
The implementor/adversarial algorithm for cyclic and
robust scheduling problems in health-care

Matias Holte
Carlo Mannino

Technical Report n. 3, 2011

The implementor/adversarial algorithm for cyclic
and robust scheduling problems in health-care

Matias Holte
SINTEF ICT, Norway

Dept. of Applied Mathematics
kjetimh@student.matnat.uio.no

Carlo Mannino
Sapienza University of Rome

Dept. of Computer and System Sciences
mannino@dis.uniroma1.it

January 31, 2011

Abstract

A general problem in health-care consists in allocating some scarce medical
resource, such as operating rooms or medical staff, to medical specialties in
order to keep the queue of patients as short as possible. A major difficulty
stems from the fact that such an allocation must be established several months
in advance, whereas the exact number of patients for each specialty is an
uncertain parameter. Another problem arises for cyclic schedules, where the
allocation is defined over a short period, e.g. a week, and then repeated during
the time horizon. Even if the demand is perfectly known in advance, the
number of patients may vary from week to week. We model both the uncertain
and the cyclic allocation problem as adjustable robust scheduling problems.
We develop a row and column generation algorithm to solve this problem: this
turns out to be the implementor/adversarial algorithm for robust optimization
recently introduced by Bienstock for portfolio selection. We apply our general
model to compute master surgery schedules for a real-life instance from a large
hospital in Oslo.

1

Keywords: Health-care optimization, Master surgery scheduling, Robust opti-
mization, Mixed-integer programming.

1 Introduction

Mathematical optimization is playing an increasingly relevant role in health-care
management ([14]). Indeed, as observed in [1], ”in the near future public resources
for public health will become inadequate. Therefore, we need effective ways for
planning, prioritization and decision making”. The major task of hospital adminis-
trations is that of efficiently allocating a number of medical resources for different
purposes. A large variety of assignment and scheduling problems arise: we refer the
reader to [7] and [14] for several examples and approaches.

The allocation of resources to different medical specialties is directly connected
to the admission planning problem, which amounts to establishing the sequence of
accepted patients. Typically, patients requiring some specific therapy are first placed
in a waiting list and thereafter admitted to the hospital. A standard performance
indicator for hospital efficiency is related to the length of such lists. Shorter lists
are obviously preferred, but it is in general impossible to avoid a certain amount
of queue, and maybe not even desirable. Indeed, the absence of queue for some
specialties could actually reveal an inefficient allocation of some scarce resource.

It follows that the demand for medical care is met not only by scheduling the
necessary resources but also by allowing a certain amount of queue. Albeit a short
waiting list may be acceptable, long queues are to be avoided, as they represent
a huge cost for health-care systems ([9],[13]). For each specialty, the cost of its
queue is a design parameter which must be established by the hospital board. In
the typical case, the cost will be represented by a convex function, with marginal
costs increasing with the queue length.

So, a basic scheduling problem in health-care may be stated as the problem of
allocating a number of resources to medical specialties so as to minimize the queue
costs.

Clearly the allocation process must be undertaken long in advance and may
involve some negotiation. So, resources are allocated at the beginning of a time
horizon which may be quite long - from months to years. The number of patients
for each specialty is thus estimated in advance and the actual number may differ
substantially from the initial guess. In addition, schedules are often calculated with
reference to the planning horizon (e.g. from one to four weeks) and then cyclically
repeated along the much longer time horizon: obviously the actual demand may vary

2

from period to period, even if deterministically known in advance. A safe schedule
should then ensure that queues are as small as possible when the demand is the
worst possible (with respect to the chosen schedule).

This kind of problems can be tackled by robust optimization (see [3]). In the
robust optimization paradigm, the parameters of the problem (i.e. the coefficients
of the constraint matrix and the right hand sides) are not completely specified
and they may vary in the so called uncertainty set. One wants to find a value
for (all of) the decision variables which is feasible for any possible realization of
the parameters in the uncertainty set. A slightly different version of the robust
optimization paradigm, which however may have relevant practical and theoretical
consequences ([3]), is the adjustable robust counterpart of an optimization problem.
This variation was introduced to take into account the presence in the model of
adjustable variables, i.e. ”variables which do not correspond to actual decisions and
can tune themselves to varying data” [4].

In our contest, we assume that the demand for medical care in the different
specialties is an uncertain parameter and may vary within a given set Y . Also, in
the optimization model we have variables associated with the schedule and variables
associated with the queues. While the schedule variables represent ”here and now”
decisions, the queue variables ”adapt” to meet the actual demand. In other words,
the feasible schedules are those for which, for any possible demand realization, there
exists a queue value so that the demand is met. We make explicit use of this def-
inition in devising the cutting plane algorithm for the robust scheduling problem
described in Section 4. It turns out that the resulting approach can be interpreted
as the implementor-adversary algorithm for robust optimization introduced by Bi-
enstock in [6]. In the same paper, Bienstock also claims to expect that similar ideas
would prove useful for other robust optimization models. In this paper we confirm
his forecast.

We apply our technique to instances of the Master Surgery Scheduling (MSS)
Problem, a much addressed and studied problem in the class of scheduling prob-
lems in health-care. The literature on the deterministic version of this problem is
quite huge; a comprehensive survey on the topic can be found in [7]. In contrast,
few papers deal explicitly with uncertainty. In [2], [9] and [12], the authors apply
mathematical programming and local search techniques to cope with stochastic du-
rations of surgical procedures. Two recent papers deal with uncertain demand, but
with different assumptions and, consequently, different solution approaches. In [2], a
probability (multinomial) distribution of the demand is given and the corresponding
stochastic problem is modelled as a mixed integer linear program. In contrast, in
[11] no probability distribution on the demand is known, which instead is assumed
to vary in a given interval, and a light robustness model ([8]) is constructed to find

3

suitable schedules.

The overall approach has been successfully applied to real-life instances provided
by SAB (Sykehuset Asker og Bærum HF), a major hospital in the city of Oslo.

2 The master scheduling problem

In this section we formalize the general scheduling problem with queue cost mini-
mization in health-care. Let G be the set of specialties, such as orthopedics, gyne-
cology, etc.. We denote by D the set of days in our planning horizon, while R is
the set of available medical resources, e.g. rooms or surgical teams, or even feasible
combinations of medical resources. We assume here that medical resources can only
be assigned by an integer number of time slots1. Depending on his/her specific treat-
ment, each patient requires a set of contiguous time-slots of the medical resource,
called block. In the deterministic model, the overall block demand in the time hori-
zon, for each specialty g ∈ G and each possible block length l ∈ L, is a non-negative
integer bgl. In what follows, we indicate by bg ∈ ZG

+ the vector (bg1, . . . , bg|L|)T , and
by b ∈ ZG×L

+ the vector (bT
1 , . . . , bT

|G|)
T . Finally, observe that

∑
l l · bgl is the total

amount of slots required for specialty g during the time horizon. The number of
time slots available in each day may vary from day to day. To simplify the notation
let us introduce the set of superslots S, namely the set of feasible unordered triples
{r, s, d}, where r is a medical resource, s a time-slot and d a day. That is, superslot
{r, s, d} ∈ S if resource r is available at slot s in day d. In this setting, a (su-
per)block is simply a subset B ⊆ S such that the superslots in B correspond to the
same medical resource, to the same day and to one or more contiguous time-slots.
Finally, let qgl denote, for each specialty g and each block length l, the queue length
measured as the number of unscheduled patients. We denote by qg ∈ ZG

+ the vector
(qg1, . . . , qg|L|)T , and by q ∈ ZG×L

+ the vector (qT
1 , . . . , qT

|G|)
T . A major task of the

hospital board is to be able to keep short queues. Long queues have a social cost
as wait times can impact health outcomes. We model such cost as a function f
decomposable in the different specialties and block lengths, i.e. f(q) =

∑
g,l fgl(qgl),

where fgl is a non-decreasing, convex and piece-wise linear function. So the basic
Master Scheduling Problem amounts to finding a feasible assignment of superslots
to each specialty (Master Schedule or (MS)), so as to minimize the queue cost f(q).

Cyclic Schedules. The MS prepared by the hospital planning department is typ-
ically active for a long period, normally from one to a few years. Such long duration
is mainly motivated by the fact that finding a MS is a difficult task, which involves

1At SAB the time slot is typically two hours.

4

specialized personnel for several working days. In addition, the hospital staff is af-
fected by such timetable and the employees can put up a significant resistance to
changes to the actual configuration.

In contrast, the actual planning horizon is much shorter, typically from one to
eight weeks. The MS calculated for the planning horizon is then used as a pattern
and repeated for the whole period of validity. So, the full MS which may hold for
years is actually obtained by taking M copies of a shorter MS which refers to a
few weeks. Again the reason to this is manyfold, but one major fact is that people
prefer to have repeated working patterns along the year(s). Despite of the fact
that the MS stays unchanged from period to period, the projected demand in each
period may vary. Consequently, queue lengths and queue costs will also vary from
period to period. Let us denote by bi ∈ ZG×L

+ the (projected) demand in period
i, for i = 1, . . . ,M , and let Y = {b1, . . . , bM} be the set of all demand vectors.
An interesting goal is now that of finding a MS which is valid for all periods, and
such that the largest queue cost is minimized. That is, denoting by qi ∈ ZG×L

+ the
queue vector in period i = 1, . . . ,M , the cyclic MS problem (c-MS) is the problem
of finding a MS such that the quantity maxi f(qi) is minimized.

Robust Schedules. The queue length depends both on the MS and on the de-
mand b, which in turn is typically estimated from historical records. However, such
estimate is inherently uncertain, and we assume that, for each g ∈ G and l ∈ L, the
quantity bgl may vary between two possible values, namely

βgl ≤ bgl ≤ γgl (1)

As observed in the seminal paper by Bertsimas and Sim [5], in most realistic
situations it is very unlikely that all uncertain parameters assume simultaneously
their upper bounds. In [5] this observation is exploited by assuming that only a given
number of the uncertain coefficients may deviate simultaneously from the reference
value. This restriction does not look appropriate in our case. Instead we assume here
that, even if in principle all demands bgl may vary within the corresponding feasible
interval, still the overall number of slots required by all patients in the different
specialties does not exceed a threshold K, i.e.

∑

g

∑

l

l · bgl ≤ K (2)

Again, we denote by Y = {b1, . . . , bM} the (finite) set of feasible demand vectors,
namely Y = {b ∈ ZG×L : b satisfies (1) and (2)}.

5

Now, as in the c-MS problem, we want to find a MS which minimizes the largest
queue cost. If we denote by qi ∈ ZG×L

+ the queue vector with respect to bi ∈ Y ,
then the adjustable robust MS problem (aR-MS problem) amounts to finding a MS
such that the quantity maxi f(qi) is minimized. It should be apparent that the c-MS
problem and the aR-MS problem only differ in the way the set Y is defined, and
from the next section we unify the discussion.

3 An adjustable-robust model for the MS prob-

lem

There are several alternative ways to represent the MS problem by mathematical
optimization models, and in particular by mixed-integer linear programs (MILPs)
(see [1] for various examples). Here we adopt the so called pattern formulation
introduced in [11] for the master surgery scheduling problem. Such formulation is
based on the concept of l-pattern, which is simply a set of l contiguous superslots
corresponding to the same day and the same medical resource. For example, if the
slot length is 2h and a working day is 8h, then we have 4 time-slots. Correspondingly,
we have four different 1-patterns (patterns of one slot or 2 hours), three distinct 2-
patterns (4 hours), 2 distinct 3-patterns (6 hours) and one 4-pattern (8 hours).

When a specialty is assigned a block of length l, it is actually assigned a specific
l-pattern. Observe that each pattern corresponds to a precise time interval (i.e.
from 10:00 to 16:00). Each specialty g ∈ G ”asks” for a number bgl of patterns with
block length l, for each possible block length l. Let us denote by P the set of all
possible patterns, and let E = {{u, v} : u, v ∈ P and u ∩ v �= ∅}, i.e. E is the set
of non-disjoint pair of patterns. In other words, {u, v} ∈ E if and only if pattern
u and pattern v (which are both collections of time contiguous superslots) share
a common superslot. Thus, two patterns intersect if they correspond to the same
medical resource and they overlap in time. For all g ∈ G and p ∈ P we introduce a
binary variable xgp which is 1 if and only if pattern p is assigned to specialty g. To
simplify the notation in the basic model we assume that every pattern p ∈ P can
be assigned to any specialty g ∈ G. It is not difficult to extend the model to cope
with infeasible assignments by fixing suitable variables to 0. This may be the case,
e.g., when a specialty needs some specific equipments not available in all operation
rooms.

Let p, q ∈ P be two (not necessarily distinct) patterns. If p and q intersect (i.e.
{p, q} ∈ E) then they cannot be assigned simultaneously. This is represented by the
following packing constraint:

6

xfp + xgq ≤ 1, g, f ∈ G, {p, q} ∈ E, g �= f
∨

p �= q (3)

Similar packing constraints may be included to represent other incompatible
assignments, but we omit here the discussion for sake of brevity. A vector x ∈
{0, 1}G×P satisfying all above inequalities is a Master Scheduling (MS) (or Master
Schedule). The set of all feasible MS is denoted by X.

Actually, as shown in [11], the above constraints can be strengthened by consid-
ering any set C of mutually intersecting patterns. Then we can replace (3) with the
following family of inequalities:

∑

g∈G

∑

p∈C

xgp ≤ 1, C ∈ C (4)

where C is the family of the maximal sets of mutually intersecting patterns. Such a
family can be identified efficiently ([11]).

Now, let P (l) be the set of patterns of length l. The quantity
∑

p∈P (l) xgp is the
number of blocks of length l assigned to specialty g: in principle this quantity may
exceed bgl. Then the queue qgl of patients of group g with block length requirement
l is defined as:

qgl = max(0, bgl −
∑

p∈P (l)

xgp) g ∈ G, l ∈ L (5)

Thus, the queue q ∈ ZG×L
+ is a non negative function q(x, b) of the MS x and of the

demand b.

The convex piece-wise linear cost associated with q can be easily transformed
into a linear one by introducing suitable variables and constraints ([11]).

For sake of simplicity we discuss here the simpler case of a linear cost function.
In particular, we consider the cost c(q) of the queue q to be proportional to the
queue total length, i.e.

c(q) =
∑

g∈G

∑

l∈L

cgl · qgl (6)

where cgl is a suitable, strictly positive constant (see Section 5 for the exact definition
of the cost vector c in our test cases). The extension to the more general convex,
piece-wise linear case is straightforward.

7

By associating a non-negative real variable sgl with qgl, for g ∈ G, l ∈ L, the
(deterministic) MS problem can be formulated as following Mixed Integer Linear
Program (MILP):

min ξ

s.t.
(i)

∑
g∈G

∑
p∈C xgp ≤ 1, C ∈ C

(ii) sgl +
∑

p∈P (l) xgp ≥ bgl, g ∈ G, l ∈ L

(iii) ξ ≥ ∑
g∈G

∑
l∈L cglsgl

ξ ∈ IR, s ∈ IRG×L
+ , x ∈ {0, 1}G×P

(7)

Constraint (7.ii) along with the non-negativity of s ensure that, for any x and b, we
have s ≥ q(x, b). Moreover, thanks to (7.iii) and the structure of the cost coefficients
which are strictly positive, we trivially have s∗ = q(x∗, b) for every optimal solution
(x∗, s∗) to (7).

Cyclic and Robust Schedules. We assume now that the demand b can actually
range in the set Y previously defined, that we rewrite for the reader:

Y := {b ∈ ZG×L : βgl ≤ bgl ≤ γgl,
∑

g

∑

l

l · bgl ≤ K} = {b1, . . . , b|M |} (8)

where β and γ are non-negative vectors. Then the aR-MS problem can be stated as
the following min-max problem:

min
x∈X

max
b∈Y

c(q(x, b)). (9)

Following Bienstock ([6]) we can interpret this problem as a particular imple-
mentor/adversarial game, where the implementor establishes a MS x̄ ∈ X trying to
minimize the queue cost while the adversarial fixes a demand b ∈ Y , this time max-
imizing the queue cost w.r.t. the schedule x̄. We come back on this interpretation
later on.

For every x ∈ X, let us denote by qi = q(x, bi) the queue when the demand
vector is bi, for bi ∈ Y . As for the deterministic case, we associate a non-negative

8

real variable si
gl with qi

gl, for every g ∈ G, l ∈ L and i ∈ M . Then the aR-MS
problem can be immediately represented by the following MILP:

min ξ

s.t.
(i)

∑
g∈G

∑
p∈C xgp ≤ 1, C ∈ C

(ii) si
gl +

∑
p∈P (l) xgp ≥ bi

gl, g ∈ G, l ∈ L, i ∈ M

(iii) ξ ≥ ∑
g∈G

∑
l∈L cgls

i
gl i ∈ M

(iv) ξ ∈ IR, s ∈ IRG×L×M
+ , x ∈ {0, 1}G×P

(10)

In fact, constraints (10.ii) and non-negativity ensure that si ≥ qi, for i =
1, . . . ,M , whereas constraints (10.iii) ensure that ξ ≥ maxi∈M cT si ≥ maxi∈M c(qi)
with equality holding for the optimal solution. A major difficulty with the above
formulation is the large number (possibly exponential in |G| · |L|) of inequalities
(10.ii) and (10.iii) and variables si

gl. A classical technique to cope with it is to ini-
tially consider a small subset of such inequalities and variables and generate new
ones only if necessary. This is the topic of the next section.

4 The implementor/advesary algorithm for the

adjustable-robust MS Problem.

We start by considering a subset Ỹ ⊆ Y (corresponding to the set of indices M̃ ⊆ M)
and solve the (reduced) master problem

min ξ

s.t.
(i)

∑
g∈G

∑
p∈C xgp ≤ 1, C ∈ C

(ii) si
gl +

∑
p∈P (l) xgp ≥ bi

gl, g ∈ G, l ∈ L, i ∈ M̃

(iii) ξ ≥ ∑
g∈G

∑
l∈L cgls

i
gl i ∈ M̃

(iv) ξ ∈ IR, s ∈ IRG×L×M̃
+ , x ∈ {0, 1}G×P

(11)

Observe that the above problem contains in general fewer constraints and vari-
ables than the original aR-MS problem (10) and it is easier to solve in practice. Now,

9

let (x̃, s̃, ξ̃) be the optimal solution to the current master problem. This provides a
feasible MS x̃. It is not difficult to see that, even if (11) contains in general fewer
variables than (10), still ξ̃ is a lower bound on the optimal value of (10). Indeed,
let us denote by ξ̂ the optimal value to the proper relaxation of (10) obtained by
dropping the constraints (10.ii) (10.iii) associated with the indices i ∈ M \ M̃ . By
definition, we have that ξ̂ is a lower bound on the optimal value of (10): also, it is
immediate to see that ξ̂ = ξ̃.

More in general, let Ỹ ⊆ Ȳ ⊆ Y , and let ξ̃ and ξ̄ be the optimal values to the
master programs associated with Ỹ and Ȳ , respectively. Then, we have ξ̃ ≤ ξ̄.

Observe now that, for any bi ∈ Ỹ , the queue cost c(q(x̃, bi)) is no larger than ξ̃
(otherwise c(s̃i) ≥ c(q(x̃, bi)) > ξ̃, a contradiction). What happens to the queue cost
if we let the demand b range over the whole set Y (and the schedule x̃ is unchanged)?
In principle we may have a demand vector bj ∈ Y such that the corresponding queue
cost c(q(x̃, bj)) is strictly larger than ξ̃. However, if this is not the case, then the
MS x̃ is optimal for the original min-max problem (9).

The above discussion can be summarized by following proposition:

Proposition 4.1 Let (x̃, s̃, ξ̃) be the optimal solution to the current master problem
(associated with Ỹ and M̃) and, for any bk ∈ Y , let qk = q(x̃, bk) be the associated
queue vector. If c(qk) ≤ ξ̃ for all k ∈ M , then (x̃, s̃, ξ̃) can be extended to an optimal
solution (x̃, s, ξ̃) of the original aR-MS formulation (10) with the same cost ξ̃.

Proof.

All we have to do is to let sk
gl = qk

gl for k ∈ M \ M̃ and si
gl = s̃i

gl for i ∈ M̃ . It is

immediate to see that the solution (x̃, s, ξ̃) is feasible for (10).

�

So, if the conditions of the above proposition are satisfied, we do not need to
solve the overall problem (10) and the current optimal vector x̃ is an optimal MS.
Otherwise there exists b̂ ∈ Y \ Ỹ such that c(q(x̃, b̂)) > ξ̃, we let Ỹ = Ỹ ∪ {b̂} and
solve the associated master program once again.

In order to test if the conditions of Proposition 4.1 are satisfied or to identify
a demand vector b̂ ∈ Y violating such conditions we set up a suitable MILP. In
particular, we look for a demand vector b∗ ∈ Y maximizing the cost of the queue
q∗ = q(x̃, b∗). If c(q∗) > ξ̃ then b∗ is the required demand vector, otherwise c(qk) ≤ ξ̃
for all k ∈ M (with qk = q(x̃, bk)) and x̃ is an optimal MS.

10

To this end, we can solve the following mixed integer non-linear program:

max
∑

g∈G

∑
l∈L cglwgl

s.t.
(i) wgl = max(0, ygl −

∑
p∈P (l) x̃gp) g ∈ G, l ∈ L

w ∈ IRG×L, y ∈ Y

(12)

The non-linear constraints (12.i) ensure that w = q(x̃, y), i.e. w is the queue
associated with the demand vector y ∈ Y (and MS x̃). In order to linearize constraint
(12.i) we cannot proceed as for the master problem simply by introducing a suitable
slack variable, because of the specific form of the objective function in (12). Instead
we introduce, for each g ∈ G, l ∈ L, a binary variable zgl which is 1 if ygl −∑

p∈P (l) x̃gp < 0, and 0 otherwise. Then we substitute each constraint (12.i) with
the following linear constraints:

(i) wgl ≤ Qzgl + ygl −
∑

p∈P (l) x̃gp

(ii) wgl ≤ Q(1 − zgl)

(iii) wgl ≥ 0

(13)

where Q is a suitable large constant. In fact, if zgl = 1 then (13.i) becomes redun-
dant, while (13.ii) and (13.iii) imply wgl = 0. On the other hand, when zgl = 0 then
(13.ii) becomes redundant while (13.i) becomes

wgl ≤ ygl −
∑

p∈P (l)

x̃gp.

Finally, the strictly positive coefficients in the objective function implies that wgl =
ygl −

∑
p∈P (l) x̃gp in every optimal solution to the linearized version of (12).

The implementor/adversarial algorithm. We come back now to the relation
between our column and row generation approach and the implementor/adversarial
(I/A) algorithm for robust optimization proposed by Bienstock [6].

The I/A algorithm solves a problem of the form

F ∗ = min
x∈X

max
y∈Y

f(x, y). (14)

11

and can be summarized as follows:

Implementor/Adversarial Algorithm

Output: values L and U with L ≤ F ∗ ≤ U , and x∗ ∈ X such that L =
maxy∈Y f(x∗, y).

Initialization: Ỹ = ∅, L = −∞, U = +∞.

Iterate:

1. Implementor Problem: solve minx∈X maxy∈Ỹ f(x, y), with solution x∗.
Reset L ← maxy∈Ỹ f(x∗, y)

2. Adversarial Problem: solve maxy∈Y f(x∗, y), with solution y∗. Reset
U ← min{f(x∗, y∗), U}.

3. Test: If U − L is small, exit, else reset Ỹ ← Ỹ ∪ {y∗} and go to 1.

It is immediate to verify that the implementor problem at Step 1 of the above
algorithm coincides with the master problem (11) associated with the set Ỹ . We have
already observed that the optimal value of the master program can only increase
as the set Ỹ gets larger, since the minimization problem becomes increasingly more
constrained. This is why at Step 1 we can always update the lower bound L with
the optimal value of the current master program. In contrast, the solution of the
adversarial (slave) problem at Step 2 depends on the current master solution x∗

and, though always providing an UB for the original problem, such value can change
unpredictably from one iteration to the next.

Speeding up the I/A algorithm. For our instances, the adversary problem is a
relatively small integer program, which is actually solved quite efficiently by any
commercial solver or by dynamic programming. In contrast, the implementor prob-
lem is the large MILP (11) and most computing time is spent for its solution.
However, we do not lose much by temporarily replacing program (11) with its linear
relaxation. In fact, if we denote by x̄ the optimal fractional solution to the relaxed
problem (11) and by ξ̄ its value, then it is not difficult to see that:

• ξ̄ is a proper lower bound for the overall min-max problem (9) and L can still
be updated as at Step 1 of the I/A algorithm.

• the adversarial problem maxy∈Y f(x̄, y) can still be defined and solved using
the fractional solution x̄: indeed its optimal solution y∗ is a valid demand
vector (i.e. y∗ ∈ Y). In contrast, its value is not (in general) an upper bound
for the overall min-max problem, since x̄ is not a feasible schedule.

12

As observed in [6], a smart choice of the initial set Ỹ can significantly speed
up the convergence of the I/A algorithm. So, solving an initial sequence of relaxed
master problems, alternating with the corresponding adversarial problems, provides
us an initial set of demand vectors in Y to populate Ỹ . This choice proved to be
effective to reduce overall computational times, as shown in the next section.

5 Computational experience

Our experiments deal with the Master Surgery Scheduling Problem (MSS), which
amounts to assigning operation rooms to surgical specialties (see [11] for a detailed
description of the problem and of the corresponding pattern formulation). In all
cases we have six surgery specialties, or groups, namely Gastroenterology (Group 1),
General Cardiology (Group 2), Gynecology (Group 3), Medicine (Group 4), Ortho-
pedics (Group 5), and Urology (Group 6). Each group (specialty) must be assigned
a suitable number of slots of operation room in the planning horizon. Since each
specialty typically corresponds to a single medical group or staff, we need to consider
additional packing constraints to avoid that two simultaneous (but not intersecting)
patterns are assigned to the same specialty.

The computational experience has two major purposes. Firstly, to evaluate our
specific implementation choices and assess the quality of the algorithm. Secondly,
to evaluate the capability of the approach to cope with practical real-life scheduling
problems of medical resources in hospitals.

The algorithm was tested on a shared linux computer with 8 GB memory and
eight 1.8MHz processors (but only one assigned to our process), using CPLEX 11.0
to solve the linear and integer programs, and the code was implemented in python.

For all our experiments, we let the objective function be the following convex
piece-wise linear function of the queue q:

∑

g∈G

∑

l∈L

l · c(qgl) · qgl

where c(r) = 1 if 0 ≤ r ≤ 3 (0 ≤ r ≤ 1 for the artificial, smaller instance), and
c(r) = 3 otherwise. In other words, the marginal cost is larger for long queues;
also, patients with longer operation durations are more costly. Other choices of the
coefficients can of course be made by the hospital management to reflect specific
priorities.

13

5.1 Experiments for algorithm assessment

This first set of experiments is designed to evaluate some implementation choices
and the general behaviour of the algorithm. To this purpose we created a small data
set, described in Table 1, corresponding to one week demand.

Block lengths
1 2 3 4 Total Patients Total Slots

Patients
group 1 5-7 2-5 3-5 0-1 10-18 18-36
group 2 4-5 1-3 1-3 4-7 10-18 25-48
group 3 2-3 5-6 1-3 2-4 10-16 23-40
group 4 2-3 4-6 0-0 2-4 8-13 18-31
group 5 3-5 5-6 2-4 1-2 11-17 23-37
group 6 4-7 3-4 3-5 1-2 11-18 23-38

Sum 20-30 20-30 10-20 10-20 60-100 130-230

Table 1: The small artificial data set.

The different specialities are given in each row whereas the demand for each block
length is given in the columns labelled from 1 to 4. The two numbers separated
by hyphen in each entry are lower and upper limits on the demand, respectively.
The last two columns report, for each specialty, the total (minimum and maximum)
number of patients and the total (minimum and maximum) number of slots required
in the planning horizon, respectively.

The schedule considered a planning horizon of 1 week, with 5 days and 6 slots/day.
The medical resources amounted to 5 rooms. Consequently, we have 150 superslots
(= # days × # slots × #rooms) and correspondingly, 2700 decision binary vari-
ables. For this experiment, we fixed the total slot demand K = 150. In a first run
we evaluate the original version of the implementor/adversarial algorithm, that is
at each iteration both master and slave problems are solved to integral optimality.

The results are plotted in Figure 1. The algorithm ran for 601 sec. and for
36 iterations in total. For each iteration we plot the lower bound returned by the
implementor (lower dotted line) and the upper bound returned by the adversarial
(upper solid line), respectively. The value computed at each iteration corresponds
to a small cross. Remarkably, already after 294 sec and 22 iterations, the gap was
reduced to less than 5%. Actually, the corresponding implementor solution was
globally optimal, but we needed other 14 iterations to prove it. It is important to
remark here that, at any iteration i the solution xi produced by the i-th master pro-
gram corresponds to a feasible schedule. So, when solving the following adversarial
problem, we are actually computing the worst-case cost when the schedule is xi.

14

This cost is thus the UB depicted, for our tiny instance, by the small cross points
in the upper line of Figure 1. It is not difficult to see that already in the very early
iterations of the algorithm the returned schedules are quite good, even if later on
in the process we also obtain much worse solutions. A similar behaviour was also
observed in several experiments on random instances as reported in [10].

Finally, observe that the time required to solving the adversarial problem sums
up to less than 4% of the overall running time. For this reason, we concentrated on
the implementor implementation when striving for speed-ups.

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700

op
tim

al
 v

al
ue

seconds

adversary
implementor

Figure 1: Run plot: small instance. The lower line corresponds to the lower bounds
returned by the implementor. The upper line shows the upper bounds returned by
the adversary.

To this end, we tested the relaxed version of the algorithm, as described at the
end of Section 4. Namely, we drop the integrality stipulation on the x variables in
most of the implementor runs. Integrality is re-established when the current gap
between lower and upper bound is 0 (recall however that the upper bound returned
by the adversarial in the relaxed iterations is not a valid upper bound for the original
problem, as the input schedule is not integral).

The figures show a speedup of 44% (similar speed ups were also obtained in our
experiments on different instances, see [10]).

15

Finally, as suggested in [6], we have tried a different speed-up by partially pop-
ulating the set Ỹ with a number of demand scenario before starting the I/A algo-
rithm. Unfortunately, in our tests the overall behaviour of the algorithm did not
benefit from this strategy as small improvements in the number of iterations were
counterbalanced by increased running times (per iteration).

5.2 Real-life test case

Our real-life test case refers to historical patient data from SAB, a major hospital in
the city of Oslo (for a detailed description of such instances see [10] and [11]). The
data are extracted from a three-year period. Namely, for each specialty g ∈ G and
each possible block length l ∈ L, we consider the minimum mgl and the maximum
value Mgl achieved in a 7 week-period (corresponding to our planning horizon) of
the three years and select at random the lower bound βgl ∈ [mgl,Mgl]. Similarly, we
take the upper bound γgl at random in the interval [Mgl, 1.5Mgl]. This is to cope
with possible future increase in demand. The final scenario is summarized in table
2.

Block lengths
1 2 3 4 Total Patients Total Slots

Patients
group 1 7-10 55-70 14-20 2-3 78-103 167-222
group 2 14-18 62-75 2-4 0-0 78-97 144-180
group 3 31-40 84-95 1-2 0-0 116-137 202-236
group 4 13-15 20-35 1-2 0-0 34-52 56-91
group 5 5-10 73-90 17-25 1-2 96-127 206-273
group 6 16-25 53-70 2-4 0-0 71-99 128-177

Sum 86-118 347-435 37-57 3-5 473-615 903-1179

Table 2: Patient demand, real-life data set. Number of weeks and decision variables
increased 7-fold compared to the small instance.

We choose a planning horizon of 7 weeks, with 5 days a week and 6 slots a day,
giving 210 slots for the 6 groups. With 5 rooms available, this makes 1050 superslots
available.

We run our tests for different values of the parameter K (the expected total
demand of slots) ranging in the interval [925, 1179].

Comparisons with the deterministic approach. The goal of robust optimiza-
tion is to build prudent solutions, that is solutions which are intended to be protected

16

against the occurrence of the worst-scenario (w.r.t. the solution built). We use this
criterium to compare our robust approach against the deterministic approach. The
deterministic solution is obtained by solving the original scheduling problem w.r.t. a
specific scenario chosen in the feasible set Y . In particular, we consider two possible
scenarios: one in which all demands are to their upper bounds γgl and one in which
demands are at their average values �(βgl + γgl)/2. Let us denote by xM and xA

the corresponding optimal schedules.

The results are shown in Table 5.2. For different values of K (first column), the
next three columns display the corresponding cost of the solutions generated by the
three different approaches. In particular, for a given K, the corresponding entry in
the column Robust is the cost of the I/A solution with input K. The next two costs
on the same row are computed by running the adversarial problem with input K
and schedule xM and xA, respectively. The figures in Table 5.2 clearly show that
the robust approach outperforms the other approaches.

K Robust Maximum Demand Average Demand
925 42 85 42
950 94 135 100
975 148 174 148
1000 181 195 187
1025 189 204 214
1050 200 213 235
1075 206 219 263
1100 210 225 275
1125 215 225 275
1150 219 225 275
1179 225 225 275

Table 3: Comparing the I/A algorithm against the deterministic approach with
demand fixed to maximum and to average values

Also, for medium/high overall demand, the deterministic approach with maxi-
mum demand seems to perform better than the deterministic approach with average
demand, whereas the situation is reversed for low demand values.

The costs reported in Table 5.2 for the robust approach are computed by making
the implicit assumption that the actual overall demand of slots is precisely K, i.e.
the one we input to the I/A algorithm.

This is sometimes a too optimistic assumption, even if we may expect that
hospital boards are able estimate the actual value of K with reasonable confidence.
A natural question is how the computed schedule behaves when the actual overall

17

demand differs from the estimated one. An answer is shown in Table 5.2, where the
columns correspond to the different values of the input parameter K, whereas the
rows correspond to the actual values of the demand. In particular, for each estimated
K̄ we compute the corresponding robust schedule xK̄ by the I/A algorithm. Then,
for each possible overall demand K̃ ranging from 925 to 1179, we run the adversarial
with input K̃ and schedule xK̄ , to generate the worst-possible scenario. The final
costs are reported in Table 5.2.

Actual Estimated K
demand 925 950 975 1000 1025 1050 1075 1100 1125 1150 1179

925 42 53 68 55 63 88 106 73 85 115 85
950 100 94 119 109 108 133 151 121 132 160 135
975 148 151 148 148 154 151 171 172 166 182 174
1000 187 196 187 181 181 182 183 188 181 192 195
1025 221 235 206 202 189 194 196 195 194 197 204
1050 231 270 227 227 212 200 202 201 203 201 213
1075 243 296 237 237 223 212 206 206 208 207 219
1100 245 323 242 242 234 218 212 210 212 213 225
1125 245 329 243 246 239 222 216 216 215 218 225
1150 247 333 243 251 244 227 221 221 221 219 225
1179 247 336 243 257 245 230 225 225 225 225 225

Table 4: Solution values for different values of estimated and actual overall demand.

Not surprisingly, the above table shows that, for a given value of the actual
demand the minimum cost is achieved when it equals the estimated one (diagonal
entries in bold). Most important, the table shows that when the estimated demand
is close to the actual one, then the solution cost does not increase too much. In
particular, in most cases it is preferable to overestimate rather than underestimate.
Observe that the ratio between the largest and the smallest entry in a row can be
quite large (over 100% in some cases). This means that a non-careful planning can
actually be very costly for a hospital, if a worst-case scenario occurs.

Concluding, this experiment shows that if the hospital estimates are reasonably
close to the actual demand, then our approach is able to generate safe solutions.

References

[1] Beliën J., Exact and heuristic methodologies for scheduling in hospitals: prob-
lems, formulations and algorithms. PhD Thesis, Faculty of Business and Eco-
nomics, Katholieke Universiteit Leuven, 2006.

18

[2] Jeroen Beliën and Erik Demeulemeester. Building cyclic master surgery sched-
ules with leveled resulting bed occupancy. European Journal of Operational
Research, 176(2):1185–1204, 2007.

[3] Ben-Tal A., El Ghaoui L. and Nemirovski A., Robust optimization methodology
and applications. Mathematical Programming, 92(3):453–480, 2002.

[4] Ben-Tal A., Goryashko A., Guslitzer E. and Nemirovski A., Adjustable robust
solutions of uncertain linear programs. Mathematical Programming, 99(2):351-
376, 2004.

[5] Bertsimas D. and Sim M., The Price of Robustness. Operations Research,
52(1):35–53, 2004.

[6] Bienstock D., Histogram models for robust portfolio optimization. J. Compu-
tational Finance, 11:1–64, 2007.

[7] Cardoen B., Demeulemeester E. and Beliën J., Operating room planning and
scheduling: A literature review. European Journal of Operational Research, 201
(3) 2010.

[8] M. Fischetti and M. Monaci. Light robustness. Book Series Lecture Notes in
Computer Science, 5868(3):61–84, 2009.

[9] Hans E., Wullink G., van Houdenhoven M. and Kazemier G. Robust Surgery
Loading. European Journal on Operational Research, 185 (3), 1038–1050, 2008.

[10] Holdte M., A cutting plane algorithm for robust scheduling problems in
medicine Master Thesis University of Oslo, 2010.

[11] Mannino C., Nilssen E.J. and Nordlander T.E.. A pattern based, robust ap-
proach to cyclic master surgery scheduling. Journal of Scheduling, to appear.

[12] J. M. Oostrum, M. van Houdenhoven, J. L. Hurink, E. W. Hans, G. Wullink,
and G. Kazemier. A master surgical scheduling approach for cyclic scheduling
in operating room departments. OR Spectrum, 30(2):355–374, April 2008.

[13] Patrick J., Puterman M.L. and Queyranne M., Dynamic Multipriority Patient
Scheduling for a Diagnostic Resource, Operations Research 56(6), 1507–1525,
2008

[14] Rais A. and Viana A., Operations Research in Healthcare: a survey, Interna-
tional Transactions in Operational Research, 1–31, 2010.

19

	copertina TR 3 2011
	implementor-adversarial

