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Abstract

The current �nancial crisis motivates the study of correlated de-
faults in �nancial systems. In this paper we focus on such a model
which is based on Markov random �elds. This is a probabilistic model
where uncertainty in default probabilities incorporates expert's opin-
ions on the default risk (based on various credit ratings). We consider
a bilevel optimization model for �nding an optimal recovery policy:
which companies should be supported given a �xed budget. This is
closely linked to the problem of �nding a maximum likelihood esti-
mator of the defaulting set of agents, and we show how to compute
this solution e�ciently using combinatorial methods. We also prove
properties of such optimal solutions. A practical procedure for estima-
tion of model parameters is also given. Computational examples are
presented and experiments indicate that our methods can �nd optimal
recovery policies for up to about 100 companies. The overall approach
is evaluated on a real-world problem concerning the major banks in
Scandinavia and public loans. To our knowledge this is a �rst attempt
to apply combinatorial optimization techniques to this important, and
expanding, area of default risk analysis.
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1 Introduction

In �nancial transactions there is always a risk that the counter-party can not
full�ll the obligations, and that the investment goes to default. In view of the
current crisis, the world �nancial markets have experienced companies with
high credit rating to run into distress, and even defaulting. Examples in-
clude apparently well-managed companies like the investment bank Lehman
Brothers that defaulted due to large exposure in subprime loans, and the
insurance giant AIG that was rescued by the Government after huge losses
in the credit derivatives sector. Credit risk modeling is of vital importance
for investors in order to understand and manage their counter-party risk in
�nancial operations. In particular, understanding how the default risk of one
company is linked to others is crucial.

In this paper we study a Markov random �eld model for the default
risk of each company, modelled as a Bernoulli random variable, which may
be dependent on the default risk of other companies in the market. The
whole market is represented as vertices in a graph, with the directed arcs
(edges) between the vertices describing dependency in terms of default risk.
Moreover, we include uncertainty in the default probabilities, which may be
interpreted as a collection of expert's opinions on the default risk, coming
from various credit rating companies. The role of these companies in the
marketplace were claimed to be one of the sources for creating the �nancial
crisis starting in 2007/2008. The special case of undirected graph model was
recently analyzed in [10].

Our modelling approach is within the class of what is frequently referred
to as Bernoulli mixture models (see [12]). We do not suppose that the de-
fault probabilities and correlations come from any structural model (like for
instance the Merton model, see [17]), but consider a reduced-form model
instead. In a Bayesian context, we are interested in the posterior default
probability distribution of the market, given the prior default probability
distribution and conditioning on expert judgements introduced as probabil-
ity distributions on the default probabilities.

The main question we focus on in this paper is to use the graph approach
to derive optimal recovery policies. A characteristic of the current �nancial
crisis is that governments world-wide try to resolve the turmoils by pumping
in money to recover various sectors which are believed to be crucial for the
market as a whole. We use our model to look for optimal policies in the
sense of recovering as much of the potential loss as possible, given a �xed
budget for the government. Closely related to the recovery problem is the
�default geometry� of the market in the sense of the most probable set of
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defaulted companies under the model assumed. This seems to be a question
which is rarely investigated in the literature, but turns out to be important
in order to understand the derivation of optimal recovery policies. Moreover,
it is interesting in its own since it will provide investors guidelines for which
companies will most likely default, and which are more �safe havens�. Of
course, from the default probabilities of each �rm this is simple to answer
on an individual basis, but after introducing dependencies among companies
the picture may be complicated signi�cantly.

The two problems posed above result in discrete optimization problems
that in general are highly non-trivial to solve. However, as we show in
the paper as one of our main results, �nding the most likely set of default
companies can be transformed into a well-known combinatorial optimization
problem called the minimum cut problem. There exist very e�cient combi-
natorial algorithms for solving such problems, so that large-scale instances
can be solved extremely fast; see [1] for a discussion of such algorithms, their
complexity and implementations. It is therefore computationally feasible
to study markets consisting of many companies with complex dependency
structures. Furthermore, we are also able to prove a uniqueness-result for
the most likely default set in the Markov random �eld model. Among all the
most probable con�gurations of companies defaulting, there is a unique one
of maximal cardinality. This maximal set contains all the other most likely
defaulting sets.

In the recent literature on credit risk modelling, the focus has been on
dynamic portfolio credit risk models. Dynamical models based on point pro-
cesses have been used in order to model the exposure to credit risk in a
portfolio, with the aim of computing the loss distribution. One supposes a
conditionally independent default structure among the �rms in the portfo-
lio. Dependencies in the credit situation of the di�erent �rms are modelled
by the default intensities being correlated stochastic processes (see Jarrow
and Turnbull [14] and Du�e and Singleton [9]). Since typically it is hard
to compute the loss distribution, approximations through limit theory or
simulation are called for. For example, Deng, Giesecke and Lai [8] propose
an importance sampling technique to estimate rare events probabilities in
a credit risk portfolio. The method is based on a change of measure and
resampling to approximate the zero-variance importance measure connected
to the rare events.

The alternative to intensity-based models is structural modelling where
credit events of a particular �rm is modelled via the evolution of the �rm's
value and its capital structure. Typically one is interested in the �rm's de-
fault, triggered by the value of the �rm hitting a certain threshold. Recently,
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Carmona, Fouque and Vestal [5] presented an e�cient numerical approach
to compute rare credit portfolio losses in a structural model based on inter-
acting particle systems.

Our model provides an explicit way to model statistically the impact of
a default of one company to another. In this respect, our approach places
itself in the stream of literature on credit contagion. For example, Giesecke
and Weber [13] study a dynamic reduced-form credit risk model based on the
so-called voter model in the theory of interacting particle systems. Similar
to our approach, they consider a lattice of companies which may be in two
liquidity states, �high� and �low�. To model contagion e�ects, a company i in
the lattice have a neighborhood of business partners j ∈ N(i) (being other
�rms in the lattice, of course), where N(i) is the set of labels of the partners.
The transition between states of company i is a Poisson event with transition
rate depending on the states of the business partners j ∈ N(i). Although the
contagion e�ects in the lattice is dynamic and modelled di�erently than ours,
the idea is somewhat similar to the approach proposed and analysed in this
paper. Giesecke and Weber [13] provide an explicit Gaussian approximation
the portfolio loss distribution, and analyse the e�ects of credit contagion
based on this.

In our approach, we allow explicitly for impacts between business part-
ners which are not necessarily mutual. We may have that a �rm i is de-
pending on the credit situation of �rm j, but not the other way around.
Also, we mix in the possibility of �rm's exposure to macro-economic fac-
tors, as we assume these to be vertices in the graph. In this way, our model
takes into account both cyclical default dependence and credit contagion (see
Giescke and Weber [13] for more discussions on this). Di�erent than most
of the literature on credit risk, we focus on providing an e�cient computa-
tional method for the model applied to studying recovery policies and most
likely market scenarios, given impacts between business partners and from
macro-economic variables.

Our modeling approach and analysis are illustrated with numerous ex-
amples. In particular, we show how our graph representation of companies
can be used to include variables modelling the �state of the economy�, that
is, macro-economic factors. For example, we consider a graph consisting of a
bank with several clients borrowing money. The clients are divided into two
groups, one being �good� clients with low default probability and the other
�bad� clients with high default probability. But, in addition, we suppose
that the borrowers are dependent on a vertex in the graph representing the
�state of the economy�, being for instance the interest rate in the market,
or in�ation. The state is either good or bad, and in�uencing the clients di-
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rectly. In this way we can investigate the e�ect of, for instance, a change in
the interest rate from �normal� to �high�, and study the impact on the bank.
The example may be viewed as a simpli�ed model for banks with subprime
loans in their portfolio.

Another important issue that we study through examples is how the loss
distribution, de�ned as the number of defaulted companies, is dependent
on the introduction of additional default uncertainty through expert judge-
ments.

Finally, the overall approach is evaluated on a real-world problem con-
cerning the major banks in Scandinavia and public loans. We discuss how
the data are obtained from ratings and annual reports and demonstrate how
the parameters of the model are estimated. Then we compute most likely
default sets and optimal recovery policies for the actual situation and for a
more pessimistic scenario.

The paper is organized as follows: In Section 2 our model is introduced
and put into a proper statistical context. The analysis of the model and
some main results are presented in Section 3 where we discuss most likely
default sets (of companies) and the connection to the minimum cut problem.
The model includes certain parameters representing default probabilities and
dependencies. The role of these parameters is discussed in Section 4 and a
procedure for estimating the parameters is presented in Section 5. Our main
issue concerning optimal recovery policies, is treated in Section 6, while
Section 7 presents computational experiments and some examples of our
methodology and on a real-world case. Finally, some concluding remarks
and future directions are given.

2 The model

The purpose of this section is to introduce our mathematical model and to
de�ne associated optimization problems. Our model belongs to the class of
Markov random �elds (MFR), which has proved to be useful in several areas,
for instance, in image segmentation ([2], [3], [6], [11], [20]), and statistical
physics (the Ising model) [16].

The model is stochastic and represents a �nancial system consisting of
di�erent economic agents (companies, banks) and economic dependencies
between pairs of such agents. The main purpose of the model is to be
able to determine a most likely set of agents that will be defaulted at some
speci�ed future time. The �nancial system is represented by a directed
graph G = (V,E) with vertex set V and arc set E. The vertices represent
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the agents, and the arcs represent a dependency between pairs of agents.
This dependency will be explained below. De�ne n := |V | and m := |E|.
An arc from vertex u to vertex v is denoted by (u, v) or uv. We consider
a one-step dynamical model, today is time t0 and t1 represents a speci�ed
future time (e.g. one month ahead). Associated with each v ∈ V is a random
Bernoulli variable xv ∈ {0, 1} where xv = 1 means that agent v defaults at
time t1, while xv = 0 means that it survives. The vector x = (xv : v ∈ V ) is
a random variable, and we refer to x as the default state vector.

At time t0 we have available certain information about the system which
speci�es the probability distribution of the random variable x. This infor-
mation includes a real number zv ∈ [0, 1], for each vertex v, which may be
considered as an approximation to xv. Thus, zv may be the result of an
analysis � made at time t0 � of the �nancial situation of the agent v. For
instance, one may think of zv as the proportion of a group of analysts that
think agent v will be default at time t1. We will treat z = (zv : v ∈ V ) as a
random vector and call it the judgement vector. The connection between x
and z is given by a statistical model where the conditional probability distri-
bution f(z|x) of z given x is speci�ed. We assume conditional independence
between agents in the sense that

f(z|x) =
∏
v∈V

fv(zv|xv) (1)

for some conditional probability functions fv (which we assume to be strictly
positive). This means that the judgement value zv depends on the future
status xv; this re�ects the knowledge of the experts. However, for a given
default state vector x, the judgements zv for the agents (v ∈ V ) are inde-
pendent.

The model also includes dependencies among the agents as represented
by the arcs in the directed graphG. This is done using a so-called Ising model
which gives a prior probability distribution for the default state vector x

π(x) =
1
s

exp{
∑
v∈V

[α1
vxv + α0

v(1− xv)] +
∑

(u,v)∈E

βuvI(xu ≤ xv)}. (2)

Here βuv ≥ 0 is a parameter indicating how dependent agent v is on agent
u (for (u, v) ∈ E); the larger βuv is, the less likely are all events where u
defaults but v does not. The constant s is a normalization constant making
π(x) a proper probability distribution (i.e. total probability is 1) and the
indicator function I(xu ≤ xv) equals 1 if xu ≤ xv and 0 otherwise. The
parameters α1

v and α0
v re�ect a priori information on the �nancial position
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of agent v, independent of the expert judgement zv. Actually, we interpret
(1/s)eα

1
v (resp. (1/s)eα

0
v) as an �a priori probability� that agent v defaults

(resp. survives) whenever βuv = 0. We may here assume that α1
v, α

0
v ≤ 0

since subtracting a (suitable large) number, say b, from each α1
v and α0

v in
(2) results in the exponential term being multiplied by the constant e−nb,
and this number will be incorporated in the normalization constant s. As
we note later, the value of s is irrelevant for our method below.

We should remark that the Ising model (e.g. in image analysis) is most
frequently used in connection with undirected graphs. Then the �correlation�
term in (2) would be βuvI(xu = xv) summed over all edges in the graph.
In our model, however, a directed graph is crucial for being able to model
asymmetric markets which should be more the rule than an exception.

The parameters in our model may therefore be summarized as follows:

(i) α1
v, α

0
v ≤ 0: prior parameters for agents

(ii) βuv ≥ 0: prior parameters re�ecting dependencies between agents

(iii) zv ∈ [0, 1]: expert judgement of the robustness of agent v

(iv) fv(·|·): conditional probability functions used to describing xv and zv.

The posterior distribution π(x|z) for x given z may be determined through
Bayes formula, and this gives

π(x|z) = φ(z)π(x)f(z|x)

where φ is a suitable normalization function. We now consider the judgement
vector z as �xed, and therefore φ(z) is a constant. The Bayesian paradigm
([2]) is to base all inference on the posterior distribution π(x|z). A natural
estimate of x is the maximum a posteriori solution x̂. This solution x̂ max-
imizes π(x|z), or equivalently, π(x)f(z|x) (since φ(z) is a constant). Thus,
the maximum a posteriori solution is an optimal solution of the discrete
optimization problem

(MLDS) max{F (x) : x ∈ {0, 1}n} (3)

where

F (x) = exp{
∑
v∈V

[α1
vxv + α0

v(1− xv)] +
∑

(u,v)∈E

βuvI(xu ≤ xv)} ·
∏
v∈V

fv(zv|xv)
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An optimal solution x̂ in MLDS is the incidence vector of a subset S ⊆ V
(i.e., a (0, 1)-vector with ones in the positions of S) and we call S amost likely
default set, defending the attribution (MLDS). Thus, the MLDS problem is
to �nd a most likely default set. Note that � in MLDS � the judgement vector
z is given. An instance of MLDS will be denoted by the tuple (G, f, z, α, β)
where all these components are described above.

Note that one may also interpret the MLDS problem more directly as
�nding a maximum likelihood estimator x̂ of the (unknown) default state
vector x for the given probability distribution F (as mentioned, multiplying
F by a suitable constant gives a true probability distribution).

We remark that our prior distribution π coincides with the graphical
model investigated in [10]. A main result in [10] is that there is a one-to-one
correspondence between the model parameters and certain probabilities: the
marginal probabilities of default of agents and the probabilities of pairs of
agents defaulting simultaneously. Hence, the model can be fully speci�ed by
these probabilities. The computation of the parameters, given these marginal
probabilities, is however a non-trivial task. Our main contributions are:

1. We extend the prior model so as to incorporate additional expert judge-
ment (via the posterior). Moreover, we consider a directed model. We
also propose a sound statistical procedure for estimating model param-
eters.

2. We show how to compute e�ciently a maximum likelihood estimator
in the model, both in the prior π and in the posterior F (in which case
we �nd an MLDS solution). This is done by a transformation into the
minimum cut problem; a basic combinatorial optimization problem for
which highly e�cient algorithms exist.

3. We use the basic model as the core in another optimization model
whose purpose is to �nd optimal recovery policies in �nancial systems.

3 Most likely default sets and minimum cuts

We now demonstrate that the MLDS problem may be reformulated as a
minimum cut problem in a (directed) graph derived from G. This means
that the problem may be solved e�ciently by known algorithms, see e.g. [1].

Consider again the function F in (3) which is to be maximized. Equiva-
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lently, we may maximize its logarithm which is

L(x) =
∑
v∈V

[α1
vxv+α

0
v(1−xv)]+

∑
(u,v)∈E

βuvI(xu ≤ xv)+
∑
v∈V

log fv(zv|xv) (4)

Sometimes this function (or its negative) is referred to as the energy function
of the MRF.

We now introduce an auxiliary graph G′ = (V ′, E′) based on G. Let the
vertex set be V ′ = V ∪ {s, t} where the vertices s and t are called terminal
vertices. The arc set E′ consists of all arcs in E and, in addition, arcs of
the form (s, v) and (v, t) for each v ∈ V . Thus, G′ is obtained from G by
adding two terminal vertices s and t as well as arcs connecting each original
vertex to the terminal vertices. We associate weights to the arcs in G′ as the
following table indicates:

arc e weight we
(u, v) ∈ E wuv := −βuv
(s, v) (v ∈ V ) wsv := α0

v + log fv(zv|xv = 0)
(v, t) (v ∈ V ) wvt := α1

v + log fv(zv|xv = 1)

It is important to note that all these weights are nonpositive: f(zv|xv =
1), f(zv|xv = 0) ≤ 1 as these are discrete probabilities, βuv ≥ 0 and α1

v, α
0
v ≤

0. This fact is crucial for the e�cient solvability of the MLDS problem.
Consider a partition of the vertex set V ′ into two sets S and T = V ′ \ S

where s ∈ S and t ∈ T . The set of arcs e = (u, v) in G′ with u ∈ S and
v ∈ T is denoted by δ+(S), and it is called an st-cut (or simply a cut). The
weight of the cut δ+(S), denoted by w(δ+(S)), is the sum of the weights of
the arcs in the cut, i.e.,

w(δ+(S)) =
∑

e∈δ+(S)

we.

Let x ∈ {0, 1}n and de�ne Sx = {s} ∪ {v ∈ V : xv = 1} and Tx = {t} ∪ {v ∈
V : xv = 0}. Then we have

w(δ+(Sx)) =
∑

v∈Sx\{s}wvt +
∑

v∈Tx\{t}wsv +
∑

(u,v)∈E∩δ+(Sx)
wuv

=
∑

v∈Sx\{s}(α
1
v + log f(zv|xv = 1)) +

∑
v∈Tx\{t}(α

0
v + log f(zv|xv = 0))

+
∑

(u,v)∈E∩δ+(Sx)
(−βuv)

=
∑

v∈Sx\{s}(α
1
v + log f(zv|xv = 1)) +

∑
v∈Tx\{t}(α

0
v + log f(zv|xv = 0))

+
∑

(u,v)∈E:xu≤xv βuv −
∑

(u,v)∈E βuv

= L(x)− β∗
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where β∗ =
∑

(u,v)∈E βuv is a constant.
Thus, up to a constant, the weight of the cut δ+(Sx) equals the value of

the function L at x. The calculation also shows that, conversely, the weight
of cut δ+(S) equals L(x)− β∗ where x ∈ IRn is the incidence vector of S in
V , i.e., xv = 1 if v ∈ S ∩ V and xv = 0 otherwise.

This discussion shows that the MLDS problem is equivalent to �nding a
maximum weight cut in the graphG′ with weights as de�ned above. As noted
above all these weights are nonpositive. Therefore the maximum weight cut
problem is equivalent to �nding a minimum weight cut in G′ where the
weights are nonnegative and given by w′

e := −we (e ∈ E′).

We have therefore shown the following theorem (see [18] for algorithmic
complexity).

Theorem 1 The MLDS problem is solvable in polynomial time as a min-
imum st-cut problem in the directed graph G′ with nonnegative weights w′

e

(e ∈ E′).

The important consequence of this theorem is that we can solve MLDS
e�ciently for any given graph G. We refer to Section 7 for some computa-
tional experiments where MLDS is solved for certain speci�c instances, of
varying structure and size.

If δ+(S) is an optimal solution to the above minimum st-cut problem,
then S \ {s} is an MLDS, a most likely default set. A relevant question con-
cerns the uniqueness of the most likely default sets. In general, we may have
several optimal solutions to the minimum st-cut problem, each correspond-
ing to di�erent most likely default sets. However, the following property
holds:

Theorem 2 Let S∗ be a maximum cardinality most likely default set. Then
S∗ is unique, and it contains every other most likely default set.

Proof. In what follows, for each S ⊆ V we denote by f(S) the weight
of the st-cut δ+(S ∪ {s}) (using the nonnegative weights w′

e, e ∈ E′). It is
well known (see [18]) that f is a submodular set function, that is, for every
S1, S2 ⊆ V we have

f(S1 ∪ S2) + f(S1 ∩ S2) ≤ f(S1) + f(S2).

Observe that if δ+(S1 ∪ {s}) and δ+(S2 ∪ {s}) are minimum st-cuts, with
f(S1) = f(S2) = m, then we have f(S1 ∪ S2) ≥ m and f(S1 ∩ S2) ≥ m.
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Thus, 2m ≤ f(S1 ∪ S2) + f(S1 ∩ S2) ≤ f(S1) + f(S2) = 2m which implies
that f(S1 ∪ S2) = m (and f(S1 ∩ S2) = m).

Let now S∗ be a maximum cardinality most likely default set, and let S̄ be
a most likely default set such that S̄ * S∗. By optimality and submodularity,
f(S∗) = f(S̄) = f(S∗ ∪ S̄). This implies that S∗ ∪ S̄ is a most likely default
set. Since S̄ * S∗, we have |S∗ ∪ S̄| > |S∗|, a contradiction. So, every most
likely default set is contained in S∗ and the theorem follows.

It is not di�cult to modify the original arc weights so that the minimum
st-cut is unique and therefore it corresponds to the maximum cardinality
most likely default set S∗ discussed in Theorem 2. This can be done by
increasing, for each v ∈ V , the weight w′

sv of arc (s, v) by a suitable small
quantity ε > 0, and we have the following result.

Proposition 3 Given an instance of the MLDS problem, let G′ be the cor-
responding auxiliary graph, with weights w′. Then we can �nd weights w′′

so that the minimum st-cut in (G′, w′′) is unique (and corresponds to the
maximum cardinality most likely default set).

Proof. Consider the auxiliary graph G′ with weights w′, let m be the
minimum cut weight, and let m̃ be the weight of a second best minimum
st-cut, meaning that m̃ > m, and no other cut has weight in between (take
m̃ = +∞ if all cuts have equal value). It su�ces to take 0 < ε < (m̃−m)/|V |,
and de�ne w′′

sv = w′
sv + ε, for v ∈ V , w′′

uv = w′
uv otherwise. Then, for any

st-cut δ+(S) we have w′′(δ+(S)) = w′(δ+(S))+ |V \S| · ε = w′(δ+(S))+ |V | ·
ε− |S| · ε = K + w′(δ+(S))− |S| · ε, where K is constant.

First observe that every non-minimum st-cut D = δ+(S̄) in (G′, w′) (i.e.
w′(D) ≥ m̃ > m) is also a non-minimum st-cut in (G′, w′′). In fact, let
C = δ+(Ŝ) be a minimum st-cut in (G′, w′). Then w′(D)−w′(C) ≥ m̃−m.
It follows that w′′(D)−w′′(C) = K+w′(D)− ε · |S̄|− (K+w′(C)− ε · |Ŝ|) ≥
m̃ − m − ε · (|S̄| − |Ŝ|) ≥ m̃ − m − ε · |V | > 0, implying that D is not a
minimum st-cut of (G′, w′′).

So every minimum st-cut in (G′, w′′) is also minimum in (G′, w′).
Now, let B∗ = δ+(S∗) and C = δ+(Ŝ) be two distinct minimum st-cut

in (G′, w′), and suppose |S∗| is the largest possible. By Theorem 2 we have
|S∗| > |Ŝ|. It follows that w′′(B∗)− w′′(C) = K + w′(B∗)− ε · |S∗| − (K +
w′(C)− ε · |Ŝ|) = ε · (|Ŝ| − |S∗|) < 0, and B∗ is the unique minimum st-cut
in (G′, w′′).

In practice, weights are approximated and represented by rational num-
bers; so they can always be scaled up to positive integers and m̃ −m ≥ 1.
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Then it su�ces to take ε < 1/|V |.

For the sake of simplicity, in the rest of the paper we will assume that
the minimum st-cut in the auxiliary graph G′ with weights w′ is unique.

4 The role of the parameters

In order to better understand the role of the parameters α1
v, α

0
v and βuv in

our model, we study analytically the special case where the graph G has two
vertices. Then it is possible to calculate explicit expressions for the prior
probabilities π. (The calculation of F also involves the functions fv, so it is
more complicated; for this reason we focus on the prior.)

So, assume that the graph G consists of two vertices v1 and v2 and arcs
(v1, v2) and (v2, v1). De�ne p0

vi = eα
0
vi and p1

vi = eα
1
vi (i = 1, 2). Then the

prior (2) is given by

π(0, 0) = (1/s)p0
v1p

0
v2e

β12+β12 π(0, 1) = (1/s)p0
v1p

1
v2e

β12

π(1, 0) = (1/s)p1
v1p

0
v2e

β21 π(1, 1) = (1/s)p1
v1p

1
v2e

β12+β21 .

where
s = (p0

v1p
0
v2 + p1

v1p
1
v2)e

β12+β21 + p0
v1p

1
v2e

β12 + p1
v1p

0
v2e

β21

Then the marginal probability p(β12, β21) that xv2 = 1 (v2 defaults) becomes

p(β12, β21) =
p0
v1p

1
v2e

−β21 + p1
v1p

1
v2

(p0
v1p

0
v2 + p1

v1p
1
v2) + p0

v1p
1
v2e

−β21 + p1
v1p

0
v2e

−β12

which is an increasing function of β12 (for each β21) as one would expect.
Now, �x β21 and take the limit as β12 →∞, so there is large in�uence of v1
on v2:

lim
β12→∞

p(β12, β21) =
p0
v1p

1
v2e

−β21 + p1
v1p

1
v2

(p0
v1p

0
v2 + p1

v1p
1
v2) + p0

v1p
1
v2e

−β21

Further, if we β21 tends towards 0, this gives

lim
β21→0

lim
β12→∞

p(β12, β21) =
p0
v1p

1
v2 + p1

v1p
1
v2

(p0
v1p

0
v2 + p1

v1p
1
v2) + p0

v1p
1
v2

A more interesting case is when β21 tends towards in�nity:

lim
β21→∞

lim
β12→∞

p(β12, β21) =
p1
v1p

1
v2

p0
v1p

0
v2 + p1

v1p
1
v2
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So for the highly correlated case, where β12 and β21 are large, this limit
probability of v2 defaulting is equal to the �a priori� conditional probability
of both defaulting given that xv1 = xv2 (recall the interpretation of (1/s)p1

v1
as the a priori probability of v1 defaulting, see Section 2).

It is also possible compute the prior analytically when G is a star, and
thereby analyze di�erent questions, but we do not go into this here. Finally,
we mention an observation concerning the parameters in the prior: (i) if
α1
v ≥ α0

v + β|δ+(v)| where |δ+(v)| is the number of arcs leaving v, then
there is a maximizer x of the prior π with with xv = 1. (This follows by
a simple variation of the single variable xv in (2)). So, assuming F ≈ π, a
similar property is likely for a MLDS solution. Also, we see that if α0

v ≥
α1
v + β|δ−(v)|, then there is a maximizer x of π with xv = 0.

5 Parameter estimation

For the practical usefulness of our model it is required to determine suitable
values for the parameters (α's and β's). In particular, the agent dependency
parameters βuv may be hard to set �manually�. We here suggest a method-
ology for parameter estimation which may be used in concrete situations to
calibrate the model.

First we discuss the situation when the number n of agents is �moderate�,
so that all (0, 1)-vectors of length n may be enumerated. If some prior
knowledge of default probabilities of agents is known, this may be re�ected
in a choice of α0

v and α1
v (see Section 2); otherwise they may all be set to

e.g. 0. Next, the expert judgement zv (v ∈ V ) is set based on the credit
risk rating of each bank v by assigning a default probability to each of the
di�erent ratings used (typically very few classes). See Section 7 for details
on this approach. Values zv for other agents than banks must be set by some
other/manual procedure for risk evaluation.

It remains to estimate the dependency parameters βuv's. For this pur-
pose one may specify certain conditional probabilities, based on our model.
>From an economic analysis one may �nd how �exposed� an agent v is to
another agent u. More speci�cally, say that v is a bank that has public loans
of size p million EURO, and let agent u correspond to �public loans�. Also
assume bank v has total assets of value q million EURO. Then we consider
the fraction p∗uv := p/q as an estimate of the conditional probability that
bank v defaults given default of the public loans u. A similar idea may be
used when u is another bank with loans in bank v. Thus, for each pair (u, v)
of agents for which u may have such a negative in�uence on v, so βuv could
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be positive, we compute a number p∗uv using the same economic reasoning.
This leads to the problem of choosing βuv ≥ 0 for each (u, v) ∈ E such that

g(β) :=
∑

(u,v)∈E

(Pβ(xv = 1|xu = 1)− p∗uv)
2

is minimized. Here β denotes a vector containing all the βuv's, and Pβ(·|·)
denotes the conditional probability in our model, indicating the dependence
on β (the dependence on α's and z is not indicated).

In summary, economic analysis gives certain conditional probabilities p∗uv
((u, v) ∈ E) that one believes are correct, and the βuv's are adjusted to �t
these p∗uv's best possible, using a least squares approach. The problem of
minimizing the function g, subject to the constraint that β is nonnegative,
is a nonlinear constrained optimization problem. The computation of the
function value g(β) may be done by enumeration of all possible state vectors
x ∈ {0, 1}n (recall, n is assumed moderate) and by suitable summations one
computes the conditional probabilities Pβ(xv = 1|xu = 1). The function g is
very complicated, but there are few variables, so a good general optimization
code should be able to solve the problem. In Section 7 we report this ap-
proach for a realistic test case, and where we use the routines in the Matlab
Optimization Toolbox for minimizing g.

We now discuss the case when n is too large for the approach above
to be appropriate. Then one might split the graph into smaller pieces and
use the procedure above on each part. After this one may proceed with an
adjustment procedure which we now discuss in detail. This procedure is an
adaption of the parameter estimation method described in [3] and [4] for
Markov Random Field models in the image segmentation area. Let θ be
a vector containing all α's and β's to be estimated, after (perhaps) setting
some parameters manually and grouping agents so that fewer parameters
are needed. Again, we assume the judgement vector z is given (see above).
Note that �nding maximum likelihood estimator (MLE) in our model, when
z is given, is not possible because the default state vector x is also a part of
our model (1) and (2). We shall instead use the so-called pseudo-likelihood
function.

Consider the following procedure where, throughout, z is the �xed judge-
ment vector:

1. Choose an initial estimate θ̂ of θ.

2. For the given z and the current parameter θ̂, solve the MLDS problem
to obtain the maximum a posteriori solution x̂.
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3. For the given z and the current vector x̂, �nd a maximum pseudo-
likelihood (MPLE) estimate θ̂ of θ in the model (1), (2).

4. Return to Step 2 until convergence or a maximum number of iterations
is reached.

The MPLE problem in Step 3 may be treated as follows. Let f(x, z; θ)
denote the joint probability density of the random variable (x, z) for the
given parameter θ. Then from (1), (2) (where dependency of θ is indicated
in the notation)

fθ(x, z) = πθ(x)f(z|x)

= (1/sθ) · eψθ(x) · f(z|x)
(5)

where

ψθ(x) =
∑
v∈V

[α1
vxv + α0

v(1− xv)] +
∑

(u,v)∈E

βuvI(xu ≤ xv).

Note, in particular, that the summation constant s = sθ in the prior πθ(·)
does depend on θ. But the conditional distribution f(z|x) is independent of
θ. Let now z and x be �xed and consider the problem of maximizing fθ(x, z).
It is equivalent to maximize ψθ(x) − log(sθ) w.r.t. θ. Since n is assumed
large, sθ is hard to compute, and we adopt the maximum pseudo-likelihood
approach (see [4]). The pseudo-likelihood pθ(x, z) is de�ned by

pθ(x, z) =
∏
v∈V

fθ(xv|xu(u 6= v), z)

so this is the product of the conditionals of each variable xv given the remain-
ing variables xu for u 6= v (and z which is �xed here). The pseudo-likelihood
serves as an approximation to the likelihood function. A maximum pseudo-
likelihood estimator (MPLE) θ̂ maximizes pθ(x) (w.r.t. θ) for the given x.
The main advantage of the MPLE approach is that one gets around the
di�culty caused by the normalization constant sθ. In fact, we have from (5)

fθ(xv = 0|xu(u 6= v), z)

= fθ(xv=0, xu(u 6=v),z)
fθ(xv=0;xu(u 6=v),z)+fθ(xv=1;xu(u 6=v),z)

= fv(zv |xv=0)·eψθ(xv=0,xu(u 6=v))

fv(zv |xv=0)·eψθ(xv=0,xu(u 6=v))+fv(zv |xv=1)·eψθ(xv=1,xu(u 6=v))
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which is independent of sθ (here 1/sθ and
∏
u 6=v fu(zu|xu) canceled). And, of

course, fθ(xv = 1|xu(u 6= v), z) = 1−fθ(xv = 0|xu(u 6= v), z). So the condi-
tional distribution can be computed e�ciently (without knowing sθ). This
means that �nding a MPLE becomes the nonlinear optimization problem of
maximizing the logarithm of the pseudo-likelihood given above. Having in
mind that there are rather few variables, and that a near-optimal solution is
good enough, this problem should be solvable by standard techniques in non-
linear optimization. For further general comments and references on MPLE
and the relation to MLE, see [4].

6 Optimal recovery policies

So far we have considered the problem of �nding a most likely default set in
our �nancial system model. In this section we build on this model in order
to discuss an interesting extension of this problem: how can we �optimally�
support the �nancial system by providing economic support to some subset
of the agents. We present a mixed integer linear programming model for this
problem of �nding an optimal recovery policy.

First we discuss a variation of the most likely default set problem MLDS.
Consider again MLDS in (3) and let R ⊆ V . The R-saved MLDS problem is

(MLDS(R)) max{F (x) : x ∈ {0, 1}n, xv = 0 for all v ∈ R} (6)

An optimal solution x̂ is the incidence vector of a subset S ⊆ V satisfying
S ∩ R = ∅, and we then call S an R-saved most likely default set. Thus, we
�force� the agents in R to survive; otherwise the problem is similar to the
MLDS problem.

The R-saved MLDS problem may also be solved as a minimum cut prob-
lem as discussed next. Consider a �xed set R ⊆ V and consider again the
directed graph G′ de�ned in Section 3. A cut in G′ corresponds to a partition
(S, T ) of V , so the cut is δ+(S∪{s}). If R ⊆ T we call such a cut an sR-cut.
Then, with the same arguments as in Section 3, it is clear that the R-saved
MLDS problem corresponds to �nding a minimum weight sR-cut, and this
problem reduces to a minimum st̂-cut problem in a smaller graph obtained
from G′ by shrinking R ∪ {t} into a single vertex t̂.

Moreover, the following result holds on the connection between the R-
saved MLDS problem and the ordinary MLDS problem.

Theorem 4 Let S∗ be the unique maximum cardinality most likely default
set in the MLDS problem. Let R ⊆ V . Then there is a unique R-saved most
likely default set SR of maximum cardinality. Moreover, SR ⊆ S∗.
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Proof. As in the proof of Theorem 2 we let f(S), for each S ⊆ V , denote
the weight of the st-cut δ+(S ∪ {s}) in G′ (using the nonnegative weights
w′
e, e ∈ E′). Suppose SR * S∗. Since δ+(SR) is an sR-cut, R ∩ SR = ∅.

If R ∩ S∗ = ∅ then SR = S∗ (since S∗ is optimal without the restriction
corresponding to R), a contradiction. So, assume R ∩ S∗ 6= ∅. Clearly,
f(SR) ≥ f(S∗). By submodularity we have f(S∗ ∪ SR) + f(S∗ ∩ SR) ≤
f(S∗)+ f(SR). Both δ+(S∗ ∪SR ∪{s}) and δ+((S∗ ∩SR)∪{s}) are st-cuts,
and so f(S∗ ∪ SR) ≥ f(S∗) and f(S∗ ∩ SR) ≥ f(S∗) (by optimality of S∗),
which implies f(S∗ ∪ SR) ≤ f(SR) and f(S∗ ∩ SR) ≤ f(SR) (due to the
mentioned submodularity). Now, δ+((S∗ ∩ SR) ∪ {s}) is an sR-cut, since
(S∗ ∩ SR) ∩ R = ∅. As a consequence f(S∗ ∩ SR) = f(SR) and thus (again
by the submodularity and optimality of S∗) f(S∗∪SR) = f(S∗). So S∗∪SR
is a most likely default set. Since SR * S∗, we have |S∗ ∪ SR| > |S∗|, a
contradiction. Uniqueness of SR can be easily derived as in the proof of
Theorem 2.

This theorem is important because it says that �xing (forcing) certain
agents to survive does not add any agents to the maximum cardinality set
of most likely agents that default.

Now, to each agent v ∈ V we associate a survival bene�t bv and a recovery
cost cv. This means that �the administration� can assure that v survives by
paying a cost of cv. Moreover, for each surviving agent v there is a survival
bene�t bv. Suppose the administration can allocate a limited amount of
money to the system, say K. We want to �nd an optimal allocation, i.e., we
want to establish which agents to be recovered (meaning: avoid defaulting) in
order to maximize the social bene�t. This optimal recovery problem (ORP)
can be restated as the problem of �nding a set R ⊆ V of agents to be
recovered so that the total bene�t of themost likely nondefaulting (surviving)
set of agents is maximized, and the total cost does not exceed K. Clearly,
if R is the set of recovered agents, and T the most likely set of surviving
agents, then R ⊆ T .

We consider again the auxiliary graph G′ de�ned in Section 3. A cut in
G′ corresponds to a partition (S, T ) of V , so the cut is δ+(S ∪ {s}). Note
that in order to recover a set R of agents, we can restrict the attention to
the case where R ⊆ T . The reader should keep in mind the interpretation
that vertices in S default while vertices in T survive.

As already mentioned, for �xed R ⊆ V , the maximizer of the (logarithm
of the) likelihood function L in (4) can be found by solving a minimum cut
problem on a new graph obtained from G′ by shrinking the vertices in R
and vertex t into a single vertex. However, for our purposes it is convenient
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to let G′ remain unchanged and modify arc weights instead. We de�ne new
arc weights wR ∈ IRE′

by letting wRut = w′
ut + M , for u ∈ R and wRuv =

w′
uv otherwise, where M is any constant satisfying M >

∑
sv∈δ+(s)w

′
sv =∑

sv∈δ+(s)w
R
sv. By this construction it is clear that no arc (u, t), for u ∈ R,

belongs to a minimum st-cut of (G′, wR). In other words, if (S∗, T ∗) is the
partition of V induced by a minimum st-cut in (G′, wR), then R ⊆ T ∗.

Finally, similarly to Proposition 3, one can show that there exist weights
w′ such that, for any R, there is a unique minimum st-cut in (G′, wR). From
now on we assume that this condition is satis�ed.

The following result says that the ORP problem is computationally hard.

Theorem 5 The optimal recovery problem is NP-hard.

Proof. The proof is a reduction from the knapsack problem ([18]). Given
non-negative real numbers b1, . . . , bn (bene�ts), c1, . . . , cn (costs) andK (bud-
get), the knapsack problem amounts to �nding a subset R∗ ⊆ {1, . . . , n} such
that

∑
i∈R∗ ci ≤ K (i.e. the budget is not violated) and

∑
i∈R∗ bi (overall

bene�t) is maximized.
Let us de�ne an instanceG′ = (V ′, E′) of ORP as follows. V ′ = V ∪{s, t},

where V = {1, . . . , n} and E′ = {si : i ∈ V } ∪ {it : i ∈ V }. With each i ∈ V
associate a cost ci and a bene�t bi, and suppose the budget is K. Finally,
associate with the arcs of G′ the following weights: for i ∈ V , let w′

si = ks
and w′

it = kt, with ks > kt > 0. With this setting, for every set R, there is
a unique minimum sR-cut in G′, namely {si : i ∈ R} ∪ {it : i ∈ V −R}. In
other words, for every choice ofR, the set T of surviving agents coincides with
R. So, an optimal solution to ORP is simply a set R∗ satisfying the budget
constraint and maximizing the overall bene�t, which solves the knapsack
problem.

Next, we formulate ORP as a bilevel optimization problem. To this end,
let yv be a binary variable which is 1 i� v ∈ R (i.e. v is recovered), and 0
otherwise. Also, let q be the incidence vector of an st-cut of G′. According to
the modelling assumptions introduced in Section 3, qsv = 1 (qvt = 1) implies
that v ∈ V survives (defaults); also, qsv = 1 − qvt. ORP can be formulated
as the following bilevel program:

max
∑

v∈V bvqsv(y)

subject to ∑
v∈V cvyv ≤ K

y ∈ {0, 1}n

(7)
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where q(y) is the unique optimal solution to

min
q∈Cst

∑
uv∈E′

w′
uvquv +

∑
v∈V

Myvqvt (8)

and Cst is the family of incidence vectors of st-cuts of G′. In fact, if we denote
by yR the incidence vector of R ⊆ V , then q(yR) is the incidence vector of a
minimum st-cut in (G′, wR), and it corresponds to a maximum cardinality
R-saved most likely default set. Also, if yR satis�es the budget constraint in
(7), then the cost of R does not violate the budget and all agents in R can
be recovered. Finally, the objective function in (7) amounts to maximizing
the value of the surviving agents.

It is important to recall that, for each y ∈ {0, 1}n, the vector function
q(y) above is well-de�ned. Incidentally observe that our assumption on the
weights w′ corresponds to what is known as the pessimistic paradigm [7]. In
fact, among all possible solutions to (6) with the same F value, we choose
the one with the maximum number of defaulting agents.

Similarly to [15] we show how to reduce the above bilevel program to
a mixed integer linear programming problem. First observe that the in-
ner problem can be formulated as a linear programming problem (LP). To
this end, suppose y is �xed to some (0, 1)-vector and introduce the vertex
potential vector p ∈ IRV ′

. Then (8) can be written as the following LP:

min
∑

uv∈E′ w′
uvquv +

∑
v∈V Myvqvt

subject to

pv − pu + quv ≥ 0 (uv ∈ E′)

ps = 1, pt = 0

q ≥ 0, p ∈ IRV ′
.

(9)

Let FP be the feasible set of (9). Then FP is a polyhedron and its vertices
are (0, 1) vectors, in one-to-one correspondence with the st-cuts of G′ (see
[19]). Since all weights in the objective function are strictly positive, the
(unique) optimal value of (9) is attained in a vertex (q∗, p∗) and q∗ is the
incidence vector of an st-cut of G′ (i.e. q∗ ∈ Cst). The dual of the above LP
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is:

max
∑

su∈δ+(s) fsu

subject to ∑
uv∈δ+(u) fuv −

∑
vu∈δ−(u) fvu = 0 (u ∈ V )

0 ≤ fuv ≤ w′
uv (uv ∈ E′′)

0 ≤ fvt ≤ w′
vt +Myv (v ∈ V )

(10)

where E′′ = {uv ∈ E′ : v 6= t}. Let FD be the feasible set of (10). Then
we know that two feasible solutions (q∗, p∗) in (9) and f∗ in (10) are both
optimal in the respective problems if and only if the corresponding objective
functions coincide, i.e.∑

uv∈E′

w′
uvq

∗
uv +

∑
v∈V

Myvq
∗
vt =

∑
su∈δ+(s)

f∗su. (11)

We can then rewrite the bilevel program as the following nonlinear integer
program:

max
∑

v∈V bvqsv

subject to ∑
v∈V cvyv ≤ K∑

uv∈E′ w′
uvquv +

∑
v∈V Myvqvt =

∑
su∈δ+(s) fsu

y ∈ {0, 1}V , (q, p) ∈ FP , f ∈ FD.

(12)

This program is nonlinear due to the presence of the term yvqvt. A stan-
dard way to linearize it requires the introduction of a new variable lv = yvqvt
for all v ∈ V (see [15]). However, we can take advantage of the special
structure of our problem. In particular, let (y∗, q∗, p∗, f∗) be an optimal so-
lution of (12), with q∗ ∈ Cst. Now, we have

∑
su∈δ+(s) f

∗
su ≤

∑
su∈δ+(s) fsu ≤∑

su∈δ+(s)w
′
sv < M . This implies, by (11), that y∗vq

∗
vt = 0, which in turn can

be expressed by the constraint yv + qvt ≤ 1, for all v ∈ V .
Thus, we may remove the nonlinear term y∗vq

∗
vt in (12), and we have

therefore obtained the following valid mixed integer linear programming for-
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mulation of the optimal recovery problem:

max
∑

v∈V bvqsv

subject to ∑
v∈V cvyv ≤ K∑

uv∈E′ w′
uvquv =

∑
su∈δ+(s) fsu

yv + qvt ≤ 1 (v ∈ V )

y ∈ {0, 1}V , (q, p) ∈ FP , f ∈ FD.

(13)

The above program can be solved for medium-sized instances by means of
the commercial optimization solver ILOG CPLEX. We provide an example
in the next section.

7 Computational experiments

This section has two major purposes. On one hand, we construct a number of
realistic but arti�cial test cases to analyze the ability of the model to predict
future crises and handle it. Also, the impact of systematic variations of the
model parameters on the overall response is investigated. On the other hand
we analyze a real case involving the major Scandinavian banks to assess the
ability of our approach to cope with real-world problems. We forecast most
likely default agents and identify possible recovery policies in this example.

7.1 Experiments on realistic scenarios

In this subsection we report on a number of tests performed on some small,
but interesting problems. The main purpose is to show that our approach
can be used to indicate the risk of future crises and how to handle it. In
addtion, we also investigate the e�ect of systematic changes of the parameters
to better understand the role played in the model.

We decided to set up di�erent scenarios that re�ect some typical features
of realistic �nancial systems and their systemic risk, thereby showing the
potential usefulness of our approach. The model parameters were set man-
ually, but we also tested the parameter estimation procedure introduced in
Section 5. We do not report extensive computational results for random test
cases since, in our opinion, this has limited interest.

In order to build a suitable test-bed for our experiments, we generated
some small-sized problems (instances), corresponding to some interesting
scenarios. To generate such instances we performed the following steps:

21



1. Specify the conditional probability distribution f(z|x).

2. Select the prior parameters α and β.

3. Find a default state vector x̄ which maximizes, or nearly maximizes,
the prior π.

4. Draw an expert judgement vector z̄ according to the conditional dis-
tribution f(z|x).

The choice of α and β in Step 2 is discussed below for di�erent scenarios.
In Step 1 we used again two continuous distributions (for each agent i ∈ V ),
namely f(zi|xi = 0) = ce−γzi and f(zi|xi = 1) = ceγ(zi−1), where c =
γ/(1− e−γ) and γ is a given constant. To draw the observation vector z̄ in
Step 4 we �rst draw with uniform probability a state x̄ among the 6 most
likely ones according only to the prior probability distribution π in (2). Note
that, since we are dealing with small instances, the number of status vectors
2n is not too large, and may be enumerated. The state x̄ and the conditional
probability distributions are then exploited to draw z̄.

Next we discuss more in detail our test cases. In all cases, the state x∗

corresponding to the most likely default set is obtained by a single min-cut
computation. We will present the following three scenarios:

(a) The bad path scenario

(b) The e�ect-vertex scenario

(c) The e�ect-vertex-many-banks scenario

(a) The bad path scenario. This example illustrates how defaults may
develop in a chain (path) of agents, each dependent only on its predecessor.
The path consists of 10 vertices, and the graph is shown in Figure 1.

The default prior probability pv = eα
1
v for v = 2, . . . , 9 is drawn inde-

pendently with uniform distribution in the interval [0.4, 0.5]. Also, we let
p1 = 0.995 and p10 = 0.2. Finally, we let β4,5 = k whereas all other βs are
2k. For low values of k, only vertex 1 defaults. When k increases (up to
approx. 3), then vertices 1 to 4 default. Finally, for larger values of k all
vertices default.
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1 2 3 10


Figure 1: The bad path scenario.

(b) The e�ect-vertex scenario. We consider 18 agents: 16 clients, one
bank and one e�ect vertex (see Figure 2). Each client v obtains a loan from
the bank; denote by βl the (constant) dependency of the bank on every
client. The e�ect vertex represents the in�uence of the interest rate on the
clients, which are partitioned into 6 good clients and 10 bad clients. The
dependency of the good clients on the interest rate is given by βg and is the
same for all good clients. The dependency of the bad clients on the interest
rate is given by βb and is the same for all bad clients.

e

b

l l

g b

Figure 2: The e�ect-vertex scenario.
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The default prior probability pv = eα
1
v for each client v is drawn indepen-

dently with uniform distribution in the interval [0.3, 0.5] for the good clients,
whereas is set equal to 0.5 for the bad ones. High interest rates are repre-
sented by a high prior default probability for the e�ect vertex (0.995). The
bank vertex has a low prior default probability (0.2). Also we let βl = 0.25,
whereas βg = 0.1.

In order to analyze the bank reaction to increasing in�uence of the in-
terest rate on the bad clients, we let βb grow from 0 to a large value. Then,
for low values of βb, only the e�ect vertex is default. When βb reaches a
threshold value (here 0.15), then all bad clients and the bank are default,
while for intermediate values only a subset of the bad clients default.

As a variation of scenario (b), we tested the parameter estimation pro-
cedure described in Section 5. To this end we replace βl (which denotes the
constant dependency of the bank on the clients) with two di�erent parame-
ters, namely βlg and β

l
b, denoting the dependency on the good and the bad

clients, respectively. We consider as �xed all parameters except for βb and
βlb; the parameters involving bad clients. The values for the �xed parameters
are those given above. As initial values on the two unknown parameters we
used βb = 0.1 and βlb = 0.25 and then the parameter estimation procedure
of Section 5 was applied.

With this choice we obtained the MLE estimate βlb = 0.08 and βb = 0.
The procedure converged in one step. The resulting default state vector x̂
(the MLDS solution) has only 5 defaulting clients (all �bad� ones), and the
bank is non-defaulting. (The default state vector was the same for these two
parameter vectors).

Since we have only two �variable parameters� to be determined, it is
possible to visualize the corresponding pseudo-likelihood function pθ(z, x̂),
as a function of βb and βlb for the �xed x (just found). The values of this
function is shown in Figure 3 for βlb ∈ [0, 0.002] and βb ∈ [0, 0.2].

(c) The e�ect-vertex-many-banks scenario. In this case we have 12
clients, 3 banks and one e�ect vertex (see Figure 4). Each client obtains a
loan from one bank; denote by βl the (constant) dependency of the banks on
every client. Again, the e�ect vertex represents the in�uence of the interest
rate on the clients, which are partitioned into good clients and bad clients.
The dependency of the good (bad) clients on the interest rate is given by βg

(βb). All the bad clients got loans from the same bank (bad bank). Finally,
the three banks are also (strongly) interrelated, and we denote by βi the
corresponding value of the parameter (which is equal for all pairs).

24



Figure 3: Pseudo-likelihood

As for the e�ect-vertex scenario, the default prior probability pc = eα
1
c

for each client c is drawn independently with uniform distribution in the
interval [0.3, 0.5] for the good clients, and is equal to 0.5 for the bad ones.
High interest rates are represented by a high prior default probability for the
e�ect vertex (0.995). The bank vertex have a low prior default probability,
equal to 0.2 for all banks. We have �xed initial values for βb = 0, βg = 0.1,
and βi = 0.3 whereas βl is chosen randomly (uniformly) in the interval
[0.25, 0.5]. The fraction of bad clients is 50 %.

In order to understand the banks reaction to increasing in�uence of the
interest rate on the bad clients, we let βb and βi grow. For low values of βb

and βi, only the e�ect vertex is default; when βb reaches a �rst threshold
value (0.15), then all bad clients and the bad bank are also default. Finally,
for increasing values of βi, all banks will default.

Figure 5 shows more in detail the posterior probability distribution for
the �rst 16 states, where, for each good (bad) client βg = 0.3, βb = 0.6 and
βi = 1.2.

Each bar corresponds to one of the 16 states. The y-axis represents the
(posterior) probability, whereas on the x-axis the pair (nc : nb) below each
bar denotes the number of defaulting clients (nc) and banks (nb), respec-
tively. States are ordered from 1 to 16 according to decreasing probabilities.
The picture clearly shows that the �rst two states, with 2 and 3 defaulting
clients and no defaulting banks, respectively, are much more likely than the
remaining ones. In other words, the probability drops very quickly and it is
concentrated in the �rst state. Also, State 1 and State 2 are very similar to
each other, as they only di�er by one client (i.e. the Hamming distance is
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Figure 4: The e�ect-vertex-many-banks scenario.

one). It is interesting to compare the above �gure with the one corresponding
to the prior probabilities of the same 16 states.

Observe that state 5 is the most likely state according to the prior dis-
tribution. Comparing Figure 6 with Figure 5, we observe that the e�ect
of the �experts judgment� is twofold. By one side, the ranking imposed by
the prior knowledge is substantially modi�ed by the posterior information.
By the other side, the overall distribution gets more �peaked�, concentrating
just on at most the �rst two states. Finally, in Figure 7 we show the loss
probability distribution, i.e. the probability that a given number q of agents
(clients or banks) defaults. Observe that the most likely are obtained for
q = 4 with q = 3 following next.

Again, the probability is represented on the y-axis, while the x-axis is
the number of defaulting clients. No banks are defaulting in this example.

The next three �gures are analogous to the three previous ones, but with
βb = 0.7 and βi = 1.4. We can see that these values dramatically a�ects
the results of our simulation. In particular, due to the tighter connection
between the bad bank and the bad clients, the bad bank is likely to default:
as a consequence all other banks are also likely to default.

This last scenario provided the basis for an ORP scenario (optimal re-
covery problem). In particular we associated with each client a bene�t of 20
units and a recovery cost equal to 5, whereas the bene�t associated with each
bank is 100 and its recovery cost is 80. The recovery cost of the e�ect-vertex
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Figure 5: Posterior probability distribution for each of the 16 possible states
of the e�ect-vertex-many-banks scenario, with βb = 0.6, βi = 1.2
.

is set to a very large value and we �xed the budget K = 20. Interestingly,
by recovering a suitable subset of only 4 bad clients (with total cost equal
20), also the three banks got rescued.

Finally, in order to assess the possibility of handling larger ORP instances
by direct application of CPLEX to its mixed integer formulation, we solved
the e�ect-vertex-many-banks case for increasing number of agents (banks
and clients). We �xed the number of banks to 1/5 of the total number
of agents, the remaining ones were clients (bad and good in equal share).
Since the number of di�erent states is very large, we had to slightly modify
the drawing of the observation state z̄ in Step 4 of our instance generation
procedure. In fact, the state x̄ (from which z̄ is actually derived through the
conditional probability distributions f(z|x)) is now simply the most likely
default set, which is computed by a single min-cut computation.

For di�erent budget levels, CPLEX was able to solve to optimality in-
stances up to 100 agents. For 150 agents, after 1 hour running time the
solution found by CPLEX was at most 2% worse than the optimum one.
However, the pernicious tailing o� phenomenon occurs, with very little hope
for further gap reductions within reasonable computing time. This shows
that ORP can indeed be attacked for medium-size instances by a direct
application of CPLEX. Larger instances will require a di�erent solution ap-
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Figure 6: Prior probability distribution for the e�ect-vertex-many-banks sce-
nario, with βb = 0.6, βi = 1.2

proach.

7.2 A real-world example

We consider here a realistic case involving the �ve larger commercial Scan-
dinavian banks: Swedbank, Nordea, Danske Bank, DnBNOR and Handels-
banken. Swedbank and Handelsbanken are Swedish banks, while Danske
Bank is Danish and DnBNOR is Norwegian. Nordea is a bank with branches
in each of the Scandianvian countries, but with mother o�ce in Sweden. All
the banks are operating in the Scandianvian market, but mainly concen-
trated in their home countries. We suppose in our study that the banks are
all operating in a Scandinavian market for simplicity. The banks are exposed
to public loans which we model as the sixth agent in our case study. All the
banks are dependent on each other through mutual lending.

The corresponding graphical model contains 6 vertices and 36 directed
arcs. To compute the corresponding βuv parameters, we apply the �rst pa-
rameter estimation procedure discussed in Section 5. In order to do this, we
need to estimate default conditional probabilities and get hold of a suitable
expert judgment vector z. For this purpose we base our procedures on pub-
licly available data from the annual reports of 2009 along with credit ratings
from Standard and Poor's (S&P).
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Figure 7: Loss probability distribution for the e�ect-vertex-many-banks sce-
nario, with βb = 0.6, βi = 1.2

Background �nancial �gures.

The long-term S&P credit rating can be found on the web pages of the
respective banks, and are shown in Table 1.

Bank Swedbank Nordea Danske B. DnBNOR Handelsb. Public

Rating A AA- A A+ AA+ C

Def. Prop. 0.008 0.006 0.008 0.007 0.006 0.25

Table 1: S&P ratings and corresponding default probability for the 5 major

banks in Scandinavia and the Public Loans

For the Public Loans we have associated a credit rating C, in order to
model a largely uncertain situation where households may start to default
due to a crack in the property market. The actual situation in Scandinavia
was overall rather stable, but in this example we would like to mimic an
unrestful �nancial situation.

Unfortunately, we did not have accessible the default probabilities asso-
ciated with the S& P credit ratings for the banking sector. Our �gures in
the second row labeled Def. Prob. are motivated from public reports made

29



0.009

0.029

0.049

0.069

0.089

0.109

0.129

(6:3) (5:3) (7:3) (6:3) (7:3) (7:3) (5:0) (6:0) (6:3) (7:3) (6:3) (8:3) (8:3) (5:3) (5:3) (6:3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
o

s
te

ri
o

r

P
ro

b
a

b
ili

ty

(x:y)  x – number of defaulting clients y – number of defaulting banks

Figure 8: Posterior probability distribution for the e�ect-vertex-many-banks
scenario, with βb = 0.7 and βi = 1.4

available through the web page of S& P giving historical �gures for di�erent
sectors. These probabilities are interpreted as the expert judgment vector z
in our context.

Table 2 shows, for each bank, some relevant �gures taken from the annual
report 2009, which can be easily downloaded from the bank website (all
�gures are expressed in Millions).

Bank Swedbank Nordea Danske B. DnBNOR Handelsb.

Currency SEK EUR DKK NOK SEK

Total Asset Value 1,794,687 507,544 3,098,477 1,823,453 2,122,843

Public Loans 1,290,667 282,411 1,127,142 1,114,886 1,477,183

Credit to Institutions 92,131 18,555 101,178 62,317 168,100

Central Deposit 37,879 11,500 101,178 31,859 49,882

Table 2: Figures from the annual reports of the 5 major banks in Scandinavia

(in Millions)

The Central Deposit is the amount of money the bank has deposited in
the Central Bank of their respective country. We point out that the �gures
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Figure 9: Prior probability distribution for the e�ect-vertex-many-banks sce-
nario, with βb = 0.7 and βi = 1.4

in the two last rows for Danske Bank are obtained by equally distributing
the cumulative �gure given in the annual report, since they have reported
their credit to institutions and the central bank in one cumulative number.
This is of course just chosen by us as a proxy.

Parameter estimation

The �gures in Table 2 are exploited to derive suitable conditional default
probabilities. These are in turn used as data for determining the coe�cients
of our model, according to the methodology described in Section 5.

First, for each bank B, the conditional probability for B to default given
a default in Public Loans is computed as the ratio between the bank's ex-
posure in Public Loans and its total asset value. Next, we use the �gures in
Credit to institutions as a proxy for the bank's exposure to the other banks,
and we assume a uniform distribution of this �gure among the four other
banks: in other words, each bank has a fully diversi�ed loan portfolio in
the other banks. So, for instance, Swedbank's total exposure is 92,131 mill.
SEK, which then under our assumptions gives an exposure of 23,032.75 mill.
SEK with each of the four other banks. To measure the vulnerability of
Swedbank to the four others, we compute the ratio between its exposure
with its deposit in the central bank. For the case of Swedbank, this results
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Figure 10: Loss probability distribution for the e�ect-vertex-many-banks
scenario, with βb = 0.7 and βi = 1.4

in 23, 032.75/37, 879 ' 0.608, which we use as a proxy for the conditional
probability of Swedbank defaulting, given that one of the other default (for
example, the default probability of Swedbank given that Handelsbanken de-
faults, is 0.608). We compute these conditional default probabilities for all
the banks, and collect the �gures in Table 3

Although the exposure in each of the other banks are minor compared
to the total asset holdings, we think of the lending to credit institutions as
part of the liquid portfolio of the bank, which makes it highly vulnerable if
bigger parts of this fall out in the sense of another bank defaulting.

Bank Swedbank Nordea Danske B. DnBNOR Handelsb.

Public Loans def. prob. 0.719 0.556 0.364 0.611 0.696

Other Bank def. prob. 0.608 0.403 0.750 0.489 0.842

Table 3: Conditional default probabilities

The conditional probabilities of Table 3 and the "expert judgments" pro-
vided by S&P and reported in Table 1 (Row Def. Prob.) are used as the
input data to our parameter estimation procedure (Section 5). Since we
do not have any a piori knowledge on the banks and the Public Loans de-
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fault probability, we let α0
i = α1

i = 0 for i = 1, . . . , 6: this makes vectors
α0 and α1 irrelevant to determine the most likely defaulting set. Also, to
de�ne the conditional probability distribution f(z|x) we used two continu-
ous distributions (for each agent i ∈ V ), namely f(zi|xi = 0) = ce−γzi and
f(zi|xi = 1) = ceγ(zi−1), where c = γ/(1− e−γ) and γ is a given constant.

Computing most likely default sets and optimal recovery policies

By solving the MLDS problems described in Section 2 by using the current
S&P judgment depicted in Table 1 and the corresponding estimated param-
eters, it turns out that the most likely default set is empty. This could be
interpreted as a healthy banking sector in Scandinavia, despite of a rather
low credit rating of Public Loans, as set by us. Although we have no reasons
to believe that Danske bank is in a critical situation, we are motivated by the
fact that there have been several defaults in the Danish bank sector to let
them have the highest default probability. The Norwegian bank DnBNOR is
supposed to have the smallest default probability since the �nancial situation
in Norway is relatively much better than the other Scandinavian countries.

Things change dramatically when we investigate an arti�cial and much
more pessimistic expert judgments vector like the one depicted in Table
4. This could be considered as a scenario in an extraordinary turbulent
�nancial situation, possibly mimicing what happened to the Icelandic bank
sector around 2008.

Bank Swedbank Nordea Danske B. DnBNOR Handelsb. Public

Prob. 0.55 0.46 0.75 0.27 0.36 0.65

Table 4: A pessimistic rating scenario

The corresponding most likely default set contains in this case all agents,
namely all banks and the Public Loans. We then solve the associated ORP
problem with decreasing budget K by solving the corresponding MILP pro-
grams (6). To this end, we set the survival bene�t of each bank equal to its
total asset value, whereas the Public Loans bene�t equals the total amount
of loans from the banks. Finally we let the recovery costs be 5% of the corre-
sponding bene�t values. All �gures (expressed in Millions EUR) are shown
in Table 5. For the �gures below, we note that the exchange rate for Euro to
NOK was 8.315, Euro to SEK 10.2667 and Euro to DKK 7.442. All �gures
are for January 1, 2010, and obtained from valutakurser.no.
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Bank Swedbank Nordea Danske B. DnBNOR Handelsb. Public

Survival Bene�t 174,806 507,544 416,350 219,296 206,769 837,544

Recovery Cost 8,740 25,377 20,817 10,964 10,338 41,877

Table 5: Bene�t values and recovery costs

When the budget K = 21, 000 mill. EUR, then it is allocated to save
Danske Bank only, but this is su�cient to rescue all the agents and so the
�nal most likely default set is empty. Similarly, whenK = 11, 000 mill. EUR,
K = 10, 500 mill. EUR andK = 9, 000 mill. EUR, the budget is allocated to
save DnBNOR, Handelsbank and Swedbank, respectively, and again the �nal
most likely default set is empty! Observe that since the MLDS model does
not try to minimize payout, the rescued bank(s) may in general not be the
cheapest solution. For example, with K = 21, 000 any bank among Danske
Bank, DnBNOR, Handelsbank and Swedbank could be rescued obtaining an
empty most likely default set, but the solution returned by the solver was
actually rescuing Danske Bank. Interestingly, one can show that forcing the
allocation of a higher budget to save Nordea does not produce a similar e�ect.
Indeed, in this case the most likely default set contains all other agents, and
no agent is saved but Nordea itself.

8 Final comments

We mention some possible directions of future work in this area.
Concerning the model it would be natural to investigate the case when

negative parameters βuv are allowed. This models decreased risk of default-
ing when an agent defaults. Note, however, that negative βuv's lead to
computational di�culties (as the MLDS problem with arbitrary weights is
NP-hard). Another important extension would be a dynamic model where
companies might default at di�erent times and the risk of defaulting would
vary with time.

An interesting topic is a further study of the optimal recovery problem
ORP. We showed how to reformulate the ORP into a valid mixed integer
linear programming problem (13). We used standard methods to solve this
problem, but one could investigate more advanced approaches where the
speci�c structure of the problem is exploited in order to solve larger problems.
Finally, ORP is very natural to study in a dynamic extension of our model.
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