) ⊆ h(tX,y), h(tX,y) is cyclic as well. �

In the following we investigate the relationships between the structure of a hyperpath and its
behavior under subtree replacements; in particular, Lemma 3.5 characterizes a hyperpath tX,y which
is replacement-invariant, i.e., if tX,y t′X,y then t′X,y = tX,y.

Lemma 3.5 If we are given a directed hyperpath tree tX,y, we have that: N-indeg(tX,y) = 1 if
and only if tX,y is invariant with respect to subtree replacements.

Proof.
(=⇒) In this case we assume that N-indeg(tX,y) = 1 and, by contradiction, that there exist two
different subtrees sS,t and s′S,t in tX,y. The roots of the two subtrees, h and h′ have the same
target t. If h and h′ have different source sets, there are two distinct hyperarcs with target t, which
implies N-indeg(tX,y) ≥ N-indeg(t) ≥ 2. If this is not the case, we explore in parallel the two
subtrees until we find different hyperarcs, respectively in s and s′ with the same target node z, but
different source sets, that would imply N-indeg(tX,y) ≥ N-indeg(z) ≥ 2 and, again, we would
have a contradiction.
(⇐=) Let us suppose, by contradiction, that there exists a node z such that N-indegtX,y

(z) ≥ 2.
Then there are at least two distinct hyperarcs, 〈S1, z〉 and 〈S2, z〉 which are roots of two sub
hyperpaths s1 and s2 from X to z in tX,y. Since the roots are different, necessarily s1 6≡ s2, and a
subtree replacement of an instance of s1 with a copy of s2 would lead to a tree t′X,y 6≡ tX,y. �

As a consequence of Lemmas 3.2 and 3.5 we have that a replacement-invariant hyperpath tX,y is
acyclic. Again, also in this case, the reverse property does not hold, i.e., there are acyclic hyperpaths
which are not replacement-invariant (e.g., see Figure 8).

Another consequence, due to Lemma 3.4, is that for any hyperpath tX,y, N-indeg(tX,y) = 1
implies N-mult(tX,y) = 1. In Figure 9 we summarize the relationships between the classes of cyclic
and acyclic hyperpaths having N-indeg > 1 and/or N-mult > 1.

11

<d e , f>

<c , d> <c , e>

<a , b>

<a , c> <b , c>

f

d

e

b

ca

(a) (b)

Figure 8: (a) An acyclic hyperpath having N-indeg(ta,f) = 2; (b) the corresponding folded repre-
sentation.

(invariant)

N-indeg=1

Cyclic

Acyclic

N-indeg>1

N-mult=1

N-mult>1

Figure 9: Node indegree and node multiplicity in cyclic and acyclic hyperpaths. Spots represent
instances of hyperpath trees, and arrows represent the effects of all possible subtree replacements.

12

4 Tractable and Untractable Measure Functions

Several metrics have been introduced in order to measure directed hyperpaths, leading to a number
of corresponding optimization problems. In this section we list several definitions that have been
considered in the literature, starting with the very intuitive ones. We will show that in many cases
the resulting optimization problem turns out to be untractable.

Definition 4.1 Let H = 〈N,H〉 be a directed hypergraph, and hX,y = 〈Nh, Hh〉 be a directed
hyperpath from a source set X ⊆ N to a node y ∈ N . The following are measure functions over
directed hyperpaths:

• The number of nodes: n(hX,y) = |Nh|;

• The number of hyperarcs: h(hX,y) = |Hh|;

• The source area a(hX,y) =
∑
S∈S |S| is the sum of cardinalities of all the source sets, where

S is the set of the source sets in the hyperpath: S = {S | 〈S, t〉 ∈ Hh};

• The nonsingleton source area a′(hX,y) =
∑
S∈SM

|S| is the sum of cardinalities of all the nons-
ingleton source sets, where SM denotes the set of nonsingleton source sets: SM = {S | 〈S, t〉 ∈
Hh, with |S| > 1};

• The size s(hX,y) = n + a′ + h = Θ(n + a + h) is the overall length of the description of the
hypergraph (also denoted as |H|).

Furthermore, if we are given a weighted directed hypergraph H = 〈N,H;w〉, and a hyperpath hX,y =
〈Nh, Hh〉, its total weight w(hX,y) is the sum of the weights of all its hyperarcs:

w(hX,y) =
∑
〈Z,t〉∈H

|w〈Z,t〉|

The size is the length of a natural description of a hyperpath, represented as a collection of: (1) the
nodes in Nh, (2) the additional nonsingleton source sets of all the hyperarcs in Hh (i.e., the source
sets that do not appear as a single node in Nh) plus (3) the adjacency lists of the source sets; each
item in such lists is a target node of a hyperarc, hence the total length of this last contribution is
h. Note that a = n+ a′.

In the special case where a directed hypergraph is a directed graph, the number of vertices is
equal to the number of nodes n, and the number of edges is m = h. Furthermore, a′ = 0, and
s = n+m.

The set of measures provided in Definition 4.1 bring to optimization problems whose complexity
is NP-hard, as shown in the next theorem. These metrics are related to hyperpaths regarded as
hypergraphs: actually the same metrics may be applied to hypergraphs. Ausiello et al. [ADS86]
study similar properties concerning a problem of minimal representation of directed hypergraphs.

Theorem 4.1 Let H = 〈N,H〉 be a directed hypergraph, x and y be two nodes in N , and k be an
integer. Consider the following problems.

(P1) Find a hyperpath hx,y with k hyperarcs or less;

(P2) Find a hyperpath hx,y of total weight k or less;

(P3) Find a hyperpath hx,y of size k or less;

(P4) Find a hyperpath hx,y of source area k or less;

(P5) Find a hyperpath hx,y of k source sets or less.

All these problems (P1)—(P5) are NP-complete.

Proof. We consider the problems separately.
(P1). We use a reduction from Minimum Cover (in short MC) [GJ79]. Let A = {a1, a2, . . . , an} be
a set, and S = {S1, S2, . . . , Sm} be a family of subsets of A such that

⋃
i=1,2,...,m Si = A. We recall

that, given A, S, and an integer k, MC consists of finding a cover of cardinality k or less, that is, a
subfamily S ′ of S such that |S ′| ≤ k, and

⋃
Si∈S ′ Si = A.

13

Let I = 〈A,S, k〉 be an instance of MC. We now define a directed hypergraph HI = 〈NI , HI〉
as follows. The set of nodes is NI = A∪S ∪{p, q} and the set of hyperarcs is HI = H1 ∪H2 ∪H3,
where (see Figure 10):

H1 = {〈p, Si〉|Si ∈ S},

H2 = {〈Si, aj〉|Si ∈ S and aj ∈ Si}, and

H3 consists of the single hyperarc 〈A, q〉.

3H

1
a

2
a

n
a

1
S

2
S

m
S

p

1H 2H

q

Figure 10: The hypergraph associated to an instance of MC. The nodes a1, a2, . . . , an on the right
represent the set to be covered, while the nodes S1, S2, . . . , Sm on the left represent the collection
of subsets.

We now show that there exists a hyperpath from p to q in HI having no more than k + n + 1
hyperarcs if and only if there exists a cover S ′ of A whose cardinality is less than or equal to k.

Let us assume that there is a feasible solution for MC, that is
⋃
Si∈S Si = A; in this case HI

always contains a hyperpath hp,q from p to q defined by transitivity (see Definition 2.7):

• the hyperarc 〈A, q〉;

• the collection of hyperpaths hp,aj , where each of these is a chaining of two simple arcs: 〈p, Si〉
and 〈Si, aj〉.

This is possible if and only if for each aj ∈ A there exists some Si which contains aj , that is if
S includes a cover for A. Note that if the cover has cardinality k, then there is a hyperpath with
k + n+ 1 hyperarcs in HI .

Vice versa let hp,q be a hyperpath with kn hyperarcs. As shown above, hp,q must contain the
hyperarc 〈A, q〉, plus n hyperarcs from the set H2, plus, say, k hyperarcs from the set H1, with:

k = kn − n− 1.

Let S ′ be the target nodes Si1 , Si2 , . . . Sik of the k hyperarcs in the set hp,q ∩ H1. Then S ′ is a
cover for the set A. In fact for any node aj ∈ A there exists a hyperarc 〈Si, aj〉 in hp,q ∩H2, and
by construction, this means that any element of the set A is contained in some Si ∈ S ′.

Therefore the problem of finding a cover with cardinality k is reduced to the problem of finding
a hyperpath hp,q with a number of hyperarcs:

n(hp,q) = kn = k + n+ 1.

(P2). The NP-completeness of the problem of finding a hyperpath with k hyperarcs or less follows
immediately from the observation that this is a special case of (P2), when all the weights are 1.

14

(P3)—(P5). To prove the NP-completeness of these problem, we observe that, using the same
reduction given for (P1), there is a cover with cardinality k or less if and only if there is a hyperpath
hp,q having, respectively:

• size ks = 2k + 2n+ 2 or less;

• source area ka = k + n+ 1 or less;

• number of source sets k + 2 or less; these are: the collection of k nodes corresponding to a
solution for MC, plus the two source sets {p} and {a1, a2, . . . , an}.

�

Since the above decision problems are NP-complete, the NP-hardness of the corresponding
optimization problems follows immediately.

Corollary 4.2 Let H = 〈N,H〉 be a directed hypergraph, x and y be two nodes in N . The following
problems are NP-hard:

i) finding a hyperpath with minimum number of hyperarcs;

ii) finding a hyperpath with minimum total weight;

iii) finding a hyperpath with minimum size;

iv) finding a hyperpath with minimum source area;

v) finding a hyperpath with minimum number of source sets.

Several other measures, which are of interest in some applications, can be defined in a recursive
way, based on the structure of folded and/or unfolded hyperpaths.

In many situations the interesting hyperpaths are acyclic: in this case there is no sensible
difference between the two formulations. We start by considering a very common function.

Definition 4.2 The rank r(hX,y) of an acyclic folded hyperpath hX,y is the maximum cost path
from the root to a leaf in the hyperpath, and is recursively defined as follows:

a) if hX,y is an empty hypergraph then r(hX,y) = 0;

b) if hX,y has one hyperarc 〈Z, y〉 entering y, with Z = {z1, z2, . . . , zk} and hX,zi ⊂ hX,y, then:
r(hX,y) = w〈Z,y〉 + maxzi∈Z{r(hX,zi)}.

The rank r(tX,y) of an (unfolded) hyperpath tX,y is defined as follows:

a) if tX,y = ∅ (y ∈ X) then: r(tX,y) = 0;

b) if tX,y has root 〈Z, y〉 with subtrees tX,z1 , tX,z2 , . . . , tX,zk , then:

r(tX,y) = w〈Z,y〉 + maxzi∈Z{r(tX,zi)}.

Since we are interested in dealing with cyclic hyperpaths, the following additional definitions will
be based on the more general formulation on unfolded hyperpaths, but we remark that the same
definitions may be used also for the more common folded representations, in case of acyclic hyper-
paths. In case that cyclic hyperpaths have to be considered, the unfolded data structure has the
advantage of providing an explicit representation of the multiplicity of each hyperarcs.

Definition 4.3 The gap g(tX,y) of a hyperpath tX,y is the minimum cost path from the root to a
leaf in the hyperpath, and is recursively defined as follows:

a) if tX,y = ∅ (y ∈ X) then: g(tX,y) = 0;

b) if tX,y has root 〈Z, y〉 with subtrees tX,z1 , tX,z2 , . . . , tX,zk , then:

g(tX,y) = w〈Z,y〉 + minzi∈Z{g(tX,zi)}.

Definition 4.4 The average-depth avgd(tX,y) of a hyperpath tX,y is the average length of the paths
from the root to any leaf in the hyperpath tree, and is recursively defined as follows:

a) if tX,y = ∅ (y ∈ X) then: avgd(tX,y) = 0;

b) if tX,y has root 〈Z, y〉 with subtrees tX,z1 , tX,z2 , . . . , tX,zk , then:

avgd(tX,y) = w〈Z,y〉 + avgzi∈Z{avgd(tX,zi)}.

15

Definition 4.5 The traversal cost c(tX,y) of a hyperpath tX,y is the weight of the root of the hy-
perpath, plus the cost of all its subtrees, and is recursively defined as follows:

a) if tX,y = ∅ (y ∈ X) then: c(tX,y) = 0;

b) if tX,y has root 〈Z, y〉 with subtrees tX,z1 , tX,z2 , . . . , tX,zk , then:

c(tX,y) = w〈Z,y〉 +
∑
zi∈Z{c(tX,zi)}.

Definition 4.6 Given a hypergraph, with real hyperarc weights in the range (0, 1], the P-Product
(P-ProdX,y) of a hyperpath tX,y is computed by multiplying the weight of the root of the hyperpath
by the P-Prod of all its subtrees; this is recursively defined as follows:

a) if tX,y = ∅ (y ∈ X) then: P-Prod(tX,y) = 1;

b) if tX,y has root 〈Z, y〉 with subtrees tX,z1 , tX,z2 , . . . , tX,zk , then:

P-Prod(tX,y) = w〈Z,y〉 ×Πzi∈Z{P-Prod(tX,zi)}.

Definition 4.7 The bottleneck b(tX,y) of a hyperpath tX,y is defined as the minimum cost of a
hyperarc in tX,y, and can be recursively defined as follows:

a) if tX,y = ∅ (y ∈ X) then: b(tX,y) = +∞;

b) if tX,y has root 〈Z, y〉 with subtrees tX,z1 , tX,z2 , . . . , tX,zk , then:

b(tX,y) = min { w〈Z,y〉,minzi∈Z{b(tX,zi)} }.

Definition 4.8 The threshold tt(tX,y) of a hyperpath tX,y is defined as the maximum cost of a
hyperarc in tX,y, and can be recursively defined as follows:

a) if tX,y = ∅ (y ∈ X) then: t(tX,y) = 0;

b) if tX,y has root 〈Z, y〉 with subtrees tX,z1 , tX,z2 , . . . , tX,zk , then:

t(tX,y) = max { w〈Z,y〉,maxzi∈Z{t(tX,zi)} }.

If we consider the specific case of directed graphs, where the previous definitions are well defined,
most of these collapse. As an example, we have that gap, rank, average-depth, number of hyperarcs,
source area, number of source sets have all the same value (size is the double of these), and all the
corresponding optimization problems on graphs can be solved in polynomial time.

On the other side, while dealing with directed hypergraphs, we have seen that some of these
functions bring to untractable optimization problems but others can be optimized in polynomial
time, possibly with several optimization strategies. But we will show as, even within these tractable
cases, the different measure functions induce different structures of optimal hyperpaths that, in turn,
will force to discriminate among the optimization strategies.

The measure functions provided here are examples that allow us to tackle with several combi-
natorial properties, and therefore are useful in order to characterize both classes of functions and
to prove properties of the algorithms discussed in the next Sections. But, beyond their role of
examples, any of them is representative of a number of different problems from many domains that
can be formulated as an optimization problem according that metrics.

5 Generalized Superior and Inferior Functions

In the literature, several measure functions on directed hyperpaths have been considered. As shown
in section 4, some of these measures, that are based the underlying hypergraphs (and hence may
be thought as applied to folded hyperpaths), bring to NP-hard optimization problems.

The scenario completely changes if we consider instead measures over hyperpaths based on the
recursive structure of these, and may be thought as applied to unfolded hyperpaths.

Well known NP-hard problems on (hyper)paths, or reducible to these, originate from constraints
characterizing the sequence, or simply the set, of (hyper)arcs to be traversed. This is the case, e.g., of
the Traveling Salesman Problem, or the Hamiltonian Path Problem. In these cases the formulation
require to state properties of the considered path. As an example, let us consider the Longest Path
Problem, that is the problem of finding a simple path in a given graph having maximum length.
The condition of “simple” path requires that any arc can be traversed at most once.

We have seen as the problem of finding a hyperpath of minimum size is NP-hard (Theorem 4.1):
the notion of size requires to sum the weights of the set of hyperarcs. More precisely, in order

16

to compute the size of a hyperpath, one cannot rely solely upon the values of the size of the
subhyperpaths, since the weight of each hyperarc has to be considered at most once, and one is
forced to take into account the sets of hyperarcs constituting the subhyperpaths.

A unified view of an interesting class of tractable problems on directed hypergraphs is provided
by Knuth. In his definition of grammar problem [Knu77], Knuth generalizes the single-source short-
est path problem to context free grammars, and provides a classification on the functions associated
to the productions of the grammar. In the following we define the superior functions [Knu77] and
introduce the symmetric notion of inferior functions.

Definition 5.1 Let g(x1, . . . , xk) be a function from Dk into D, monotone nondecreasing in each
variable.

• g is a superior function on Dk (g ∈ SUP) if, for each 〈x1, . . . , xk ∈ Dk〉 [Knu77]:

g(x1, . . . , xk) ≥ max(x1, . . . , xk);

• g is an inferior function on Dk (g ∈ INF) if, for each 〈x1, . . . , xk ∈ Dk〉:

g(x1, . . . , xk) ≤ min(x1, . . . , xk).

Examples of SUP functions are max{x1, . . . , xk} in <k, and Σi{xi} in [0,+∞]k. Examples of INF
functions are: min{x1, . . . , xk} in <k, and the product Πi{xi} in [0, 1]k.

Ramalingam and Reps in [RR96] introduce a generalization of these classes of functions. Also
in this case we provide the dual (inferior) functions by reversing the inequality.

Definition 5.2 Let g(x1, . . . , xk) be a function from Dk into D, monotone nondecreasing in each
variable.

• g is a weakly superior function in Dk (g ∈WSUP) if, for each x1, . . . , xk ∈ Dk and, for each
i = 1, . . . , k [RR96]:

g(x1, . . . , xk) < xi ⇒ g(x1, . . . , xi, . . . , xk) = g(x1, . . . ,∞, . . . , xk)

• g is a weakly inferior function in Dk (g ∈WINF) if, for each x1, . . . , xk ∈ Dk, and for each
i = 1, . . . , k:

g(x1, . . . , xk) > xi ⇒ g(x1, . . . , xi, . . . , xk) = g(x1, . . . ,−∞, . . . , xk)

It is obvious that if a function is SUP, then it is WSUP (SUP ⊂WSUP), and if it is INF, then
it is WINF (INF ⊂ WINF). Examples of WSUP functions that are not SUP are min1≤i≤k{xi}
and any constant function. Examples of WINF functions that are not INF are maxi{xi} and any
constant function.

The following lemma summarizes the properties holding in the case of a generic composition of
these functions, generalizing analogous statements of the cited authors.

Lemma 5.1 If we are given the functions f, g1, . . . , gh then their composition f(g1(. . .), . . . , gh(. . .))
has the following properties:

1. if f, g1, . . . , gh ∈ SUP, then f(g1, . . . , gh) ∈ SUP [Knu77];

2. if f, g1, . . . , gh ∈ INF , then f(g1, . . . , gh) ∈ INF ;

3. if f, g1, . . . , gh ∈WSUP, then f(g1, . . . , gh) ∈WSUP [RR96];

4. if f, g1, . . . , gh ∈WINF , then f(g1, . . . , gh) ∈WINF .

Both [Knu77] and [RR96] consider also the class of strict (weakly) superior and inferior functions,
characterized by a strict inequality between the value of the function at hand and each of its
arguments: this leads to the classes SSUP, SWSUP, SINF, and SWINF.

For example a function g(x1, . . . , xk) from Dk into D is a strict superior function (SSUP) in D
if it is monotone nondecreasing in each variable and if:

g(x1, . . . , xk) > max(x1, . . . , xk), for each x1, . . . , xk ∈ Dk

Also for strict functions we can state a lemma summarizing the properties holding in the case of
a generic composition (also in this case we extend similar properties asserted by [Knu77, RR96]).

17

Lemma 5.2 If we are given the functions f, g1, . . . , gh then their composition f(g1(. . .), . . . , gh(. . .))
has the following properties:

1. if f ∈ SSUP, and gi ∈ SUP for all i (or vice versa) then f(g1, . . . , gh) ∈ SSUP;

2. if f ∈ SINF , and gi ∈ INF for all i (or vice versa) then f(g1, . . . , gh) ∈ SINF ;

3. if f ∈ SWSUP, and gi ∈WSUP for all i (or vice versa) then f(g1, . . . , gh) ∈ SWSUP;

4. if f ∈ SWINF , and gi ∈WINF for all i (or vice versa) then f(g1, . . . , gh) ∈ SWINF .

Some of the measure functions defined in the previous section can be classified within this
framework. For example, if we consider a weighted hypergraph having all positive weights, the
computation of the traversal costs will result in a SSUP function.

The rank function (Definition 4.2) is SUP if all the hyperarcs weights are non-negative, since
rank is defined as the sum (a SUP function) of the weight of the last hyperarc with the maximum
(SUP) rank of the subhyperpaths; hence Lemma 5.1 holds. Notice that if hyperarc weights are all
positive, then rank is SSUP, since the sum is SSUP in this case, and hence Lemma 5.2 holds.

A very similar measure function, the gap (Definition 4.3), is defined as the sum (a SUP function)
of the weight of the last hyperarc with the minimum gap of the subhyperpaths. The latter function
is WSUP in case of non-negative weights, and SWSUP with positive weights: as a result, the gap
function inherits this characterization.

Any measure function on directed hyperpaths whose value does not depend on the measure of
its subhyperpaths is in SWSUP ∩ SWINF . Let us consider the following simple measure function.

Definition 5.3 Given any hyperpath tX,y in a weighted directed hypergraph HW , the value of
last(tX,y) is the weight of the last hyperarc:

last(tX,y) =

{
0 if tX,y = ∅, i.e., if y ∈ X

w〈Z,y〉 if tX,y has root 〈Z, y〉 with subtrees tX,z1 , tX,z2 , . . . , tX,zk

Note that this function is not SUP nor INF, since its value can be either larger or smaller of any
of its argument. Nevertheless, according Definition 5.2, this function is both SWSUP and SWINF,
since last(tX,y) = w〈Z,y〉, intended as a function of the measure of its component subhyperpaths,
does not change its value if one of its arguments is increased up to infinity.

This measure function is apparently naive: nevertheless, it is easy to check that a hyperpath of
minimum (or maximum) last in general is cyclic.

In some cases, as for many graph problems, the nature of the domain of the edge cost may
change the complexity of the resulting optimization problem. Let us consider a directed hypergraph
HW = 〈N,H;W 〉 whose weights can be expressed by a binary function W : H → [0, 1]. The value
of gems(tX,y) of a hyperpath tX,y is the number of hyperarcs with weight 1 (the “gems” to be
collected): in other words, this is a special case of the traversal cost, in the special case of a binary
weight function.

On the other side, many functions leading to polynomial optimization problems do not fit into
the classes introduced so far. As an example, another quite natural measure function, such as
the average-depth (Definition 4.4), whose value is always between gap and rank, is not WSUP nor
WINF. We will see that this feature has consequences on the corresponding optimization problem.

In the following, for generality, we will refer our definitions to a “domain” D, to be intended
as a totally ordered set, where any two values in D are comparable according an ordering relation
“�”. There exist an infimum a and a supremum b (not necessarily in D) such that, for each element
x ∈ D, a � x � b. As an example, one may consider the set of nonnegative reals, <+: with the
comparison relation is “≤”, the infimum is 0 ∈ <+ and the supremum is +∞ 6∈ <+.

In case of a limited domain D, the definition of weakly superior and inferior functions should
be intended based on the quantities that delimitate the domain itself, respectively: “+∞” has to
be intended as “supremum(D)”, and “−∞” has to be intended as “infimum(D)”. This allow us to
use this concepts also for domains which are widely used in applications, such as the reals in [0, 1].

In order to generalize the definitions by Knuth and Ramalingam-Reps, we define classes of
measure function that can be applied to unfolded hyperpaths. First of all, analogously to what was
proposed for the Grammar Problem [Knu77], where each production has a corresponding function,
we consider a hypergraph where each hyperarc has an associated function, analogously to [RR96].

18

Definition 5.4 Given a directed hypergraph H = 〈N,H〉, a functional hypergraph HF = 〈N,H;F〉,
is defined as follows. Each hyperarc 〈X, y〉 ∈ H is associated to a triple 〈w〈X,y〉, ψ〈X,y〉, f〈X,y〉〉,
where:

w〈X,y〉 ∈ D is the weight of the hyperarc;

ψ〈X,y〉 is a function from |X|-tuples of reals to reals: ψ〈X,y〉 : D|X| → D;

f〈X,y〉 is a function from a pair of reals to reals: f〈X,y〉 : D2 → D.

Furthermore, F is the collection of the functions associated to the hyperarcs in H, i.e., F =
{F〈X,y〉|〈X, y〉 ∈ H}, where each F〈X,y〉 : Dk → D is a function defined as follows:

F〈X,y〉(x1, x2, . . . , xk) = f〈X,y〉(w〈X,y〉, ψ〈X,y〉(x1, x2, . . . , xk)).

In other words, each hyperarc 〈X, y〉 is associated to a corresponding function F〈X,y〉(x1, x2, . . . , xk),
as a combination of three components: the weight w〈X,y〉 and the two functions, f and ψ. Comparing
this structuring with the SUP/WSUP functions introduced by Knuth and Ramalingam-Reps, the
decomposition of F in the triple 〈w, f, ψ〉 does not limit the expressivity of the formalism1. On the
other side, after observing a number of definitions in practical applications, we found that:

- such a structuring occurs in most cases: we will show several examples below;

- based on this decomposition, it is easier to classify and cluster measure functions over directed
hypergraphs according common properties (as shown in Section 6);

- it is possible to tailor algorithms relying on the disjoint features deriving from this structuring.

Definition 5.5 Given a functional directed hypergraph HF = 〈N,H;F〉, and two constants µ0 and
µ∞, µ = 〈HF , µ0, µ∞〉 is a Value-Based Measure Function (VBMF) if µ : T (HF)→ D is a function
from the set of the hyperpath trees in the hypergraph, T (HF), to a totally ordered domain D and,
for any nonempty set of nodes X ⊆ N and any node y ∈ N :

• if X and y are not connected, we assume that there is a conventional hyperpath t∞ connecting
these nodes, with: µ(tX,y) = µ(t∞) = µ∞ ∈ D;

• if y ∈ X, and tX,y is an empty hyperpath (defined by reflexivity), then: µ(tX,y) = µ0 ∈ D;

• if tX,y = {〈Z, y〉}∪tX,z1∪tX,z2∪. . .∪tX,zk is a hyperpath from X to y (defined by transitivity),
then:

µ(tX,y) = F〈Z,y〉(µ(tX,z1), µ(tX,z2), . . . , µ(tX,zk)).

Notice that the recursive definition of value-based measure function on the structure of a hyperpath
does not depend on combinatorial constraints on the set of affected hyperarcs, but only on the
measures of the component sub-hyperpaths. The value of these measures must be taken from a
domain D, where we can compare two measures according a total ordering �: in other words,
for any two hyperpaths in T (HF), we can decide which is better, or if they are equivalent. If we
consider the structure of an unfolded hyperpath, if a hyperarc is traversed more than once (and
hence, it appears in more than one subtrees), its cost is repeatedly taken into account in all the
subtrees.

Furthermore, since we are mainly aimed at algorithmic solution for tractable optimization prob-
lems, we need a simple strategy to build up optimal hyperpaths by combining optimal subhyper-
paths; this can be guaranteed by the monotonicity of the considered functions. In this case we come
up to a generalization of the SUP/WSUP functions by Knuth and Ramalingam-Reps.

Definition 5.6 Given a functional directed hypergraph HF = 〈N,H;F〉, and a Value-Based Mea-
sure Function µ = 〈HF , µ0, µ∞〉, for any nonempty hyperpath t〈S,t〉 in HF with final hyperarc 〈X, t〉
(X = {x1, x2, . . . , xk}):

• if F〈X,t〉(x1, x2, . . . , xk) is monotonic nondecreasing in each xi, then it is a Generalized Su-
perior Function (GSUP);

• if F〈X,t〉(x1, x2, . . . , xk) is monotonic nonincreasing in each xi, then it is a Generalized Infe-
rior Function (GINF).

1If we chose f(A,B) = B (in this case w〈X,y〉 is not meaningful), the definition collapse to F = ψ(x1, x2, . . . , xk).

19

In both cases we consider the “strict” version of the two classes, i.e., by comparing µ(t〈X,y〉) with
respect to the measure of each subhyperpath: a value based measure function is GSSUP (resp.
GSINF) if it is monotone increasing (resp. decreasing) in each argument.

We remark that, in some cases, a SUP function becomes SSUP by imposing a restriction on the
allowed weights; as an example, this is the case of rank, or traversal cost, which are SSUP only in
case of (strictly) positive weights.

Since we are interested in the composition of functions, also in this case we provide the basic
properties of compositions for the last classes of measure functions.

Lemma 5.3 If we are given the functions f, g1, . . . , gh then their composition f(g1(. . .), . . . , gh(. . .))
has the following properties:

1. if f, g1, . . . , gh ∈ GSUP, then f(g1, . . . , gh) ∈ GSUP;

2. if f, g1, . . . , gh ∈ GSSUP, then f(g1, . . . , gh) ∈ GSSUP;

3. if f, g1, . . . , gh ∈ GINF , then f(g1, . . . , gh) ∈ GINF ;

4. if f, g1, . . . , gh ∈ GSINF , then f(g1, . . . , gh) ∈ GSINF

5. if f, g1, . . . , gh ∈ VBMF , then f(g1, . . . , gh) ∈ VBMF .

Since we want to tailor algorithms for the best performances, we want to exploit the specific
properties of functions that occur in practice and make them easier to be optimized.

In computing a function, there might be variables that do not determine the value of the function,
provided that they are subject to some constraint. This is not always the case; as an example, the
sum and the average functions depend on all the arguments. In some common cases, the function
depends on a single value, while the others can change, with a given upper bound (such as the
max) or a lower bound (such as the min) on the irrelevant variables. A function g : Dk → D will
be labeled as nU − relevant if, for any (x1, . . . , xk) ∈ Dk, the value of g(x1, . . . , xk) depends on
at most n relevant variables. This means that, whenever k > n, there is always a set of k − n
irrelevant variables whose value can be changed in the interval [−∞, l] ∩ D, where l is the upper
bound, without changing the value of g. For an nL − relevant function g we have an analogous
situation, with the irrelevant variables constrained by a given lower bound.

Any function WSUP function which is not SUP has at least one irrelevant variable with an upper
bound (whenever it has at least 2 arguments). Considering some of the measure functions over
directed hypergraphs introduced so far, we have that some of these have only relevant arguments,
such as traversal cost, P-Prod, or average-depth. Instead, for some of them, their value depends on
the measure of a unique subhyperpath; in particular rank and threshold are 1UR (i.e., there is an
upper bound on the measure of the irrelevant subhyperpaths), while gap and bottleneck are 1LR
(with a lower bound). Function last has no relevant variable, hence it is 0R (no bounds at all).

In the table below we recall a series of metrics on directed hyperpaths provided in section 4.

measure µ0 µ∞ (transitivity)
function tX,y = ∅ no hyp. tX,y = {〈Z, y〉} ∪ tX,z1 ∪ tX,z2 ∪ . . . ∪ tX,zk

rank 0 +∞ rank(tX,y) = w〈Z,y〉 + maxzi∈Z{rank(tX,zi)}
gap 0 +∞ gap(tX,y) = w〈Z,y〉 + minzi∈Z{gap(tX,zi)}
average-depth 0 +∞ avgd(tX,y) = w〈Z,y〉 + avgzi∈Z{avgd(tX,zi)}
last 0 +∞ last(tX,y) = w〈Z,y〉
traversal cost 0 +∞ tcost(tX,y) = w〈Z,y〉 +

∑
zi∈Z{tcost(tX,zi)}

P-Prod[0, 1] 1 0 P-Prod(tX,y) = w〈Z,y〉 ×Πzi∈Z{P-Prod(tX,zi)}
P-Prod[1,+∞] 1 +∞ P-Prod(tX,y) = w〈Z,y〉 ×Πzi∈Z{P-Prod(tX,zi)}
bottleneck +∞ 0 bn(tX,y) = min(w〈Z,y〉,minzi∈Z{bn(tX,zi)})
threshold 0 +∞ ts(tX,y) = max(w〈Z,y〉,maxzi∈Z{ts(tX,zi)})

Table 1: A list of definitions of measure functions.

20

function growth relevant args.
any constant (or “don’t care”) WSUP ,WINF 0R

+,
∑

SUP
max SUP ,WINF 1UR
min WSUP , INF 1LR
avg GSUP

×,Π [0, 1] INF
×,Π [1,+∞] SUP

Table 2: Properties of basic functions.

All these functions are composed by means of few simple functions, whose properties, for our
purposes, are listed below.

On the basis of these, we classify all the functions in the previous table in the proper class,
specifying their “relevance”, when meaningful. Since the combination of the values of the subhy-
perpaths depends on function ψ, this is the one which determines the resulting “relevance” of the
measure function.

measure function f(w,ψ) ψ(µ1, . . . , µk) resulting growth resulting relevance
rank + max SUP 1UR
gap + min WSUP 1LR
average-depth + avg GSUP
last w don’t care WSUP ,WINF 0R
traversal cost +

∑
SUP

P-Prod[0, 1] × Π INF
P-Prod[1,+∞] × Π SUP
bottleneck min min WSUP , INF 1LR
threshold max max SUP ,WINF 1UR

Table 3: Properties of Measure Functions.

As remarked by Ramalingam and Reps [RR96], the Value Based Measures Functions introduced
in Definition 5.5 would not generalize the (W)SUP classes if we do not allow different functions for
each hyperarc (as in an earlier proposal [AIN92]). Still, there are differences between a Functional
Hypergraph and the Grammar Problem, as discussed in detail by [RR96]. In this paper we focus
on the model of Directed Hypergraphs.

In order to highlight the interest for the GSUP class of functions, we remark that a functional hy-
pergraph HF = 〈N,H;F〉 can be used as a representation of a Stochastic (or Probabilistic) Context-
Free Grammar. This is a context-free grammar where each production is assigned a probability:
in turn, these are used in natural language processing or to represent higher level aggregations of
RNA molecules. Esparza et al. [EKL08] discuss this model while considering a System of Monotone
Fixed-Point Polynomial Equations. As an example of what is (properly) enclosed in VBMF, but
not in GSUP, if we remove the monotonicity constraint, we come up to the possibility of modeling
a generic System of Fixed-Point Polynomial Equations.

We have the following containment relationships:

SSUP (SUP (WSUP (GSUP (VBMF) GINF) WINF) INF) SINF

SSUP (SWSUP (GSSUP ,SINF (SWINF (GSINF

kR-WSUP ((k+1)R-WSUP (WSUP for k ≥ 0

kR-WINF ((k+1)R-WINF (WINF for k ≥ 0

21

avg-depth

SUP

WINF

INF

bnts

gap

WSUP

last

VBMF

1R

0R

FixPoint

GSUP GINF

FixPoint+

rank

tcost

clos8

P-Prod[0,+] P-Prod[0,1]

Figure 11: A taxonomy for Value-Based Measure Functions (minimization problems), with classi-
fication of some examples (clos = closure, tcost = traversal cost, ts = threshold, bn = bottleneck).

22

The diagram in Figure 11 summarizes these relationships, in case of minimization problems. The
diagram by is populated by examples of measure functions presented in Section 4: these provide an
evidence of the proper containment among the classes of functions considered above.

By comparing the classes of measure functions discussed in this Section, we have that, in the
original definition by Knuth, a function f is SUP if it is Value-Based, and is subject to the inequality
constraint f(x1, . . . , xk) ≥ xi, for i = 1, . . . , k. This can be considered a multidimensional triangle
inequality, extended to the case of directed hypergraphs. The original triangle inequality, d[x, y] ≥
d[x, z] + d[z, y], has a straighforward interpretation in directed and undirected graphs, where it is
the basis of the definition of the usual notion of distance.

The multidimensional triangle inequality is partially relaxed in the WSUP functions by Ra-
malingam and Reps (by allowing, in our terminology, some irrelevant variable), and is completely
removed in GSUP (and GINF) functions.

On the other side, monotonicity provides more generality and has interesting properties. As an
example, the notion of k-relevance can be applied within the context of GSUP/GINF functions,
regardless the inequality in the definition of the (W)SUP functions: we will see the impact of this
notion on the structure of the optimal hypergraphs, and on the optimization algorithms.

If monotonicity does not hold, the Value Based functions still offer a model where a problem
can be formulated and dealt with a number of techniques, provided that the existing combinatorial
constraints can be expressed by the structure of a directed hypergraph.

6 On the Structure of Optimal Hyperpaths

In Section 5 we have discussed a taxonomy for the Value-Based Measure Function, that is the input
of the problem. In this section we provide a characterization of the structure of optimal hyperpaths
under a given measure function µ: this provides a classification of the measure functions according
to the structure of the output; then we we relate these two taxonomies.

An optimization problem P = (Φ, µ) on directed hyperpaths is characterized by an optimization
criterion Φ ∈ {min,max}, and a measure function µ on hyperpaths.

In the following we use the notation a ≺ b (respectively, a�b) to mean that the value a is better
(respectively, not worse) than the value b, according to an optimization criterion which is clarified
in the context.

Definition 6.1 Given a functional hypergraph HF and an optimization problem P = (Φ, µ), an
optimal hyperpath from a set of nodes X to a node y, is a hyperpath t∗X,y whose measure µ(t∗X,y) is
the best (minimum or maximum) among the measures of all the hyperpaths from X to y in H, i.e.:

t∗X,y is optimal ⇔ for each hyperpath tX,y : µ(t∗X,y) � µ(tX,y)

We remark that it is always possible to transform the problem of finding a maximum, according
a certain measure function µ, in a problem of minimum according a “dual” measure function,
and viceversa - usually in many possible ways. As an example, chosen among the metrics we have
introduced so far, the bottleneck (the smallest weight in a hyperpath) and the threshold (the largest
weight) may be used to build up a form of duality. If the weights used for bottleneck are real values
w〈X,y〉 ∈ [0,W], we can define weights to be used with threshold as w′〈X,y〉 = W −w〈X,y〉. Then we

have: (max, bottleneckw) ≡ (min, thresholdw′), and (min, bottleneckw) ≡ (max, thresholdw′) where
the equivalence means that an optimal hyperpath is the same for the two problems.

In Section 4 we have introduced the notion of replacement as a tool to analyze cycles, and
let hypergraphs converge to a representation having specific properties. In this section we will use
replacements among subtrees, in order to devise the mapping of each hyperpath to the corresponding
canonical form.

The following Lemma expresses a basic property of hyperpaths obtained through replacements
of a subtree. Note that this formulation refers to a generic subtree replacement, and not just
internal replacements, that can be considered a special case. A replacement which does not worsen
the measure of the current hyperpath tree will be called a measure-preserving replacement.

23

Lemma 6.1 Let HF be a functional hypergraph and P = (Φ, µ) be an optimization problem, where
Φ ∈ {min,max}, and µ ∈ GSUP ∪GINF .

Let tX,y be any hyperpath in H, and sX,z be any subhyperpath of tX,y. Let us consider another
arbitrary hyperpath tree s′X,z from X to z, and a new hyperpath tree t′X,y which is a copy of tX,y,
where s has been replaced by s′. Then:

µ(s′X,z) �Φ µ(sX,z) =⇒ µ(t′X,y) �Φ µ(tX,y).

Proof. Given a hyperpath tree tX,y, we can explicit the definition of µ(tX,y) in terms of each of its
subhyperpaths, until we find the subtree sX,z. That is: µ(tX,y) = µ(. . . , µ(. . . , µ(sX,z), . . .), . . .).

We recall that, according Definition 5.6, a GSUP (or GINF) function is simply a value-based
measure function over directed hyperpaths which is monotone in each argument. This property is
maintained under composition: by Lemma 5.3 the composition of GSUP (GINF) functions is GSUP
(GINF). Then the value of µ(tX,y) is monotone in the value of µ(sX,z). �

According this Lemma, when we consider GSUP and GINF measure functions, the replacement of a
subhyperpath with a “better” subhyperpath (according the metrics µ and the criterion Ψ) provide
a new hyperpath which is not worse than the original one. This is consequence of the monotonicity,
and not of the triangle inequality holding in the definition of the more restrictive SUP and, with a
partial relaxation, in the definition of WSUP functions. We will show that the property stated by
Lemma 6.1 has an impact on the structure of optimal hyperpaths.

We now give a characterization of optimization problems, based on the structure of the resulting
optimal hyperpaths.

Definition 6.2 An optimization problem P = (Φ, µ) is k-cycle-convergent (k-CYCLE-CONV) for
some k ≥ 0 if, for any hypergraph HW and for any optimal hyperpath t∗X,y from the set of nodes

X to the target node y in HW , there exists an optimal hyperpath t̃∗X,y such that t∗X,y t̃∗X,y and

N-mult(t̃∗X,y) ≤ k + 1.
An optimization problem that is 0-CYCLE-CONV is said to be cycle-invariant (CY-INV).

Definition 6.3 An optimization problem P = (Φ, µ) is cycle-unbounded (CYCLE-UNB) if it is
not k-CYCLE-CONV, for any integer k.

Note that, if we are given a k-CYCLE-CONV optimization problem on hyperpaths, there could exist
an optimal hyperpath t∗X,y of unbounded size, but there always exists another optimal equivalent

(bounded) hyperpath t̃∗X,y where each node is target at most of k+1 hyperarcs in the same branch of

t̃∗X,y. For a CYCLE-UNB optimization problem there exist optimal hyperpaths having no optimal
equivalent bounded hyperpaths.

In Section 3 we have discussed the properties of a cyclic hyperpath tree tX,y where a cycle is
fragmented on more branches, i.e., tX,y can have N-mult(tX,y) = 1. If this is the case then, from
Lemma 3.4 we know that, by means of internal subtree replacements, we can transform it in a new
hyperpath tree t′X,y with N-mult(tX,y) ≥ 2, that is, with the cycle laying within a single branch.
On the other side, internal subtree replacements in some cases can also transform the original tree
in a way that it looses some hyperarcs, and may even become acyclic.

If we are given a GSUP measure function and any hyperpath tree tX,y, we will show that it is
always possible to transform it by means of a sequence of internal subtree replacements which are
measure-preserving, and such that the final tree t′X,y has one of the following properties:

• either t′ is acyclic,or

• t′ is cyclic, but its node multiplicity is at least 2.

The interest for this property is that any cyclic optimal solutions has an equivalent hyperpath tree
with the structure shown in Figure 12. In the next Lemma we prove this claim.

Lemma 6.2 Let H be a directed hypergraph, µ be any GSUP measure function and tX,y be any
hyperpath tree. Then there exists a sequence of subtree replacements, with tX,y t′X,y, where
µ(t′X,y) ≤ µ(tX,y) and furthermore: either (1) N-mult(t′X,y) ≥ 2, or (2) t′X,y is acyclic.

24

X,n
<Z',n>
s'

X,n
<Z,n>
s

tX,y

Figure 12: The structure of hyperpath tree with N-mult(tX,y) ≥ 2. In particular, node n appear
as a target twice in a single branch.

Proof. The nontrivial case to be proved is when the hyperpath is cyclic and N-mult(tX,y) = 1.
By rephrasing Lemma 3.3 for our purposes, we know that any cycle appears in the branches

of the hyperpath tree as one or more fragments which cover the whole cycle; each fragment starts
at an input node of the cycle, and ends at an output node. If a cycle is entirely contained in a
single branch of the hyperpath tree, then N-mult(tX,y) ≥ 2, therefore we consider a case with more
fragments.

At any stage of this procedure we consider a single cycle C in tX,y, and show how to build up
a sequence of internal subtree replacements such that:

- each replacement is measure-preserving, i.e., it does not worsen the measure of the current
hyperpath;

- at the end of the current stage, either (a) cycle C is entirely contained within a sigle branch,
or (b) a portion of cycle C is completely removed from the hyperpath tree.

After a stage, in case (a) we have completed the procedure and the option (1) of the thesis is
satisfied, whilst in case (b) we consider another cycle and start another stage; we will stop the
transformation whenever case (a) occurs, or go on until all cycles have been eliminated, and the
final hyperpath tree complies the option (2) of the Lemma.

In each stage, we proceed by steps, and in each step, either we get a (strictly) longer fragment,
or we break the cycle. We reiterate this step until either we swallow the whole cycle in a single
branch of tX,y, or we break this cycle.

In the generic step, let us consider a cycle C that is fragmented among two or more branches.
Since all its fragments must cover the whole cycle, there exist two consecutive fragments of cycle
C. Two fragments, say the two chains c1 = 〈i1, . . . , o1〉 and c2 = 〈i2, . . . , o2〉, are “consecutive” if
their endpoints satisfy the relationships: i1<i2≤ o1<o2, where the inequalities refer to a circular
ordering along cycle C (see Figure 13). Both chains c1 and c2 contain a subtree rooted at i2 (let us
denote them as s1 and s2), but only c1 contains the interval [i1 − i2].

Then we search, within the whole tree tX,y, the occurrence of any hyperarc where node i2 is the
target node, and the subtree rooted at this occurrence. The subtree s∗ with minimum measure,
according function µ, is the winner of such a tournament, i.e., µ(s∗) ≤ µ(s) for any subtree of tX,y
having i2 as the target node. Then we use s∗ as a replacement throughout tX,y wherever there is
any subtree rooted at i2, including s1 and s2.

Let us focus on the consequences of these replacements on the measure of the current hyperpath.
The j-th of these replacements takes place on the tree tjX,y: in the current hyperpath tree tjX,y we
replace any subtree si having a measure µ(si), with a subtree s∗ whose measure is: µ(s∗) ≤ µ(si)
getting a new hyperpath tree tj+1

X,y . Since µ is GSUP then, from Lemma 6.1, we know that this

replacement is measure preserving, i.e., µ(tj+1
X,y) ≤ µ(tjX,y).

Let us consider the consequences of the global replacement of every subtree rooted at i2 on the
structure of the hyperpath tree. There are two possibilities, according to who is the winner of the
tournament.

- the winner does contain the interval [i1− i2] (s1 or any other subtree): in this case the second

25

1i

<..., o >

<..., i >

2i

1o

2o
1

1

<..., o >2

<..., o >1

s1 s2

<..., i >2 <..., i >2

Figure 13: A cycle C and two consecutive chains as fragments in a hyperpath tree.

subtree in Figure 13 will gain a (strictly) longer chain, compared to the previous stage, from
the input node i1 to the output node o2;

- the winner does not contain the interval [i1 − i2] (s2 or any other subtree): in this case the
interval [i1 − i2] disappears within the whole hyperpath tree. Cycle C is broken, since the
hyperarcs in this interval disappears from the unfolded hyperpath as well.

�

The next theorem states a new characterization of Superior (and Inferior) Functions, based on
the acyclicity of the optimal hyperpaths.

Theorem 6.3 Let Pmin = (min, µ) and Pmax = (max, µ) be respectively a minimization and a max-
imization problem, where µ is a Value Based Measure Function over directed hyperpaths.

a)Pmin is cycle invariant for any functional hypergraph if and only if µ is a Superior Function;

b)Pmax is cycle invariant for any functional hypergraph if and only if µ is an Inferior Function.

Proof.
(a)(⇐=) We assume that µ is a superior function then, for any hyperpath tree t and any subhy-
perpath s of t, µ(s) ≤ µ(t).

Let us suppose, by contradiction, that there exists a cyclic optimal hyperpath t∗X,y. By Lemma 6.2,
we may assume that there exists (also) an optimal hyperpath with N-mult(t∗X,y) ≥ 2. For our pur-
poses, this hyperpath has the structure shown in Figure 12: if n is a node with N-multt∗X,y

(n) ≥ 2,
then there are two occurrences of node n as a target of a hyperarc within the same branch. Hence
there are two nested hyperpath subtrees: sX,n and s′X′,n, where the first one has the root in the
higher occurrence of node n, and s′ has the root in the lower occurrence in the same branch.

If we replace s with its proper subtree s′, since µ(s′) ≤ µ(s), then the resulting hyperpath tree
t̃∗X,y is such that:

• µ(t̃∗) ≤ µ(t)

• N-multt̃∗X,y
(n) = N-multt∗X,y

(n) − 1; furthermore, since s′ ⊂ s, this replacement cannot

increase the node multiplicity of any node.

Again, the new hyperpath tree is either acyclic, or we can repeat this procedure at most M times
(where M is the sum of node multiplicity in the original optimal hyperpath tree t∗X,y), until the
resulting hyperpath is acyclic.

(a)(=⇒) We assume that Pmin = (min, µ) is cycle invariant for any functional hypergraph. As
a contradiction, let us assume that function µ : <k → < is not a superior function: in this case
there exists a k-tuple (x1, x2, . . . , xk) ∈ Dk such that µ(x1, x2, . . . , xi, . . . , xk) < xi for some i.
Let us consider the hypergraph HF = (N,H), where: N = {s1, s2, . . . , sk, n1, n2, . . . , nk} and

26

H = {(sj , nj) for j = 1, . . . , k} ∪ (n1 n2 . . . nk, ni). Let us assume that measure function µ is the
traversal cost, i.e.:

µ(tX,y) =

{
0 if tX,y = ∅, i.e., if y ∈ X

w〈Z,y〉 +
∑
zi∈Z{µ(tX,zi)} if tX,y has root 〈Z, y〉 with subtrees tX,z1 , tX,z2 , . . . , tX,zk

The weights are defined as follows: w〈sj ,nj〉 = xj (for j = 1, . . . , k), and w〈n1 n2 ... nk,ni〉 = ε, where
ε is a suitable positive quantity. This hypergraph is drawn in Figure 14.

S
1s

2s

ks

is
. . .

. . .

1n

2

k

n

n

in
. . .

. . .

......

1x

2x

ix

kx

Figure 14: For any non-SUP function µ, there exists a minimization problem having a cyclic optimal
hyperpath.

Let us consider the minimization problem Pmin = (min, µ), which consists in finding an optimal
hyperpath from the source set S = {s1, s2, . . . , sk} to the target node ni.

The unique acyclic hyperpath in HF from S to ni is tS,ni
= {(si, ni)}, whose measure is

µ(tS,ni) = xi. But the cyclic hyperpath tree t′S,ni
, with root (n1 n2 . . . nk, ni) and children (sj , nj),

for j = 1, . . . , k, has a measure: µ(t′S,ni
) = ε + µ(x1, x2, . . . , xk). The positive quantity ε can be

chosen so that µ(t′S,ni
) < µ(tS,ni

).
Therefore, since there exists a functional hypergraph where a cyclic hyperpath is better, under

(min, µ) criterion, than any existing acyclic hyperpath, then µ is not cycle invariant.

Case (b) can be proved similarly. �

Lemma 6.2 states that, for any optimal hyperpath and any GSUP and GINF measure function,
we have an equivalent hyperpath tree with one of two possible canonical structures, according
whether its node multiplicity is equal to 1, or larger.

In order to determine the properties of optimal optimal trees in the more specific case of a
WSUP or WINF function, we need more details on the structure of optimal cyclic hyperpaths: in
this case we find useful the notion of k-relevance, i.e., the maximum number of variables that are
meaningful while searching for a minimum or maximum solution.

We remark that, even in case of a 0R-GSUP function, optimal hyperpaths might be cyclic, i.e.,
there might exist no optimal acyclic hyperpath, although the value of a 0R-GSUP function may be
a constant, possibly depending on the hyperarc. As a typical example, we have the last function,
which is equal to the weight of the last hyperarc. Let us consider an instance of a directed graph
where we are interested in finding a path with minimum last weight from a source node s to a given
taget node t. The optimal path will use the last arc (xi, t) with minimum weight such that xi is
reachable from s: reaching xi from s may require to pass through t.

The gap function (Definition 4.3), defined as “sum of the min” is WSUP: therefore, by Theo-
rem 6.4, the corresponding minimization problem is at most 1-CYCLE-CONV. The instance shown
in Figure 15 and the comments in the caption prove that this bound is tight.

Let us consider any hyperpath tree tX,y, and a 1-relevant measure function µ. As discussed in
Section 5, the measure of this tree, µ(tX,y), depends only on a unique relevant argument, say zr.
If we focus on the root, the hyperarc 〈z1 . . . zr . . . zk, y〉, the value depends on the subhyperpath
sX,zr , provided that the other nodes are reachable, in order to build up a complete hyperpath,

27

h

d

s t

a
b

c

e f

g

<g , t>

<g , h>

<d h , g>

<d , e>

<s , d>

<e , f>

<f , g>

<s , d>

(a) (b)

Figure 15: (a) A directed hypergraph. (b) Unfolded structure of a hyperpath from s to t with
gap = 3: this is cyclic, since node g must be entered twice, namely, N-mult(g) = 2. No acyclic
hyperpath from s to t has equal or smaller gap.

as shown in the previous example of gap. Since also the value of µ(sX,zr) is 1-relevant, the same
argument apply, and it comes out that the only relevant hyperarcs, in order to compute µ(tX,y)
are those on a single branch of the hyperpath tree. In Figure 16 we show the structure of such a
hyperpath tree, where the symbol u represent a generic irrelevant variable.

<r ..., r>

<r u u , r>

<r u u, r >

<x ... x , r >

<r u, r>

1

2

n-1

1

n-2

n-3

<r u u , y>n

k

X,u
<Z,u >

s

1

j

j

j

Figure 16: The canonical structure of an optimal hyperpath in case of a 1R-GSUP measure function:
at most one argument (bold arcs) can be relevant for computing the measure function on each node.

For any GSUP function with irrelevant variables, the properties of the structure of an optimal
tree tX,y can be generalized. The relevant tree is the portion of tX,y obtained by pruning all the
irrelevant subtrees. Each irrelevant subtree is a subhyperpath sX,uj from source X to a node xj ,
hence its root is a hyperarc (Z, uj) appended to the relevant tree, in particular to an instance of
node uj in the source of a hyperarc (. . . u . . . , n′).

In case of a 1-relevant measure function, the relevant tree is actually a path, such as the one
represented in Figure 16. In case of a 2-relevant function, the relevant tree is a binary tree, and so
on, for any k ≥ 0. Furthermore for any GSUP function µ, and any µ-minimal hyperpath tS,t, the
structure of the irrelevant subtrees can be manipulated so that eventually none of them contains any
cycles: this is due to the monotonicity required by GSUP. The role of the irrelevant subhyperpaths
is to propagate the reachability from the root to the relevant nodes, regardless their measure. Still
there could be cycles on the relevant subtree.

In case of a WSUP function µ, we can apply internal subtree replacements to a µ-minimal
hyperpath so that it eventually does not contain any cycle on the relevant subhyperpaths. If this

28

would not be the case, we can remove cycles as shown in the proof of Lemma 6.2. In other words, if
we are given a WSUP function, the structure of the relevant portion of a minimal hyperpath is the
one of a SUP hyperpath tree, i.e., acyclic. Instead, a single loop may be required on the irrelevant
branches, as seen in the case of the gap (Figure 15). Note that, in this case, the node n having
node N-mult(n) = 2 must have the first occurrence in some irrelevant subtree (a first hyperpath,
in order to reach a “useful” node n), and the second one in some highest relevant node (entering in
the same node with minimum cost).

The following Lemma proves the property of an optimal hyperpaths for WSUP functions.

Theorem 6.4 Let Pmin = (min, µ) and Pmax = (max, µ) be respectively a minimization and a max-
imization problem, where µ is a value based measure function over directed hyperpaths.

a) if µ is a Weakly Superior Function, then Pmin is 1-Cycle Convergent for any functional
hypergraph;

b) if µ is a Weakly Inferior Function, then Pmax is 1-Cycle Convergent for any functional
hypergraph.

Proof. (a) Let tX,y be an optimal hyperpath. Due to Lemma 6.2 we may assume, without loss
of generality, that N-mult(tX,y) > 2. Since the measure function is WSUP, we can split the set of
nodes Z into two subsets of relevant (ZR) and irrelevant (ZI) nodes.

For each irrelevant node zi, the value of µ(tX,y) does not depend on the value of µ(tX,zi),
according Definition 5.2. Hence we can replace each generic hyperpath subtree with one having
N-mult(taX,zi) = 1, as in the proof of Lemma 6.2, without increasing the value of the measure of
the current hyperpath tree. After eliminating cycles on all the irrelevant subtrees, we can remove
all the cycles on the relevant tree, that can be made acyclic, due to Theorem 6.3. Since the relevant
tree and all the irrelevant subtrees, each rooted in a node of the relevant tree, are acyclic, the node
multiplicity of the whole tree cannot be larger than 2.

Case (b) can be proved similarly. �

In case of a k-CYCLE-CONV function µ, cycles may improve the value of a measure function,
up to a maximum of k nested cycles. The structure of a µ-optimal hyperpath can be subject to
subtree replacements up to its canonical structure:

- a relevant tree, with node multiplicity at most k;

- irrelevant subtrees with no cycles.

Therefore, the resulting node multiplicity is at most k + 1.

One might ask whether the classes of k-CYCLE-CONV optimization problems do not collapse
for k ≥ 2. The following class of problems, provides a negative answer to this question.

We will use the simple example ok k-gems, introduced in Section 5. We want to maximize the
number of gems, up to a maximum of k, collecting them from some special hyperarcs, hence the
weight function is binary (a weight 1 is for a hyperarc with a gem). Equivalently, since we put a
gem in one pocket, we might consider the dual problem of minimizing the number of empty pockets
at the end of our hypertrip, having k pockets.

Theorem 6.5 The problem P = (max, k-gems) ≡ (min, k-pockets) is (k − 1)-CYCLE-CONV and
it is not (k − 2)-CYCLE-CONV, for k = 1 = 1, 2, . . . , k.

Proof. Let us consider a source node s and a target node t in a directed graph containing a single
gem on a single arc (a, b), which is part of a cycle and such that node a is reachable from the source,
and the target is reachable from b. Then, any (max, k-gems)-optimal path will pass at least k times
through arc (a, b); of course this bound is tight. �

There are common problems which are value based, but CYCLE-UNB. Examples of hyper-
paths with an unbounded structure may occur by reversing the optimization criterion (e.g., finding
hyperpaths with maximum rank).

29

Theorem 6.6 Let P = (Φ, µ) be an optimization problem on hypergraphs. The following properties
hold:

a) if Φ = max and µ is a SSUP function then P = (Φ, µ) is CYCLE-UNB;

b) if Φ = min and µ is a SINF function then P = (Φ, µ) is CYCLE-UNB.

Actually, the result stated in Theorem 6.6, can be extended to all situations of (max,SUP) problems
in presence of positive cycles, or (min, INF) problems with negative cycles.

An interesting case is the measure function average-depth (Definition 4.4). This is value-based
but it is neither GSUP, nor GINF. Let us consider the hypergraph shown in Figure 17. The optimal

s 1

a 10

1+

avg

b
1

t

<a , t >

<s , a>

<a b , t>

<s , a> <t , b>

<a b , t>

<s , a> <t , b>

<a b , t>

<s , a> <t , b>

...
..

(a) (b)

Figure 17: Building a hyperpath from s to t with minimum average-depth: (a) folded and (b) un-
folded structure.

hyperpath is cyclic, hence its unfolded structure is unbounded. Nevertheless, the optimal solution
of this instance can be found by an elementary system of linear equations:

avgd(s) = 0 (by extended reflexivity)
avgd(a) = avg{avgd(s)}+ 1 = 1
avgd(b) = avg{avgd(t)}+ w〈t,b〉 = avgd(t) + 1

avgd(t) = avg{avgd(a)+avgd(b)}+ w〈ab,t〉 =
1 + avgd(b)

2 + 1

This leads to: avgd(s) = 0, avgd(a) = 1, avgd(b) = 5, avgd(t) = 4. We remark that it is not possible
to find the optimal solution of this problem by an algorithm that require to traverse the returned
hyperpaths.

By using the previous results, we can characterize in a general and unified framework sev-
eral optimization problems on hypergraphs. We remark that the properties of CY-INV and 1-
CYCLE-CONV (stated by Theorem 6.4) are upper bounds, whilst the property of CYCLE-UNB
(stated by Theorem 6.6) is a lower bound; of course, these properties may be not tight on the
specific instance.

The rank (Definition 4.2), syntactically very similar to the gap, is defined as “sum of the max”,
and then it is SUP: by Theorem 6.4, the resulting minimization problem is CY-INV, while the
maximization problem is CYCLE-UNB (by Theorem 6.6), as one would expect.

A very special example is the closure problem, regarded as an optimization problem: actually
this is the decision problem of finding whether, given a set on nodes X and a node y, there exists a
hyperpath from X, to y. In this case we can assume uniform hyperarcs weights, and the resulting
measure function has the same value on any existing hyperpath. Since the value of the function is
equal to its arguments, closure is both SUP and INF, and hence CY-INV.

Most of the results discussed above are summarized in Table 4.

30

measure resulting MIN MAX
function µ f(w,ψ) ψ(µ1, . . . , µk) properties problem problem

rank
+ max

SUP SUP,WINF SUP CY-INV CYCLE-UNB

gap
+ min

SUP WSUP,INF WSUP 1-CYCLE-CONV CYCLE-UNB

average-depth
+ avg

SUP GSUP GSUP CYCLE-UNB CYCLE-UNB

last
w (constant)

WSUP,WINF WSUP,WINF WSUP,WINF 1-CYCLE-CONV 1-CYCLE-CONV

traversal cost
+

∑
SUP SUP SUP CY-INV CYCLE-UNB

P-Prod[1,+∞]
× Π

INF INF SUP CY-INV CYCLE-UNB

P-Prod[0, 1]
× Π

INF INF INF CYCLE-UNB CY-INV

bottleneck
min min

WSUP,INF WSUP,INF WSUP,INF 1-CYCLE-CONV CY-INV

threshold
max max

SUP,WINF SUP,WINF SUP,WINF CY-INV 1-CYCLE-CONV

closure
= = (any solution)

SUP,INF SUP,INF SUP,INF CY-INV

Table 4: Characterization of measure functions on hypergraphs.

We conclude this section by representing in Figure 18 the main relationships between the classes
of measure function and the properties of the corresponding optimal hyperpath in case of minimiza-
tion problems. We recall that (min, k-pockets) = (max, k-gems). An analogous drawing could be
shown in case of maximization problems.

7 Representation of Optimal Hyperpaths

In this section we show that any optimal hyperpath has an equivalent one with a canonical structure.
This is useful for several reasons:

• we will see that, for all GSUP/GINF function and any directed hypergraph, there exists an
optimal canonical tree having a representation of linear size, i.e., of the same size of the
unfolded hyperpath;

• reducing optimal hyperpaths to few canonical cases makes easier to understand the impact
of measure functions and optimization criteria that originate them;

• by using canonical structures, it is easier both to design and to analyze algorithms for finding
optimal hyperpaths, since it is sufficient to find one of these canonical hyperpaths; further-
more, these hyperpath trees are those suitable of a representation with minimal size.

In the previous sections we have used replacements in order to reduce as much as possible the
node multiplicity of a hyperpath; in this section we apply subtree replacements in order to converge
toward a corresponding canonical tree, and show how these can be represented in a compact form
having linear size.

Definition 7.1 Given an optimization criterion (Φ, µ), where Φ ∈ {min,max} and µ ∈ VBMF ,
we say that a hyperpath tree tS,t is canonical if, for any any two subtrees sS,z and s′S,z with the
same target node z:

(a) if s and s′ are not subtree one another, then sS,z = s′S,z (i.e., they are identical);

(b) if, w.l.o.g., s′ is a subtree of s, then µ(sS,z) ≺ µ(s′S,z) (i.e., the deeper subtree is worse).

Note that a canonical tree, even if it is optimal, can have an unbounded structure; as an example,
the instance shown in Figure 17 is a canonical unbounded optimal tree. In the following we consider
Cycle-Bounded hyperpath optimization problems.

31

k-CyConv

CyUnb

.

1-CyConv

2-CyConv

WINF

INF
bn

gap

WSUP
last

VBMF

2-pockets

k-pockets

1R

0RGSUP GINF

1-pocket

FixPoint+ avg-depth

FixPoint

.

rank

SUP
ts

clos

tcost

CyInv P-Prod[0,1]

8

P-Prod[0,+]

Figure 18: Relationships between the classes of measure function and the properties of the optimal
hyperpaths in case of a minimization problem (clos = closure, tcost = traversal cost, ts = threshold,
bn = bottleneck).

32

Lemma 7.1 Given a Cycle-Bounded hyperpath optimization problem, with criterion (Φ, µ), where
Φ ∈ {min,max} and µ ∈ GSUP ∪ GINF and any functional hypergraph HF , for each optimal
hyperpath tree t∗S,t there exists a canonical tree tC∗S,t, and a sequence of replacements such that

t∗S,t tC∗S,t, and µ(tC∗S,t) � µ(t∗S,t), i.e., the sequence of replacements is measure-preserving.

Proof. Suppose we are given an arbitrary hyperpath tree t∗S,t which is not canonical, i.e., there are
two subtrees which contradict Definition 7.1. We show that, starting from an arbitrary t∗S,t, it is

possible to transform it in a canonical tree tC∗S,t by means of measure-preserving subtree replacements.
Following the definition of canonical tree, we assume that in t∗S,t there are two subtrees, sS,z and
s′S,z, with the same target node z and, in the hypothesis that t∗S,t is not in a canonical form, we
consider separately the two cases in Definition 7.1.

Type (a) replacements: We assume that s and s′ are not subtree one another, but sS,z 6= s′S,z (i.e.,
they are not identical).

Since function µ is Value-Based, then it takes values from a totally ordered domain, hence one
of the two subtrees, say s′, is not worse than the other one, i.e.: µ(s′S,z) � µ(sS,z). This is a value
preserving replacement and, according Lemma 6.1 if we replace any occurrence of s in t∗S,t with a
copy of s′, the new hyperpath tree t′S,t cannot be worse than the previous one (1). On the other
side, this replacement decreases at least by one unit the number of pairs of subtrees conflicting with
case (a) in Definition 7.1, therefore we can apply it until case (a) does not hold any more.

We remark that a single Type (a) replacement can increase node multiplicity. Adopting the
notation above, this situation arises when the new subtree s′S,z contains a node with target y and,
when s′ replaces a subtree sS,z, the branch above the replacement point contains a node with
target y (see Figure 19). Note that, if this replacement introduces a conflict with constraint (b), a
successive Type-(b) replacement will eliminate this new occurrence of node y.

<A,y>

S,z
<...,z>
s

<B,y>

S,z
<...,z>
s'

<A,y>

<B,y>

S,z
<...,z>
s'

(a) (b) (c)

Figure 19: A Type (a) subtree replacement increasing node multiplicity: Figure (a) shows the
subtree sS,z to be replaced, (b) shows the replacing subtree s′S,z; (c) shows the resulting tree.

Type (b) replacements: We assume that s′ is a subtree of s, with µ(s′S,z) � µ(sS,z).
By similar arguments as in case (a) above, the replacement sS,z → s′S,z is measure-preserving,

and reduce at least by one unit number of pairs of subtrees conflicting with case (b). Of course, in
this case node multiplicity cannot grow. �

We can now introduce the representation of a canonical tree by merging all the equivalent
subtrees, i.e., by “sharing” the representation of all subhyperpaths wherever they are identical. Of
course, if we are given a hyperpath tree t, its representation R(t) is not a tree any more, since
several nodes share their children. But an interesting feature is that any hyperarc 〈X, z〉 in a this
representation will appear exactly once, and then this representation has the same size of the folded
representation.

First of all, we show such an example of representation in Figure 20 in case of an acyclic
hyperpath tree. The source nodes are highlighted by connecting them to a single dummy node at
the bottom.

33

R(t)X,y

n n x n nn n x n

n n n n

n n n

n n y

n n

n n n

X

n n n

x n x x n n x n

n x n n

Figure 20: The representation of a canonical acyclic hyperpath tree.

As an additional example, in Figure 21 we show a linear size representation of the hyperpath
tree of exponential size: the folded hyperpath and the hyperpath tree are shown in Figure 4.

f g h f g i

h i j

d e f d e g

b c eb c d

a b a c

a

R(t)a,j

Figure 21: A linear size representation of a hyperpath tree of exponential size (shown in Figure 4).

In the following we consider this representation for the classes of measure functions in the
VBMF hierarchy, and show the properties of the corresponding canonical representation within
each interesting class of measure functions.

Problems in (min,GSUP) ∪ (max,GINF)
In presence of cycles, while optimizing hyperpaths under GSUP or GINF measure functions, any
k-Cycle Convergent optimization problem has, by definition, an optimal tree with node multiplicity
at most k+1. In this case, a cyclic hyperpath tree contains at most k times a node n with the same
target, and each time the subtree will has as a root one of the hyperarcs entering node n: these are
N-indeg[n].

For a k-Cycle Convergent problem we have to represent optimal hyperpaths with node multi-
plicity k+1. In a canonical representation each hyperarc is represented exactly once, but each node
may have up to k+ 1 possible connections to as many subtrees. An example is shown in Figure 22.
Note that, for k →∞, this representation can be extended to unlimited hyperpath trees, provided

34

R(t)s,t

t bs a

a b t

a t

s a

s

[k+1] [1,k]

Figure 22: A linear size representation for the example in Figure 17.

that they have a “periodic” structure.

Problems in (min,WSUP) ∪ (max,WINF)
We have proved that these optimization problems are 1-Cycle Convergent (Theorem 6.4). This
means that any optimal hyperpath has an equivalent tree with node multiplicity at most 2.

In all these cases, the space is bounded by the size of the hypergraph, i.e., O(|H|) for an explicit
representation Optimal Hyperpath tree. In Figure 23 we show the representation of a optimal
canonical hyperpath tree.

X

R(t)X,y
R R(t)X,y

U

x x x rx x rx r x x r

r r u r r r u r

r r u u r r r u u r

r r u u r r r u u r

r u u r r u u r

r r u y n n n y

n n

n n n n n n n

n n x n n n x n n

n n n n x n n

x n x x n n x n

X

Figure 23: The representation of an optimal hyperpath tree in case of a problem in (min,WSUP)∪
(max,WINF): the representation relevant hyperpath tree is on the left with bold arcs; the repre-
sentation of the forest of irrelevant subtrees is on the right. We add up a dummy target node on
the irrelevant forest.

Problems in (min, SUP) ∪ (max, INF)
We have proved that this class of coincides with the Cycle Invariant max /min optimization prob-
lems (Theorem 6.3). Therefore, there exist always an optimal canonical tree where all the subtrees
rooted at the same node are identical, and the previous data structure is sufficient to store an
optimal tree for any of these problems.

35

In the following we summarize the properties that we have identified as essential in order to
classify a measure functions µ(x1, x2, . . . , xk), and the consequent properties, under a certain opti-
mization criterion (min or max), of a canonical optimal hyperpath tree t∗C and its representation
R(t∗C):

• Multidimensional triangle inequality: xi � µ(x1, x2, . . . , xk), for i = 1, 2, . . . , k;

t∗C is always acyclic (meaning that its unfolded representation is acyclic);

R(t∗C) has a linear size (even though t∗C has an exponential size).

• Weak multidimensional triangle inequality: for i = 1, 2, . . . , k, each argument xi of the mea-
sure function can be:

- relevant, if it complies the multidimensional triangle inequality;

- irrelevant, if it can be unlimitedly worsen up to the superior/inferior of the considered
domain (opposite to the optimization criterion) without affecting the value of µ(. . .).

t∗C is 1-Cycle-Convergent; a relevant acyclic tree, and a collection of irrelevant acyclic subtrees;

R(t∗C) can be organized as follows: the relevant tree can be stored by means of a rooted acyclic
graph, and the irrelevant subtrees can be stored as a forest of rooted dags.

• Monotonicity: for i = 1, 2, . . . , k, if x′i � x, then µ(x1, . . . , x
′
i, . . . , xk) � µ(x1, . . . , xi, . . . , xk),

i.e., if we “improve” (according the optimization criterion) one of the arguments, the value of
the function cannot worsen.

t∗C can be split as follows: a (possibly cyclic) relevant tree and, as above, a forest of acyclic
irrelevant subtrees;

R(t∗C) has a linear size (even though t∗C has unbounded size).

• Value-Based: µ has values in a totally ordered domain.

Therefore, we can summarize the properties of of the main classes of functions.

weak multidim. multidim.
Class of function Value-Based monotonicity triangle ineq. triangle ineq.
SUP [Knu77], INF

√ √ √ √

WSUP [RR96], WINF
√ √ √

GSUP, GINF
√ √

VB
√

8 Algorithmic Approaches to Hyperpath Problems

A number of approach for finding hyperpaths have been proposed in the literature, sometimes with
small variants, and sometimes formulated in specific domains, not fully aware of similar research
efforts in other domains.

In this section we describe some of the basic algorithmic strategies for finding hyperpaths. Then,
the effectiveness of each algorithm is clearly stated with respect to the classification of hyperpath
optimization problems provided in the previous sections, based on (i) the features of the adopted
metrics and (ii) the resulting optimal hyperpath.

One of these strategies (ISBP) is detailed here for the first time. These proposed algorithm
have a simple structure, and are suitable of a simple and practical implementation. Furthermore,
we could devise a unifying algorithmic pattern encompassing all of them: therefore their behaviour
can be compared and similarities and differences are highlighted.

The proposed algorithmic pattern is suitable of further modifications in order to tailor it for
specific optimization criteria.

In the computational costs we do not take into account the cost of computing the measure
function on each hyperarc F〈X,y〉(x1, x2, . . . , xk) when all its arguments are available. In many
practical cases this is not relevant; in a general case, this computational cost has to be considered

36

any time that the measure of a hyperpath has to be computed. This computational cost has a
different nature from the kind of problem we study in this paper. Anyway, finding hyperpaths
which minimize the number of times a function has to be computed on a hyperarc - in turn - might
be formulated as another optimization problem.

In particular we address the Single-Source problem. We are given:

• a directed functional hypergraph HF = 〈N,F〉;
• a specific source set S ⊆ N ;

• a measure function µ = 〈f, ψ, µ0, µ∞〉;
• an optimization criterion Ψ.

We are interested in finding the µ-optimal (let us say, minimal) hyperpaths from a source set S ⊆ N
to any other node in N , i.e., a Single-Source Optimal Hyperpath problem. Given a query node z,
we want to know both the measure of an optimal hyperpath from S to z, and the listing of all the
hyperarcs in such hyperpath.

Given the optimization problem P = (min, µ), we will denote as “distance” of a node y from a
given source S the value d[y] = µ(t∗S,y), i.e., the measure of an optimal hyperpath for problem P.

We will make use of the following data structures:

DATA STRUCTURES:

INPUT:

N : set of nodes

H : set of hyperarcs

S : set of (source) nodes

OUTPUT:

d[1..n] : array of integers (measure of the optimal hyperpath from the source)

ChildRoot[1..n] : array of pointers to hyperarcs (representation of the hyperpath tree)

AUXILIARY STRUCTURES:

Q : queue (the kind of queue changes according the algorithm)

We represent hypergraphs by means of adjacency lists, with size |H| = Θ(|N |+|H|+a), where a is
the source area. For the computational costs, we refer to the quantities introduced in Definition 4.1;
in particular, |d| = |ChildRoot| = |N |. For uniform notation, for each node u ∈ N , the quantity
d[u] stores the measure of the best known hyperpath from source S to node u, as well as the final
(optimal) hyperpath. If there exists no hyperpath from S to u, then we will have d[u] = µ∞; this
is the typical initialization value for all the algorithms that we present here.

Each node of a hyperpath tree tS,t is a hyperarc (x1 x2 . . . xk, y). Any node xi has a pointer,
ChildRoot[xi], to the root of a subhyperpath tree tS,xi of tS,t. For each source node si ∈ S, the value
of ChildRoot[si] will be null, in coherence with the fact that these nodes are the possible leaves of
the hyperpath tree.

We will use the arrays d[...] and ChildRoot[1..n] even to store the measure and, respectively, the
root, of the best known hyperpath from the source.

The most general data structure for a k-Cycle Convergent optimization problem requires that
ChildRoot[1..n, 1..k + 1] is a two dimensional array of hyperarcs: for each node xi ∈ N , the i-th
row, the array ChildRooti[1..k + 1] stores the k + 1 pointers to the children.

In order to make the pseudocode more readable and when no confusion may arise, the notation
µ(X, y) denotes the measure of the hyperpath from the source S to node y using (X, y) as its
last hyperarc. In this case, the best known measures will be used for the subhyperpaths, hence:
µ(X, y) ≡ µ〈X,y〉(d[x1], d[x2], . . . , d[xk]).

A hyperarc (x1 x2 . . . xk, y) within a hyperpath tree has k ChildRoot pointers, one leaving each
xi; furthermore all the hyperarcs sharing a node xi in their source sets, must share the corresponding
ChildRoot. Note that, by representing a hyperpath tree with array ChildRoot of pointers with
orientation from parent to child - the reverse of what one may expect, we apparently impose a
restriction on the possible hyperpath trees that can be represented.

37

We have seen in Section 7 that this choice is not a restriction; on the other side any optimal
hyperpath has an equivalent canonical one has a representation whose size is bounded by the size
of the folded hyperpath.

For the case of a WSUP measure function, we have to arrange a data structure where each
node appears in two different hyperpath subtrees. In Figure 23 we have shown an example with
a representation of such a hyperpath tree. This requires to store up to two different pointers for
each node. Namely, each reachable node ξ appears once in the relevant tree, and once in the
irrelevant tree (respectively, on the left and on the right in that Figure), in both cases as root of
the representation of a subtree from source S to node ξ. If another node has ξ as child, it will
point to the first root, or to the second root, according whether ξ is a relevant, or irrelevant child.
In particular, we use the array ChildRoot for the relevant pointer, and IrrelChildRoot for storing
(within another single tree) all the irrelevant subtrees.

Visiting Hypergraphs
First of all, we show a basic algorithm to build up a Hyperpath Tree by a simple visit of a directed
hypergraph, i.e., without any optimization target beside being acyclic and spanning over the closure
of the source set X. This simple algorithm, that is described in a number of sources and context
(see, e.g., [AIN90, GLNP92]), is interesting since it allows us to introduce our algorithmic pattern
and to fix the basics of the optimization algorithms shown in this section. We will see how - with
small variations - it can be adapted to solve other simple problems on directed hypergraphs.

Algorithm Visit [H : any hypergraph]
/* visiting a hypergraph from a given source set S */

Q is a SIMPLE QUEUE, µ0 = 0, µ∞ = 1
1. INITIALIZATION

for each n ∈ N: set d[n] = µ∞; set ChildRoot[n] = null;
for each s ∈ S: enqueue s in Q; set d[x] = µ0;

2. MAIN LOOP:
while Q is not empty:

3. VISIT node x chosen from Q according a given EXTRACTION POLICY
extract any x from Q;

4. for each hyperarc (X, y) ∈ fstar[x] complying a SCAN POLICY
for each hyperarc (X, y) ∈ fstar(x) s.t. all nodes in X have been visited:

5. IF TEST(y) succeed, update data structures accordingly
if µ(X, y) ≺ d[y]

set ChildRoot[y] to (X, y);
set d[x] = µ(X, y);

6. possibly ENQUEUE node y in Q
if(X, y) is the first scanned hyperarc entering node y:

insert y in Q;

The crucial points of this algorithmic pattern are summarized below in the present case of
Algorithm Visit:

• extraction policy (step 3): type of queue and the notion of priority. In the case of Visit, any
node is good, i.e., Q is a simple queue;

• scan policy (step 4): under what conditions a hyperarc (X, y) is scanned. In the case of
Algorithm Visit, x must be the last node in the source set X to be visited; a simple counter
on each hyperarc, with initial value |X| and decremented for any visited node in X, can be
used to test this condition in constant time;

• test on node y (step 5): under what conditions a node y is updated, since hyperarc (X, y)
is the root of a possible hyperpath tree tS,y; in general node y can be already enqueued and
this would change its priority: this is not the case for Algorithm Visit, where a simple queue
is used.

38

• enqueue policy (step 6): under what conditions a node y is enqueued in Q; In the case of
Algorithm Visit, the first scanned arc entering a node y, will imply its insertion in Q.

From another perspective, we can consider the lifecycle of the nodes in the hypergraph deter-
mined by the pattern above:

A. when a hyperarc (X, y) entering node ξ (denoted as “y”) is scanned in step 4, the node is
tested in step 5;

B. when a test on ξ (as “y”) in step 5 succeeds, then ξ is updated, i.e., its new distance and
parent is updated; if this is the first successful test, the node is enqueued in Q in step 6 only
if the scanned hyperarc is the first one to enter ξ; at this point ξ becomes reachable; note that
source nodes are reachable by an empty hyperpath, hence they are enqueued before entering
the main loop;

C. when any further hyperarc (X ′, y) entering y ≡ ξ is scanned and the test on y succeeds, node
ξ (as “y”) is updated while it is in Q: in this case hyperarc (X ′, y) would be the root of
another possible hyperpath tree t′S,ξ; in Algorithm Visit there is no such update;

D. when node ξ (as “x”) is dequeued from Q (step 3), it is visited: all the hyperarcs in fstar[x]
will be possibly scanned (step 4) in order to propagate possible changes to adjacent nodes.

Due to the enqueue policy (item B above, and step 6 in the pseudocode), in Algorithm Visit,
a node can be enqueued only once. This is not always the case for the following optimization
algorithms.

When Algorithm Visit exits, if a node ξ has not been enqueued, and then not visited, then it is
not reachable from source S.

Algorithm Visit requires linear time in the size of the visited hypergraph H = (N,H). In fact,
each node is visited (dequeued) at most once, and each hyperarc (X, y) is scanned at most once, as
soon as the last xi in the source X has been visited. The only step that is not performed in linear
time is step 4, that has a cost |fstar(x)| But we have that

∑
x∈N (|fstar(x)|) =

∑
〈X,y〉∈H(|X|) = a.

Since we have |N | nodes, |H| hyperarcs, and source size a, the total time complexity is O(|N | +
|H|+ a) = O(|H|).

We remark that, in analogy with the case of directed graphs (a special case of directed hyper-
graphs), if Q is managed as a FIFO queue, Algorithm Visit generates a Breadth-First Tree of the
hypergraph, whilst if Q is managed as a LIFO queue, we get a Depth-First Tree.

A small variation of Algorithms Visit may be used for an Acyclicity Test of the hypergraph -
still requiring linear time. Of course this is very similar to analogous proposals, and extends the
classical algorithm for directed graphs proposed in Knuth [Knu73]. If we change a single word and
then the ENQUEUE POLICY in step 6:

• if (X, y) is the last scanned hyperarc entering node y

the algorithm finds whether there are cycles reachable from the given source S. To find all cycles, it
is sufficient to insert in the hypergraph a dummy node s connected to all the other nodes x ∈ N by
an arc (s, x), and use Algorithm Visit (from source s), with the variation above. Note that, if the
hypergraph is cyclic, no node in a cycle can be enqueued, and this Algorithm exits without visiting
all the nodes. If the hypergraph is acyclic, then this algorithm generates a Topological Sort of the
nodes of the hypergraph: this is the sequence of dequeued nodes.

We will show that the optimization algorithms that we discuss below are a sort of variations on
this theme, that is, they can be accommodated within this pattern, or are a sequence of steps, each
being reducible to this pattern. In most cases their differences are essentially due to the policies for
managing the queue, originally devised by Dijkstra.

SBP: Sort By Priority
An algorithm for finding shortest path in a graph, based on a priority queue was originally proposed
by Dijkstra [Dij59]. The first solution for the Single Source Optimal Hyperpath problem can be
adapted from Knuth [Knu77], originally aimed at solving the so called context free grammar problem.
He modified and extended the original algorithm by Dijkstra for Superior CF Grammar. This
solution was “revisited” by Ramalingam and Reps [RR96], and explicitly formulated for directed
hypergraphs. As a modification from the original formulation by Knuth, these authors propose to

39

remove “useless” nonterminal symbols and productions. In our terminology, these are unreachable
nodes, and hyperarcs with an unreachable node in the source. Hence they suggest of applying the
algorithm above after pruning out these nodes and incident hyperarcs. Hence, this algorithm can be
used to find the optimal hyperpaths from a single source node to all the other nodes in a weighted
hypergraph H = 〈N,H;w〉.

The algorithm, analogously to the original formulation by Dijkstra, uses a priority queue whose
extraction policy is the minimum known “distance”. Hence the nodes are visited in nonincreasing
priority from the source (in this case, the “distance”): for this reason we denote this approach as
Sort By Priority (SBP). A generic node y is enqueued when the first hyperarc entering y is scanned,
completing a first hyperpath from source S to y. The priority of y in the queue may decrease if
further scanned hyperarcs provide better connections from the source. When a node is dequeued
and visited, its distance from the source is computed. This algorithm requires O(|H| log |N |+ |H|)
worst case time, that can be reduced to O(|N | log |N | + |H|) by using Fibonacci heaps [FT87] for
the implementation of priority queues.

We provide the schema of Algorithm SBS Sort By Priority, as a free interpretation of the
algorithm described above, forced within our pattern, and generalized to decreasing functions.

Algorithm SBP (Sort By Priority)

/* rephrasing contributions and ideas by from [Dij59, Knu77, RR96] */

Q is a PRIORITY QUEUE, µ0 = 0, µ∞ =∞
1. INITIALIZATION

for each n ∈ N: set d[n] = µ∞; set ChildRoot[n] = null;
for each s ∈ S: enqueue s in Q; set d[x] = µ0;

2. MAIN LOOP:
while Q is not empty:

3. VISIT node x chosen from Q according a given EXTRACTION POLICY
extract x from Q having best priority d[x];

4. for each hyperarc (X, y) ∈ fstar[x] complying a SCAN POLICY
for each hyperarc (X, y) ∈ fstar(x) s.t. all nodes in X have been visited:

5. IF TEST(y) succeed, update data structures accordingly
if µ(X, y) ≺ d[y]

set ChildRoot[y] to (X, y);
set d[x] = µ(X, y);

6. possibly ENQUEUE node y in Q
if y 6∈ Q

insert y in Q;

We have presented this algorithm in a quite generic form. If the interpretation is as follows:

• “best” in steps 3 and 5 means “minimum”

• “≺” in step 5 means “strictly less than”

we can use this algorithm for the minimization of a superior measure function, as in the original
proposals [Dij59, Knu77, RR96]. However, the same algorithm can be used for any (max, INF)
problem, e.g., for finding hyperpaths with maximum bottleneck, or maximum P-Product (products
of real numbers in the range [0− 1]), with the opposite interpretation (“best” means “maximum”,
and “≺” means “strictly larger than”). In the following we will refer a problem of “minimum”.

Compared with Algorithm Visit, Algorithm SBP differs in two lines

• extraction policy (step 3): Q is a priority queue (smallest first), where the priority of a node
y in the queue is the measure of the best known hyperpath from the source to y;

• enqueue/update policy (step 6): if the test succeed, hyperarc (X, y) is the root of the (new)
known best hyperpath tree tS,y. Hence this hyperarc is stored in ChildRoot[y], and node y is
inserted or updated in Q with priority µ(X, y).

Due to the enqueue policy, it is possible that a node will be enqueued several times.

The correctness of Algorithm SBP has been proven by Knuth [Knu77] for SUP functions, and
up to WSUP functions by Ramalingam and Reps [RR96].

40

The time complexity, discussed in [Knu77, RR96], is O(|H| log |N |+ |H|) worst case time, that
can be reduced to O(|N | log |N | + |H|) by using Fibonacci heaps [FT87] for the implementation
of priority queues. But this complexity has validity only within SUP functions, at least for the
pseudocode provided above.

Of course we can extend all these considerations to the case of a (max, INF) optimization
problem.

A hard instance with a WSUP measure function
A strategy which is purely based on a priority queue, such as Sort by Priority presented above, has
problems if the considered function have some irrelevant variables, as in WSUP functions. In fact,
in this case, one cannot rely upon the inequality g(x1, . . . , xk) ≥ xi in the definition of the SUP
functions. In particular we show that it can be very inefficient trying to find out new hyperarcs
and computing the value of optimal hyperpaths in a single run of algorithm SBP.

Let us consider a simple 1-relevant function, such as the gap, which is strictly WSUP in case
of positive hyperarc weights. We know that WSUP functions are 1-Cycle Bounded (Theorem 6.4),
but the problem is that, by using a pure SBP approach when the optimal hyperpath is cyclic, each
hyperarc is scanned without knowing whether it is part of the relevant tree, or it is irrelevant. The
result is that the same node can enqueued several times in the priority queue, and a portion of the
hypergraph can be visited as many times.

As an example of “hard” instance, let us consider the hypergraph in Figure 24, where we are
interested in computing the hyperpaths from the source {s} with minimum gap. Beyond node c
there is a large region which can be visited from c at a small cost.

...
...

...

...

s a b

x1

x2

xi

2

4

2i

2i

2i-1

2i-2

i

... ...

1 c
w=1

Figure 24: A hard instance for the problem of finding a hyperpath of minimum gap.

Let us consider Algorithm SBP running on this graph. After the initialization, we will analyze
the priority queue Q and the further steps, for executions of the main loop:

(1st-2nd)Q: node s alone, then node a alone. The adjacency list fstar(a) considered in step 4
contains the hyperarc (a, b) with weight 2i, and a series of hyperarcs (a xj , b) with weight
2i − j, for j = 1, 2, . . . , i. At this point only hyperarc (a xj , b) can be scanned (hence b is
enqueued with priority 2i + 1), and all nodes x1, x2, . . . , xi are tested, but they cannot be
enqueued.

(3rd)Q: node b alone, which is visited: its distance is computed as d[b] = 2i+1. All the (hyper)arcs
in its adjacency list are scanned and, since the source set of all these, {b}, contains a single
visited node, the tested nodes are all enqueued: c, and all xj with j = 1, 2, . . . , i.

(4th)Q contains: node c with priority 2+2i, and each xj with priority 2i+1+2j , with j = 1, 2, . . . , i.
The problem is here: c is dequeued and its distance is computed as d[c] = 2i + 2, and from
now on Algorithm SBP will visit the large component on the right.

(z-th)Q: Q contains: each xj with priority 2i + 1 + 2j , with j = 1, 2, . . . , i. Hence x1 is dequeued
and visited, and the only hyperarc in its adjacency list, (x1, b) can be scanned. Node b is
enqueued a second time, since the new hyperpath with last hyperarc (x1, b) has gap 2i, which
is better (smaller) than the previous one (2i+ 1).

41

(further) From now on Algorithm SBS will visit b, c and the large component beyond c for each of
the x2, . . . , xi.

Eventually, the algorithm terminates correctly, and finds out the hyperpath with optimal gap to c
and beyond.

Hence, let us consider a hypergraph of size |H|, with source area a = Θ|H|, and run on this
instance the Algorithm pseudocoded as Sort By Priority. In this case Ω(|N |) nodes (a portion of
the hypergraph) are enqueued and dequeued Ω(|N |) times, every time scanning their fstar, up to
a bound Ω(|N | · |H|) hyperarc scan (without considering the priority queue). We remark that this
event can never occur in any instance if the measure function is SUP.

ISBP: Impatient Sort By Priority
The previous example shows the inconvenient of propagating at the same time the reachability from
the source while searching for the best hyperpath, at least in case of weak functions.

We propose a simple approach, based on a sequence of two phases:

1. Execute a Visit of hypergraph H from the given source S, in order to find out the reachable
nodes and the scannable hyperarcs; letHR = (NR, HR) be the reachable portion of the original
hypergraph from the given source S.

2. Execute Algorithm Impatient Sort-By-Priority, on the subhypergraph HR = (NR, HR), re-
turned in the first phase.

In this algorithm, shown below, we deal separately with the two aspects - reachability, and opti-
mization.

Algorithm ISBP (Impatient Sort By Priority)

/* This runs on the subhypergraph HR = (NR, HR), known to be reachable from source S */

Q is a PRIORITY QUEUE, µ0 = 0, µ∞ =∞
1. INITIALIZATION

for each n ∈ NR: set d[n] = µ∞; set ChildRoot[n] = null;
for each s ∈ S: enqueue s in Q; set d[x] = µ0;

2. MAIN LOOP:
while Q is not empty:

3. VISIT node x chosen from Q according a given EXTRACTION POLICY
extract x from Q having best priority d[x];

4. for each hyperarc (X, y) ∈ fstar[x] complying a SCAN POLICY
for each hyperarc (X, y) ∈ fstar(x) {ISBP doesn’t wait that all nodes in X have been visited}

5. IF TEST(y) succeed, update data structures accordingly
if µ(X, y) ≺ d[y]

set ChildRoot[y] to (X, y);
set d[x] = µ(X, y);

6. possibly ENQUEUE node y in Q
if y 6∈ Q

insert y in Q;

This “impatient” version of Sort By Priority is different from the previous one because it exploit
the fact that all the considered nodes are known to be reachable, and therefore, all the hyperarcs
are known to to be “scannable”, hence we have split the two tasks - reachability and optimization.
Beyond that, the code differs only in one row: the scan policy in step 4: when ISBP takes into
consideration a hyperarc (X, y) ∈ fstar(x), there is no scanning policy at all, i.e., this is scanned
anyway without waiting that all nodes in the source set X have been visited, therefore the test on
y is performed all the times, with the computation of µ(X, y) = F〈X,y〉(d[x1], d[x2], . . . , d[xk]).

Hence algorithm ISBP computes the value of µ as soon as the value of a first argument (any
of the d[xi]) is available, and keeps on recomputing µ as new arguments (the measure of further
subhyperpaths) are available.

If function µ depends on all its arguments, this is a disadvantage with respect to SBP, although
not in terms of asymptotic complexity. We shortly discuss these disadvantages together with consid-

42

erations on the complexity of ISBP. Of course this discussion applies to the case of a WSUP/WINF
measure functions, where both SBP and ISBP work.

• ISBP will enqueue a node y as soon as the first node in the source set of the first entering
hyperarc is visited. Therefore, many nodes will be enqueued earlier: this implies a priority
queue with larger size, in the average. In any case this queue contains at most |N | nodes.

• Whereas SBP tests in constant time whether all nodes in X have been visited, ISBP computes
the value of µ and tests whether this “improves” the current best hyperpath to y. If µ can be
(re)computed in constant time (note that only one of its arguments has changed - only as an
improvement), this computation does not change the complexity; minimum, maximum, sum,
product are examples of functions requiring a constant time to be recomputed when one of
the arguments “improves”. Anyway, in the worst case, for each hyperarc (X, y), function µ
is (re)computed O(|X|) times when each xi is visited and the value of d[xi] is assessed. The
total number of times this can happen is a, where a is the source area, hence the overall is
O(|H|); the number of times that function µ is computed by SBP is O(|H|).

On the positive side, we have that Algorithm ISBP computes the correct measure of the optimal
hyperpath as soon as the last relevant argument is available. If function µ is 1-relevant (such as
the gap), this is the first one. As an example, let us consider the optimization problem proposed
in figure 24. When node a is visited in the second execution of the main loop, node b is enqueued,
say with priority 2i + 1, but all hyperarcs in fstar(a) are known to be scannable and then, before
leaving the loop corresponding to the visit of node a, the possible value of the gap(b) is computed
by using all the hyperarcs (a xj , b) for possible updates on node b in the queue. When node b will
be scanned in the third execution of the loop, its priority corresponds to the optimal value i+ 1.

We have proved that, for any WSUP (and WINF) function, there exists always a 1-Cycle Con-
vergent optimal tree (Theorem 6.4) where the two relevant and irrelevant portions, taken separately
are acyclic 6.2.

In the first phase, Algorithm Impatient Sort By Priority builds up a Visit that will contain
a representation of all the irrelevant subtrees: an example is the data structure on the right in
Figure 23. In the second phase ISBP builds up only a representation of the relevant portion of the
Optimal tree (on the left in the same figure). Any claim done for a SUP optimal tree are valid in
this case, as well: this tree is acyclic, and can be found by a Sort-By-Priority approach.

Algorithm ISBP is suitable for finding a Single Source Optimal Hyperpath tree for any problem
P ∈ (min,WSUP)∪ (max,WINF). In particular this algorithm, finds optimal hyperpaths that can
be returned by a suitable navigation of the data structure, within the classes of WSUP and WINF
functions, even in case of a cyclic hyperpaths. In particular, in this case, when the algorithm exits,
the array ChildRoot provides the relevant tree of the optimal hyperpath. All the irrelevant subtrees
can be collected by linking each occurrence of an irrelevant node u in the tree with the root of the
subtree rooted in u generated in the first phase of the algorithm, as shown in Figure 23 (right side):
this tree is actually a spanning hyperpath tree and it is acyclic.

As a summary of compared performances, ISBP works on problems in (min,WSUP)∪(max,WINF)
and has the same asymptotic cost as SBP, i.e., O(|H| log |N |+|H|) worst case time, orO(|N | log |N |+
|H|) time by using Fibonacci heaps [FT87]. On the other side, SBP achieve this performance only
on problems in (min,SUP) ∪ (max, INF). By the way, the number of times that function µ is
computed is: O(|H|) by SBP, and O(min{a, k|H|}) by ISBP in any k-relevant hypergraph.

SBS: Sort By Structure
A different approach to compute optimal hyperpaths, which we will refer to as SBS, may be used
in case of acyclic hypergraphs.

Directed acyclic hypergraphs naturally arise in several applications. As an example, in Auto-
matic Speech Recognition (ASR) directed hypergraphs have been adopted as a computational tool
in order to select the path with maximum score in a word lattice, based on a Probabilistic Context-
Free Grammar [KM04, Ned03]. In such cases, the adoption of techniques, specifically conceived
for acyclic hypergraphs, provide both extremely fast algorithms (i.e., linear time), a very simple
implementation, and works on (min,GSUP)∪ (max,GINF) problems, i.e., we do not need triangle
inequality, but only monotonicity.

The proposed strategy consists in computing shortest hyperpaths following a topological sort

43

of the target nodes. This approach replies on hypergraphs a well known strategy for computing a
Single-Source Shortest-Path Tree in a directed acyclic graph (see, e.g., [CLRS09], Section 24.2).

We propose a simple approach, based on a sequence of two phases, as in the previous proposal:

1. Execute a Visit of hypergraph H from the given source S, in order to find out the reachable
nodes and the scannable hyperarcs; letHR = (NR, HR) be the reachable portion of the original
hypergraph from the given source S.

2. Execute Algorithm Impatient Sort-By-Structure, on the subhypergraph HR = (NR, HR),
returned by phase 0.

Algorithm Sort By Structure [H : acyclic hypergraph]
/* This runs on the subhypergraph HR = (NR, HR), known to be reachable from source S */

Q is a SIMPLE QUEUE, µ0 = 0, µ∞ = 1
1. INITIALIZATION

for each n ∈ NR: set d[n] = µ∞; set ChildRoot[n] = null;
for each s ∈ S: enqueue s in Q; set d[x] = µ0;

2. MAIN LOOP:
while Q is not empty:

3. VISIT node x chosen from Q according a given EXTRACTION POLICY
extract any x from Q;

4. for each hyperarc (X, y) ∈ fstar[x] complying a SCAN POLICY
for each hyperarc (X, y) ∈ fstar(x) s.t. all nodes in X have been visited:

5. IF TEST(y) succeed, update data structures accordingly
if µ(X, y) ≺ d[y]

set ChildRoot[y] to (X, y);
set d[x] = µ(X, y);

6. possibly ENQUEUE node y in Q
if(X, y) is the last scanned hyperarc entering node y:

insert y in Q;

Since this algorithm uses a simple queue, it performs a sort of “visit”; differently from the basic
Algorithm Visit, algorithm SBS uses the word “last” to decide whether enqueue a node in step 6,
as suggested above, in order to force the vertices to be visited according a topological sort.

For a weighted hypergraphHW = 〈N,H;w〉 having a representation of size |H| = |N |+|H|+|S|,
where |S| =

∑
{|X| s.t. X is a source in H}, the algorithm requires O(|H|) time and space.

Selecting an Algorithm for a Hyperpath Optimization Problem
We summarize the selection criteria among the algorithms proposed in this Section. We consider the
Single-Source Optimal Hyperpath problem, and we are given: an optimization problem P = (Φ, µ)
on a directed hypergraph H = 〈N,H〉, where µ is a measure function, Ψ ∈ {min,max} is the
optimization criterion. We are interested in finding the (Φ, µ)-optimal hyperpaths from a given
source set S ⊆ N to any other node in N , therefore we need to compute both the measure of an
optimal hyperpath from S to z, and the listing of all the hyperarcs in such hyperpath.

- If the hypergraph is acyclic and t the problem is P ∈ (min,GSUP) ∪ (max,GINF), the best
solution is Sort By Structure, running in linear time, i.e., O(|H|) for a hypergraph of size |H|.

- If the problem is P ∈ (min,SUP)∪(max, INF), the best solution is Sort By Priority, requiring
O(|H| log |H|) worst case time, while function µ is computed O(|H|) times.

- If the problem is P ∈ (min,WSUP) ∪ (max,WINF), then it is 1-Cycle-Convergent and the
best choice is Impatient Sort By Priority, still requiring O(|H| log |H|). In this case, function
µ is computed O(min{k · |H|, a}) times, if the function is k-relevant.

In all these cases the algorithms will return both the distances, and the optimal hyperpath, that
can be easily collected from the available data structures.

If the problem on a given hypergraph consists in: computing the reachable portion from a source
set S, determining the acyclicity, or finding a topological sort, a solution in linear time is given by
algorithm Visit and its variants.

44

9 Conclusions and Open Issues

Following and extending previous works, primarily by Knuth [Knu77] and Ramalingam-Reps [RR96],
we have proposed a classification of tractable hyperpath optimization problems based on:

- the adopted measure function µ(x1, x2, . . . , xk) under the minimal feature of being Value-
Based;

- the resulting structure of the optimal hyperpaths, finding properties and new characteriza-
tions of these classes.

We show how, when additional constraints are imposed on the set of hyperarcs (as opposed to a
purely Value-Based approach), very often we came up to untractable problems.

We have provided a series of algorithms for these problems, providing a unifying view within
a common algorithmic pattern, investigating and clearing their effectiveness when applied to opti-
mization problems in the proposed classes.

Many optimization problems remain open. One is to fill with effective algorithms more general
problems with respect to the ones covered by the proposed algorithms. In particular, an issue
that we have only skimmed is the possible mutual interaction between Linear Programming and
hypergraphs.

In this paper we have focused on the “static” problem. Many results have been developed for
dynamic hyperpath problems, often arising in practice - at least as often as the propagation of cell
updates within a spreadsheet. A study of properties, algorithms, and computational models for
incremental hyperpath optimization problems deserves a dedicated effort.

An experimentation of the algorithms proposed here, as well as many others invented and
reinvented in so many domains, would provide a sharper evidence of the properties stated in this
paper, and of the relative merits of each solution, and would suggest further improvements.

We look with attention to the wide range of applications where the directed hypergraphs provide
a strong leverage in order to model and tackle combinatorial problems. We strongly hope that a
clear and simple way of classifying problems arising in any realm, together with a sharp vision of
whether and why a given algorithm works in a given situations, will boost the adoption of better
solutions - since too often good achievements in this field are underused, because sometimes they
tend to be clumsy.

Quoting a consideration from [KM04], “. . . we believe that the hypergraph presentation allows
easier access to a greater variety of algorithmic tools, and presents a clearer, more visually appealing
intuition.”

References

[ADS83] Giorgio Ausiello, Alessandro D’Atri, and Domenico Saccà. Graph algorithms for func-
tional dependency manipulation. Journal of the ACM, 30:752–766, 1983.

[ADS86] Giorgio Ausiello, Alessandro D’Atri, and Domenico Saccà. Minimal representation of
directed hypergraphs. SIAM Journal on Computing, 15:418–431, 1986.

[AFLN10] Paola Alimonti, Esteban Feuerstein, Luigi Laura, and Umberto Nanni. Linear Time
Analysis of Properties of Conflict-Free and General Petri nets. Theoretical Computer
Science, (to appear), 2010.

[AFN92] Paola Alimonti, Esteban Feuerstein, and Umberto Nanni. Linear time algorithms for
Liveness and Boundedness in Conflict-Free Petri nets. In 1st Latin American The-
oretical Informatics, volume 583, pages 1–14. Lecture Notes in Computer Science,
Springer-Verlag, 1992.

[AI91] Giorgio Ausiello and Giuseppe F. Italiano. Online algorithms for polynomially solvable
satisfiability problems. Journal of Logic Programming, 10:69–90, 1991.

[AIN90] Giorgio Ausiello, Giuseppe F. Italiano, and Umberto Nanni. Dynamic maintenance of
directed hypergraphs. Theoretical Computer Science, 72(2-3):97–117, 1990.

45

[AIN92] Giorgio Ausiello, Giuseppe F. Italiano, and Umberto Nanni. Optimal traversal of
directed hypergraphs. Technical Report TR-92-073, ICSI - International Computer
Science Institute, Berkeley (CA), 1992.

[Aus88] Giorgio Ausiello. Directed hypergraphs: Data structures and applications. In 13th
Colloquium on Trees in Algebra and Programming, CAAP ’88, volume 299 of Lecture
Notes in Computer Science, pages 295–303. Springer Berlin / Heidelberg, 1988.

[Ber73] Claude Berge. Graphs and Hypergraphs. North Holland, Amsterdam, 1973.

[Ber89] Claude Berge. Hypergraphs - Combinatorics of Finite Sets. North Holland, Amsterdam,
1989.

[CDP04] Sanjay Chawla, Joseph Davis, and Gaurav Pandey. On local pruning of association
rules using directed hypergraphs. In ICDE ’04: Proceedings of the 20th International
Conference on Data Engineering, pages 832–841. IEEE Computer Society, 2004.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms, Third Edition. The MIT Press, 2009.

[Dij59] Edsger W. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematik, 1:269–271, 1959.

[EGB06] Thomas Eschbach, Wolfgang Günther, and Bernd Becker. Orthogonal hypergraph
drawing for improved visibility. Journal of Graph Algorithms and Applications, 10:141–
157, 2006.

[EKC+08] Brendan Elliott, Mustafa Kirac, Ali Cakmak, Gokhan Yavas, Stephen Mayes,
En Cheng, Yuan Wang, Chirag Gupta, Gultekin Ozsoyoglu, and Zehra Meral Oz-
soyoglu. PathCase: pathways database system. Bioinformatics, 24(21):2526–2533,
2008.

[EKL08] Javier Esparza, Stefan Kiefer, and Michael Luttenberger. Solving Monotone Polynomial
Equations. In 5th IFIP International Conference On Theoretical Computer Science
(TCS), volume 273 of IFIP International Federation for Information Processing, pages
285–298. Springer, 2008.

[Fra07] Ganna Frankova. Service level agreements: web services and security. In ICWE’07:
Proceedings of the 7th international conference on Web engineering, pages 556–562,
Berlin, Heidelberg, 2007. Springer-Verlag.

[FT87] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34:596–615, 1987.

[GJ79] Michael R. Garey and David S. Johnson. Computers and intractability: a guide to the
theory of NP-Completeness. W. H. Freeman, 1979.

[GLNP92] Giorgio Gallo, Giustino Longo, Sang Nguyen, and Stefano Pallottino. Directed hyper-
graphs and applications. Technical Report 03/90, Dip. di Informatica, Univ. of Pisa,
Italy, Corso Italia 40, I-56125 Pisa, Italy, 1990 (revised version, 1992).

[GLNP93] Giorgio Gallo, Giustino Longo, Sang Nguyen, and Stefano Pallottino. Directed hyper-
graphs and applications. Discrete Applied Mathematics, 42:177–201, 1993.

[GMKT97] Dimitrios Gunopulos, Heikki Mannila, Roni Khardon, and Hannu Toivonen. Data
mining, hypergraph transversals, and machine learning (extended abstract). In PODS
’97: Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of Database Systems, pages 209–216, New York, NY, USA, 1997. ACM.

[GP92] Giorgio Gallo and Stefano Pallottino. Hypergraph models and algorithms for the as-
sembly problem. Technical Report 06/92, Dip. di Informatica, Univ. of Pisa, Italy,
Corso Italia 40, I-56125 Pisa, Italy, 1992.

46

[GR90] Giorgio Gallo and Gabriella Rago. A hypergraph approach to logical inference for
datalog formulae. Technical Report 28/90, Dip. di Informatica, Univ. of Pisa, Italy,
Corso Italia 40, I-56125 Pisa, Italy, 1990.

[GS98] Giorgio Gallo and Maria Grazia Scutellà. Directed hypergraphs as a modelling
paradigm. Rivista di matematica per le scienze economiche e sociali, 21:97–123, 1998.

[GS99] Giorgio Gallo and Maria Grazia Scutellà. Directed hypergraphs as a modelling
paradigm. Technical Report 02/99, Dip. di Informatica, Univ. of Pisa, Italy, Corso
Italia 40, I-56125 Pisa, Italy, 1999.

[JHY10] Hai Jin, Li Huang, and Pingpeng Yuan. K-radius subgraph comparison for rdf data
cleansing. In Lei Chen, Changjie Tang, Jun Yang, and Yunjun Gao, editors, Web-Age
Information Management, volume 6184 of Lecture Notes in Computer Science, pages
309–320. 2010.

[KHT09] Steffen Klamt, Utz-Uwe Haus, and Fabian Theis. Hypergraphs and cellular networks.
PLoS Computational Biology, 5(5), May 2009.

[KM04] Dan Klein and Christopher D. Manning. Parsing and hypergraphs. In H. Bunt, J. Car-
roll, G. Satta (eds.), New developments in parsing technology, pages 351–372. Kluwer
Academic Publishers, Norwell, MA, USA, 2004.

[Knu73] Donald E. Knuth. The Art of Computer Programming. Addison-Wesley, Reading,
Massachusetts, 1973.

[Knu77] Donald E. Knuth. A generalization of dijkstra’s algorithm. Information Processing
Letters, 6(1):1–5, 1977.

[MM73] A. Martelli and U. Montanari. Additive and/or graphs. In IJCAI’73: Proceedings of the
3rd international joint conference on Artificial intelligence, pages 1–11, San Francisco,
CA, USA, 1973. Morgan Kaufmann Publishers Inc.

[MMZ06] Fabio Massacci, John Mylopoulos, and Nicola Zannone. Hierarchical hippocratic
databases with minimal disclosure for virtual organizations. The VLDB Journal,
15(4):370–387, 2006.

[MN98] Patrice Marcotte and Sang Nguyen. Hyperpath formulations of traffic assignment prob-
lems. In Marcotte, P., Nguyen, S. (Eds.), Equilibrium and Advanced Transportation
Modelling, pages 175–200. Kluwer Academic Publishers, Dordrecht, 1998.

[MSS04] Rolf H. Möhring, Martin Skutella, and Frederik Stork. Scheduling with and-or prece-
dence constraints. SIAM Journal on Computing, 33(2):393–415, 2004.

[MV07] Amadis A. M. Morales and Maria E. Vidal. A directed hypergraph model for rdf. In
Knowledge Web PhD Symposium (co-located with the 4th Annual European Semantic
Web Conference), 2007.

[MY07] Fabio Massacci and Artsiom Yautsiukhin. Modelling quality of protection in outsourced
business processes. In IAS ’07: Proceedings of the Third International Symposium on
Information Assurance and Security, pages 247–252, Washington, DC, USA, 2007.
IEEE Computer Society.

[Ned03] Mark-Jan Nederhof. Weighted deductive parsing and knuth’s algorithm. Computational
Linguistics, 29(1):135–143, 2003.

[Nil82] Nils J. Nilsson. Principles of Artificial Intelligence. Springer Verlag, Berlin, 1982.

[NP88] Sang Nguyen and Stefano Pallottino. Equilibrium traffic assignment for large scale
transit networks. European Journal of Operational Research, 37(2):176–186, 1988.

[NPG98] Sang Nguyen, Stefano Pallottino, and Michel Gendreau. Implicit enumeration of hy-
perpaths in a logit model for transit networks. Transportation Science, 32(1):54–64,
1998.

47

[Ozt08] Can Ozturan. On finding hypercycles in chemical reaction networks. Applied Mathe-
matics Letters, 21(9):881–884, 2008.

[Pre00] Daniele Pretolani. A directed hypergraph model for random time dependent shortest
paths. European Journal of Operational Research, 123(2):315–324, 2000.

[RR96] Ganesan Ramalingam and Thomas Reps. An incremental algorithm for a generalization
of the shortest path problem. Journal of Algorithms, 21(2):267–305, 1996.

[RSC97] Mysore Ramaswamy, Sumit Sarkar, and Ye-Sho Chen. Using directed hypergraphs to
verify rule-based expert systems. IEEE Trans. on Knowl. and Data Eng., 9(2):221–237,
1997.

[TT09] Mayur Thakur and Rahul Tripathi. Linear connectivity problems in directed hyper-
graphs. Theoretical Computer Science, 410(27-29):2592–2618, 2009.

[WLHW09] Gang Wu, Juan-Zi Li, Jian-Qiang Hu, and Ke-Hong Wang. System π: A native rdf
repository based on the hypergraph representation for rdf data model. Journal of
Computer Science and Technology, 24:652–664, 2009.

48

	copertinaTR18 2010
	TechReport_AILNS

