
SmartPM - Featuring Automatic Adaptation to
Unplanned Exceptions

Massimiliano de Leoni
Andrea Marrella
Massimo Mecella
Sebastian Sardina

Technical Report n. 4, 2011

SmartPM – Featuring Automatic Adaptation to
Unplanned Exceptions

Massimiliano de Leoni, Andrea Marrella, Massimo Mecella

SAPIENZA - Università di Roma, Rome, Italy

{deleoni,marrella,mecella}@dis.uniroma1.it
Sebastian Sardina

RMIT University, Melbourne, Australia

{sebastian.sardina}@rmit.edu.au

Abstract. Process Management Systems (PMSs) are currently more and more used as a support-
ing tool for cooperative processes in pervasive and highly dynamic situations, such as emergency
situations or pervasive health-care. In these scenarios, the environment may change in a way that
was not expected so as to prevent processes from being successfully carried out. The frequency

and the types of unexpected changes are significantly higher and larger than in classical business
domains. Therefore, a manual adaptation is not feasible as well as defining in advance how to
manage all possible changes which may occur. This paper illustrates SmartPM, a model and a
prototype PMS that features a set of sound and complete techniques to automatically cope with

unplanned changes. Specifically, the theoretical foundation and the general framework will be
described, as well as the concrete implementation and its validation.

Index Terms. Process Management, Automatic Adaptation, Emergency Management, Situation
Calculus, IndiGolog

DIS Technical Report,June 2011

2 ·

1. INTRODUCTION

Nowadays organizations are always trying to improve the performance of the pro-
cesses they are part of. It does not matter whether such organizations are dealing
with classical static business domains, such as loans, bank accounts or insurances,
or with pervasive and highly dynamic scenarios. The demands are always the same:
seeking more efficiency for their processes to reduce the time and the cost of their
executions.
A Process Management System (PMS) [Weske 2007] is aimed at increasing the

efficiency and effectiveness in the execution of processes. The core of a PMS is
the engine that manages the process routing and decides which tasks are enabled
for execution, by taking into account the control flow, the value of variables and
other aspects. Once a task is ready for being assigned, the engine is also in charge
of assigning it to proper participants; this step is performed by considering the
participant “skills” required by the single task: a task will be assigned to that
participant that provides all of the skills required. Participants are provided with
a client application, part of the PMS, named Task Handler or Task-list Handler.
It is aimed at receiving notifications of task assignments. Participants can, then,
use this application to pick the next task to work on.
Nowadays, PMSs are widely used for the management of “administrative” pro-

cesses characterized by clear and well-defined structures where contingencies are
quite infrequent. Conversely, this paper turns its attention to highly dynamic and
pervasive scenarios, such as emergency management or health care. They are char-
acterized by being very dynamic, turbulent, and subject to higher frequency of
unexpected contingencies than classical scenarios. Therefore, PMSs for pervasive
scenarios should provide a higher degree of operational flexibility/adaptability.
The current-day leading commercial PMS products and research prototypes pro-

vide some techniques to react to exceptions and adapt process instances to mitigate
their effects. As already described in [Eder and Liebhart 1995], exceptions can be
classified as expected (i.e., foreseeable) and unexpected (i.e., unforeseeable), where
expected exceptions can be modeled at design time. Modeling expected exceptions
fit adequately when the number of possible ones is relatively small and they occur
quite rarely. Such techniques can be classified in two categories:

—Manual adaptation of processes upon occurrences of discrepancies: after an ex-
ception, domain experts are in charge of changing the schema of the affected
processes, which, otherwise, could not be carried out successfully. This approach
is not always applicable in highly dynamic and pervasive scenarios, as human
intervention may imply unacceptable delays.

—Automatic pre-planned adaptation: process schemas are meant to include the
specific actions to cope with potential failures. For each class of exogenous events
that are envisioned to occur, a specific contingency plan is defined a priori.

For unexpected exceptions, besides the manual adaptation, which is still appli-
cable, automatic “unplanned” adaptation can be envisioned: process schemas are
defined as if exogenous events could never occur; there is a monitor which is contin-
uously looking for the occurrence of exogenous events. When some of them occur,
the process is automatically adapted to mitigate the effects. The difference with

DIS Technical Report, June 2011

· 3

the pre-planned adaptation consists in that there exist no pre-planned policies, but
the policy is built on the fly ad-hoc for the specific occurrence.
As widely discussed in Section 2, most of currently available PMSs provide mech-

anisms based on pre-planned adaptation. For simple and mainly static processes,
this is feasible and valuable. However, in mobile and highly dynamic scenarios,
there could be so many different potential exceptions that it is impossible to pre-
define how to recovery from all deviations. What is more, many exceptions may
not even be foreseeable a priori.
This paper focuses on describing SmartPM (Smart Process Management) , a

model and a proof-of-concept PMS (engine) featuring a set of techniques to im-
prove the degree of automatic adaptation. Such techniques are able to automati-
cally adapt processes without explicitly defining handlers/policies to recover from
exogenous events and without the intervention of domain experts. To that end, we
use a specialized version of the concept of adaptation from the field of agent-oriented
programming [De Giacomo et al. 1998]. Specifically, adaptation in SmartPM is seen
as reducing the gap between the virtual reality, the (idealized) model of reality
that is used by the PMS to deliberate, and the physical reality, the real world with
the actual values of conditions and outcomes. Exogenous events may deviate the
virtual reality from the physical reality. Clearly, the reduction of their gap re-
quires sufficient knowledge of both kinds of realities. Such knowledge—harvested
by specific sensors—would allow the PMS to sense deviations and to deal with their
mitigation.
The techniques presented here are based on the Situation Calculus [Reiter 2001]

logical framework and on automated planning techniques [Ghallab et al. 2004].
The environment, services and tasks are given in domain theories described in Sit-
uation Calculus and processes are IndiGolog [De Giacomo et al. 2009] programs.
IndiGolog is a logical language that allows for defining programs with cycles, con-
currency, conditional branching that rely on program steps that are actions of some
domain theory expressed in Situation Calculus. An execution monitor is responsi-
ble for detecting whether the gap between the virtual and physical realities is such
that some processes cannot terminate successfully. In that case, SmartPM provides
mechanisms for adapting the process schemas that require no human intervention
and no pre-defined handlers for specific exceptions. SmartPM adopts a service-based
approach to process management (cf. [Weske 2007]), that is, tasks are executed by
services. Even human actors are seen as services; appropriate applications, namely
the aforementioned Task Handlers, mediate between human actors and the system
in order to make such actors appear as services.
As a running example, we will consider a scenario for emergency management

where processes show a complexity that is comparable to business settings. This
scenario stems from the European research project WORKPAD1, which has in-
spired the research presented in this paper and has provided its validation context.
In such a scenario, the members of a team are equipped with PDAs and coordinated
through a PMS residing on a leader device (usually a ruggedized netbook). Devices
communicate with each other through ad-hoc networks; in order to carry on the

1Cf. http://www.workpad-project.eu and http://cordis.europa.eu/ictresults/

index.cfm?section=news&tpl=article&BrowsingType=Features&ID=91287&highlights=workpad.

DIS Technical Report, June 2011

4 ·

overall process, they need to be continually inter-connected. In the virtual reality,
devices are supposed to be continuously connected. In the physical reality, though,
the movement of nodes (i.e., devices and related operators) within the affected area
may cause disconnections, thus making the two realities deviate. Disconnections
result in the unavailability of nodes and their corresponding services. Now, from the
collection of actual user requirements [de Leoni et al. 2007; Humayoun et al. 2009],
it turns out that typical teams are formed by a few nodes (less than 10 units), and
therefore a simple task reassignment is generally not feasible: there may not be two
“similar” services available to perform a given task. In this context, the adaptation
to recover from the disconnection of a node X may require the assignment of a
task of the form “Follow X” to another node Y 2. Please note that the recovery
plan “Follow X” was not designed beforehand; it was built on the fly to deal with
the disconnection. In the near future, a similar situation could be managed in a
complete different way because of a different environmental state.

This paper extends previous work reported in [de Leoni et al. 2007; de Leoni et al.
2008; de Leoni 2009] (cited here in chronological order). In [de Leoni et al. 2007], an
initial theoretical framework has been proposed without discussing possible proof-
of-concept implementations. Here, the theoretical framework has been refined and
extended to be actually feasible in practice. Moreover, the framework has been
extended to enhance its expressiveness. Paper [de Leoni et al. 2008] has illustrated
a first framework implementation in which the adaptation technique was not yet
present. Finally, with respect to [de Leoni 2009], this paper illustrates (i) the
proof-of-concept implementation that allows for more expressive process models
and includes adaptability; (ii) a technique to map WS-BPEL process models to
SmartPM models; (iii) the validation in order to show the practical feasibility of the
adaptation approach. With respect to previous works related to the WORKPAD
project [Catarci et al. 2006; Catarci et al. 2007; Catarci et al. 2008; Battista et al.
2008; Humayoun et al. 2009; Mecella et al. 2010], this paper indeed describe the
formal model and the PMS engine, whereas those papers mainly disseminate the
project results and focus on the design and realization of the Task Handlers for
PDAs according to a user-centered design approach.

The rest of the paper is organized as follows. Section 2 covers the state of the
art in adaptability/flexibility in the leading PMSs. Section 3 describes the general
framework by illustrating both the formalization of processes and the technique for
automatically adapting such processes. Sections 4 and 5 describe how SmartPM has
been realized in a proof-of-concept implementation. A specific example from a real-
world process used in emergency management is developed in Section 6. Finally,
Section 7 summarizes the contribution of the paper and outlines future work.

We have also introduced some appendixes. The first sketches some basic concepts
on Situation Calculus and IndiGolog. The second gives an insight into a technique
to translate process specifications given in WS-BPEL into the formal language used
by SmartPM.

2Actually such a node could be a mobile robot, whose aim is to support the team of human
operators.

DIS Technical Report, June 2011

· 5

Product Manual Pre-planned Unplanned

YAWL [Adams et al. 2007] X
COSA [Cosa GmbH 2008] X X
Tibco [Tibco Software Inc.
2008]

X X

WebSphere [IBM Inc.
2008]

X X

SAP [Kinateder 2006] X X
OPERA [Hagen and
Alonso 2000]

X X

ADEPT2 [Göser et al.
2007]

X

ADOME [Chiu et al. 2000] X
AgentWork [Müller et al.
2004]

X

ProCycle [Weber et al.
2009]

X

WASA [Weske 2001] X
SmartPM X

Table I. Features provided by the leading PMSs to manage adaptation.

2. RELATED WORK

Adaptation in PMSs can be classified in two main groups: evolutionary and excep-
tional changes. Evolutionary changes concern a planned migration of a process to
an updated specification which, for instance, implements new legislations, policies
or practices in business organizations, hospitals, emergency management, etc. Typ-
ically the inclusions of new evolutionary aspects are made manually by the process
designer. When dealing with process specification changes, there is the issue of
managing running instances, and, possibly, making migrate such instances to the
updated specification [Sadiq et al. 2000; Casati and Shan 2001].
The survey [Rinderle et al. 2004] considers changes at the process schema and

how adaptation of the process instances to the new schema is performed. It surveys
many approaches wrt. completeness, correctness criteria and change realization
(i.e., migration).
On the other side, there are the exceptional changes which are characterized by

events, foreseeable or unforeseeable, during the process instance executions which
may require instances to be adapted in order to be carried out. Since such events
are exceptional, process specifications do not need any modifications. There are two
ways to handling exceptional events. The adaptation can be manual : once events
are detected, a responsible person, expert on the process domain, modifies manually
the affected instance(s). The adaptation can be automatic: when exceptional events
are sensed, PMS is able to change accordingly the schema of affected instance(s) in
a way they can still be completed. Automatic adaptation techniques can be further
broken down in two groups, pre-planned and unplanned, as previously introduced.
Table 2 compares the degree of adaptability to execeptional changes that is cur-

rently provided by the leading PMSs (either commercial or research proposals/pro-
totypes). Among them, interesting approaches are ProCycle [Weber et al. 2009] and

DIS Technical Report, June 2011

6 ·

ADEPT2 [Ly et al. 2008]. The first uses a case-based reasoning approach to sup-
port adaptation of workflow specifications to changing circumstances. Case-based
reasoning (CBR) is the process of solving new problems based on the solutions
of similar past problems: users are supported to adapt processes by taking into
account how previously similar events have been managed. However, adaptation
remains manual, since users need to decide how to manage the events though they
are provided with suggestions. ADEPT2 features a check of semantic correctness to
evaluate whether events can prevent processes from completing successfully. But the
semantic correctness relies on some semantic constraints that are defined manually
by designers at design-time and are not inferred, e.g., over pre- and post-conditions
of tasks.

It is worthy to mention that during the 90s, [Heimann et al. 1996; Jaccheri and
Conradi 1993] have addressed similar issues in the context of software development
workflows, by adopting rewriting techniques in the first case and planning in the
latter one.

Related to the issue of exceptional changes addressed with a pre-planned ap-
proach, there is the body of works that deal with compensations in PMSs. Indeed
pre-planned approaches to exceptional changes (a.k.a. exceptions) are often based
on the specification of exception handlers and compensation flows [Du et al. 1997;
Casati et al. 1999; Hagen and Alonso 2000], with the challenge that in many cases
the compensation cannot be performed by simply undoing actions and doing them
again. In [Ellis and Keddara 2000], exception handlers are proposed as being work-
flow themselves. [Eder and Liebhart 1996] describes several types of compensation
and provides a three-step mechanism to handle exceptions: (i) entails rollback
based on the compensation type of activities in the workflow graph, then (ii) an
agent (the one who initiated the rollback) determines whether to continue with
the rollback, to take corrective measures, or to choose an alternative path, and fi-
nally forward execution is performed, which could lead to the same point of failure.
[Golani and Gal 2005] describes how an optimal stop point can be detected (via
formal analysis and interaction with the user), and how an alternative execution
can be created automatically by bypassing the failed activity.

The SmartPM approach is complementary wrt. this literature, and leverages on
it for dealing with exceptional changes that can be pre-planned. The novelty is
that we propose, in addition to incorporating the previous techniques in a PMS,
also to consider automatic adaptation to unplanned exceptions. In the following
of the paper, we do not address the management of pre-planned exceptions, but
it is intended to be incorporated in our proof-of-concept by adopting the previous
techniques.

The scenario in which our approach has been conceived and validated is of per-
vasive nature. Not surprisingly adaptability is one of the very hot topics in the field
of pervasive computing [Cetina et al. 2009; Garlan et al. 2002]; the novelty of our
approach is that, unlike many other approaches in this field, it follows a process-
oriented approach, which is particularly useful in the case of pervasive coordination
of human actors. Finally we would like to mention that the usefulness of using a
process-oriented approach for dealing with emergencies, as indirectly proposed by
the WORKPAD project and this paper, is also confirmed by a number of research

DIS Technical Report, June 2011

· 7

Fig. 1. Execution Monitoring in SmartPM

works, including [Franke et al. 2010; Wagenknecht and Rüppel 2009].

3. THE SMARTPM FRAMEWORK

The general framework proposed in this paper is based on the execution monitoring
scheme described in [De Giacomo et al. 1998] for situation calculus agents. When
using IndiGolog for process management, we take tasks to be predefined sequences
of actions and processes to be IndiGolog programs. IndiGolog [De Giacomo et al.
2009] is a programming language that relies on a set of actions defined in a certain
Domain Theory. Domain Theories define the properties of interest of the world (in
our case process domain), and one can define the pre- and post-conditions of actions
on the basis of these properties3. Before a process starts, SmartPM takes the initial
context from the real environment and builds the corresponding knowledge base
(i.e., set of logic formulas) corresponding to the initial situation S0. SmartPM also
builds an IndiGolog program δ0 corresponding to the process to be carried on. Then,
at each execution step, SmartPM, which has a complete knowledge of the internal
world (i.e., its virtual reality), assigns a task to a service. The only “assignable”
tasks are those whose preconditions are fulfilled. A service can collect data needed
to execute the task assigned by SmartPM, and when a service finishes executing
a task, it alerts SmartPM. The execution of a process can be interrupted by the
monitor module when a misalignment between the virtual and the physical realities
is discovered. In that case, the monitor adapts the (current) program to deal with
such discrepancy. In Figure 1, the overall framework is depicted. More specifically,
at each step, SmartPM advances the current process δ in the current situation s
by executing an action, resulting then in a new situation s′ with the process δ′

remaining to be executed. Both δ′ and s′ are passed to the monitor, which is
also meant to collect data from the environment through sensors. If a discrepancy
between the virtual reality (as represented by what holds true in situation s′) and
the physical reality is sensed, then the monitor first changes/extends situation s′ to
a new situation s′′, by synthesizing a sequence of actions that explains the changes

3The reader interested in further details can refer to Appendix A. The appendix is here included

for reviewers’ convenience. If hopefully accepted, and depending on the final page limit, it will be
included or not in the paper.

DIS Technical Report, June 2011

8 ·

perceived in the environment, thus re-aligning the virtual and physical realities.
Unfortunately, though, it could be the case that the current remaining process δ′

may not be able to execute successfully anymore (i.e., assign all tasks as required) in
the new (unexpected) situation s′′. If so, the monitor then also adapts the (current)
process by performing suitable recovery changes and generating a new remaining
process δ′′. At this point, the main process is resumed and the execution continues
with program-process δ′′ in situation s′′.
Let us now see in detail how all this is technically achieved.

3.1 Process Formalization

Here, we explain how processes are realized in the Situation Calculus. First of all,
our formalization makes use of the following domain-independent predicates (that
is, non-fluent rigid predicates) to denote the various objects of interest:

—Service(srvc): srvc is a service;

—Task(task): task is a task;

—ListElem(workitem(task, input)): it denotes all admissible objects
workitem(task, input) which are specifically pairs composed of a task task and
input;

—Capability(b): b is a capability;

—Provides(srvc, b): service srvc provides capability b;

—Requires(task, b): task task requires the capability b;

Also, to refer to the ability of a certain service srvc to perform a certain list of
work items l⃗, we introduce term “work-list” and define the following abbreviation:

Capable(srvc, l⃗) ≡
[∀t, b. workitem(t, input) ∈ l⃗ ∧ (Requires(b, t) ⇒ Provides(srvc, b))].

That is, service srvc can carry out a certain work-list l⃗ iff srvc provides all capa-
bilities required by every work-item’s task t in l⃗. The concept of work-list has been
introduced with the purpose of constraining a list of (sequential) work items to be
executed by a single service.
The execution of a work-list involves the execution of four basic actions:

—assign(srvc, l⃗): a work-list l⃗ is assigned to a service srvc; this means srvc is
assigned to execute every task of work-list.

—start(srvc, t, p): service srvc is notified to be allowed to start task t with input
values p;

—ackCompl(srvc, t): service srvc acknowledges of the successful completion of task
t;

—release(srvc, l⃗): the service srvc is released with respect to work-list l⃗.

When SmartPM executes an action, all services are notified, but services that are
not interested in that action just ignore the notification. The actions performed
by SmartPM are meant to be “complemented” by actions executed by the services
themselves. Such actions are meant to inform the SmartPM engine on how task
executions are progressing and are of two types:

DIS Technical Report, June 2011

· 9

—readyToStart(srvc, t): service srvc declares to be ready to start performing task
t.

—finishedTask(srvc, t, q): service srvc declares to have completed the execution of
task t with output q.

After a service srvc is assigned to a work-list, tasks must be started and completed
in the sequential order denoted by the work-list itself.
Informally, for every task t, srvc needs to report to be ready to start it through

executing readyToStart(srvc, t). For this to happen, the service needs to have
sufficient resources for carrying out the task in question. Only after a service
reports to be ready, SmartPM can eventually perform action start(srvc, t, p), which
instruct SmartPM to begin the execution. Terms p and q denote arbitrary sets
of inputs/outputs, which depend on the specific task; special constant ∅ denotes
empty input/output. After a service reports that the task has been completed by
the execution of action finishedTask(srvc, t, q), SmartPM can update the value of
fluents according to the successful execution of task t with output q. In addition,
SmartPM acknowledges the completion, via action ackCompl(srvc, t).
The actions from readyToStart(srvc, t) to ackCompl(srvc, t) are repeated for all

tasks in the list. Once they all are completed, SmartPM release the service from
the work-list, via action release(srvc, l⃗).
When it comes to specify processes in IndiGolog, two classes of fluents are used.

The first class includes those fluents which are used to manage the task life-cycle
and the resource perspective of processes. Apart from one fluent, which needs to be
customized for every domain, the definition of the others are domain-independent
and so do not change across different domains. The second class concerns such
fluents used to denote the data structure of process instances; their definitions do
depend on the specific process domain of interest.
Fluents for task life-cycle management. Task assignment is driven by flu-
ent Free(srvc, s), which is independent of the process domain and whose intended
meaning is that service srvc is free in situation s. Its successor state axiom is as
follows:

Free(srvc, do(a, s)) ≡(
∃q.a = release(srvc, q)

)
∨
(
Free(srvc, s) ∧ ¬∃p.a = assign(srvc, p)

)
.

(1)

Service srvc is considered free in the current situation iff it has just been released
or it was free in the previous situation and no task has been assigned to it.
The fact that a certain service srvc is free does not directly imply that it can

be assigned to a task. In the scenario sketched in the introduction, for example,
a service, in order to be assigned a task, should be free as well as connected to
the leader. So, fluent Free(srvc, s) is not directly used to determine whether a
certain service srvc may be assigned to a task. To that end, the framework relies
on predicate Available(srvc, s), which states whether a service srvc is available in
situation s for task assignment:

Poss(assign(srvc, l⃗), s) ⇒ Available(srvc, s).

Unlike Free(srvc, s), this predicate is meant to be specifically defined for each do-
main; all that is required is that its definition (that is, successor state axiom) must

DIS Technical Report, June 2011

10 ·

enforce the following constraint:

∀srvc.Available(srvc, s) ⇒ Free(srvc, s). (2)

Availability of a service is insufficient from being assigned to a task: a service is
required to provide every required capability . Please note that Available is not a
fluent, since its value is not modified as direct consequence of action performances.
It is simply a shortcut that is, in general, a disjunction of fluents.
Data Fluents. A family of data fluents is used to store the outcome of tasks. The
values of these fluents can be passed as inputs to services for task performances
as well as used in the expressions at decision points (e.g., for cycles, conditional
statements) in processes. In addition, the values of a data fluent can be passed to
another data fluent, i.e., “copied.” So, if X is a process data variable that is meant
to capture the outcomes of (specific) task t ∈ T1, . . . , Tn, then the situation calculus
domain theory shall include a functional fluent X (s) with the following successor
state axiom:

X (do(a, s)) = y ≡
[∃srvc, t.a = finishedTask(srvc, t, y) ∧ t ∈ {T1, . . . , Tn}] ∨
[a = CopyXY 1

∧Y 1(s) = y] ∨ · · · ∨ [a = CopyXY n
∧Y n(s) = y] ∨

[X (s) = y ∧
(¬∃srvc2, t′, y′.a = finishedTask(srvc2, t′, y′) ∧ t′ ∈ {T1, . . . , Tn}) ∧
[a ̸= CopyXY 1

∧ · · · ∧ a ̸= CopyXY n
]]

(3)

where Y i are all the data fluents different from X , and each action CopyXY , always
possible, is meant to “copy” the value of data fluent Y (s) into fluent X (s). The
value of data fluent X (s) is changed to value y when one of the corresponding tasks
finishes with output y or X (s) is assigned the value of another data fluent whose
current value is y.
Finally, the theory contains axioms describing the initial situation S0: all services

are assumed free and not reserved for any task. As far as Data Fluents, their initial
value should be defined manually at design-time, as these fluents depend on the
specific domain.

3.2 The Adaptability Technique

We now turn our attention to how monitoring and adaptation are meant to work
within the process formalization given in the previous section. Intuitively, from the
current program δ and the current situation s from the PMS’s virtual reality, the
monitor may first build a new situation s′ from s by introducing new “explanatory”
actions that align the virtual reality of the PMS with sensed information. The
monitor then analyzes whether δ can still be executed in s′, and if not, it adapts
δ into an an alternative executable program δ′. Technically, the monitor can be
formally defined as follows (we do not model how the situation s′ is generated from
the sensed information):

Monitor(δ, s, s′, δ′) ≡
[Relevant(δ, s, s′) ∧ Recovery(δ, s, s′, δ′)] ∨ [¬Relevant(δ, s, s′) ∧ δ′ = δ],

(4)

DIS Technical Report, June 2011

· 11

where (i) Relevant(δ, s, s′) states whether the changes from situation s to s′ are such
that δ may not correctly execute anymore; and (ii) Recovery(δ, s, s′, δ′) is intended
to hold whenever program δ′ is an adaptation of program δ, to be now executed in
situation s′ instead of s.
Relevant can be given in different forms but in a way that complies with the

following

Relevant(δ, s, s′) ≡ ¬SameConfig(δ, s, δ′, s′)

where SameConfig(δ, s, δ′, s′) holds if executing δ from situation s is “equivalent”
to executing δ′ from situation s′. In other terms, it holds if it denotes any type of
bisimulation [Milner 1980].

Currently, SmartPM adopts SameConfig(δ, s, δ′, s′)
def
= SameState(s, s′); there-

fore:

Relevant(δ, s, s′)
def
= ¬SameState(s, s′). (5)

Here, predicate SameState(s′s′) holds iff the states in situations s′ and s are the
same. Observe such predicate can actually be defined as a first-order formula as
the conjunction of formulas F (s) ≡ F (s′) for each fluent F defined in the action
theory.
When it comes to the actual recovery, we formalize predicate Recovery(δ, s, s′, δ′)

for adapting a given process δ as follows:

Recovery(δ, s, s′, δ′) ≡
∃δa.δ′ = δa; δ ∧ Linear(δa) ∧Do(δa, s

′, s′′) ∧ ¬SameState(s′, s′′).
(6)

Given a process δ and situations s and s′, the following results state the soundness
and completeness of the approach.

Theorem 3.1.

∃δb.Do(δb, s
′, s′′) ∧ SameState(s′, s′′) ≡ ∃δ′.Recovery(δ, s, s′, δ′)

Proof. The only difference between the two definitions is that in the second
case (the right part) we allow only for linear programs (i.e., sequences of actions)
as δa, while in the first case (the left part) any deterministic program is allowed,
which may include also cycles, if-then-else, etc.
(⇐) Trivial, as linear programs are also deterministic ones.
(⇒) Program δb is not a linear program, but actions are atomic. As such, the
actual execution is an interleaving of the different branches that δb is composed by.
Let us assume that the interleaving produces the sequential execution of n actions
a1, a2, . . . , an. Therefore, it follows that:

s′′ = (an, do(an−1, . . . , do(a2, do(a1, s
′))

Let us consider the linear program p⃗ = (a1, a2, . . . , an). Since Do(p, s′, s′′) evaluates
obviously true, Recovery(δ, s, s′, p) holds.

Theorem 3.2. Assume a domain in which services as well as input and output
parameters are finite. Computing a process δ′ such that Recovery(δ, s, s′, δ′) holds
is decidable.

DIS Technical Report, June 2011

12 ·

Proof. In domains where services and input and output parameters are finite,
ground concrete actions and fluents are also finite. Hence we can phrase the domain
as a propositional planning problem which is known to be decidable [Ghallab et al.
2004].

Thus, to adapt process δ, one needs to determine a linear program δa (i.e., a
sequence of actions) that would bring the virtual reality to a situation s′′ whose
corresponding state is the same one as that of s′. Observe that this specifica-
tion asks to search for a linear program that achieves a certain formula, namely,
SameState(s′, s′′). As a result, we have reduced the synthesis of a recovery program
to a planning problem in AI [Ghallab et al. 2004], for which efficient techniques exist
in the literature. In Section 4, we shall see how the current proof-of-concept imple-
mentation of SmartPM uses the lookahead search construct Σ provided by IndiGolog
to solve such planning problems. Note that finite domains is not a strong limitation
in our setting, since it is possible to discretize the admissible values without losing
much detail.

4. REALIZING THE FRAMEWORK

In Figure 2, we show how SmartPM has been concretely coded by the interpreter
of IndiGolog4. The main procedure involves two concurrent programs in priority.
The monitor, which runs at higher priority, is in charge of monitoring changes in
the environment and adapting accordingly. At a lower priority, the system runs the
actual IndiGolog program representing the process to be executed, namely procedure
Process().
This procedure relies, in turn, on procedure ManageExecution, which includes

task assignment, start signaling, acknowledgment of completion, and final release.
In Figure 2 we make use of a Prolog-like notation: lists are enclosed between squared
brackets and notations like [elem | tail] denote lists composed by concatenating a
first element elem with a tail list tail.
The first step in procedure Monitor checks whether fluent Exogenous holds true,

meaning that an exogenous (unexpected) action has occurred in the system. As a
result, when no exogenous events has yet occurred, the procedure is stuck on that
test, i.e., it cannot perform a step. It is only then when the business process of
interest (i.e., program Process) may execute/advance.
Now, consider the situation in which an exogenous action has indeed occurred

and so fluent Exogenous holds true. Then, procedure Monitor is enabled and it
performs a step on line 1. After that the monitor checks whether the exogenous
event is relevant, in that they require some kind of adaptation. If so, then the mon-
itor triggers the actual adaptation module. Specifically, the monitor searches for a
full execution of program Adapt, which will build the recovery program/process.
Finally, the last step of the monitor involves resetting fluent Exogenous to false, by
executing action resetExog .
Recall that, from Equation (4), an exogenous event is deemed relevant for adap-

tation if it yields a different state than the one expected. To do so, the definition
compares the state in the current situation s with the new (unexpected) situation

4http://sourceforge.net/projects/indigolog/

DIS Technical Report, June 2011

· 13

Proc Main()
1 ⟨Exogenous ∧ ¬Finished → [Monitor()]⟩;
2 ⟨true → [Process(); finish]⟩;
3 ⟨¬Finished → [wait]⟩;

Proc Monitor()
1 if Relevant
2 then Σ([Adapt()], assumptions[{assign(srvc, [task]), readyToStart(srvc, task)},
3 {start(srvc, task, p), finishedTask(srvc, task, p)}]);
4 resetExog;

Proc Adapt()
1 Plans(0, 10);

Proc Plans(m,n)
1 (m ≤ n)?;
2 [ActionSequence(m); (¬Relevant)?] | Plans(m + 1, n);

Proc ActionSequence(n)
1 if n > 0
2 then π(task, x); ListElem(workitem(task, x))?;
3 ManageExecution([workitem(task, x)]);
4 ActionSequence(n − 1);

Proc ManageExecution(workList)
1 π(srvc); (Capable(srvc, workList) ∧ Available(srvc))?;
2 assign(Srvc, workList);
3 if (workList ̸= [])
4 then ExecutionHelp(Srvc, workList);
5 release(Srvc, workList);

Proc ExecutionHelp(Srvc, [workitem(Task, Input) | TailWorkList])
1 start(Srvc, Task, Input);
2 ackCompl(Srvc, Task);
3 if (TailWorkList ̸= [])
4 then ExecutionHelp(Srvc, TailWorkList);

Fig. 2. The core procedures of SmartPM.

s′. However, the IndiGolog interpreter always evaluates formulas on the current sit-
uation only; there is no way to get access to past situations. Fortunately, however,
we can get around this limitation for our specific needs as follows. For each fluent
F (x⃗, s), we introduce a new fluent Fprev(x⃗, s) that is meant to record the “old”
value of F . The successor state axiom for the new fluent is straightforward:

Fprev(x⃗, do(a, s)) = p ≡
(¬ExogAction(a) ∧ F (x⃗, s) = p) ∨ (Fprev(x⃗, s) = p ∧ ExogAction(a)).

That is, Fprev records the (current) value of fluent F just after action a provided
a is not an exogenous event itself. With these fluents defined, one can then define
fluent Relevant as the following abbreviation:

Relevant(s)
def
=

∨
F∈∆

¬
(
F (x⃗, s) ≡ Fprev(x⃗, s)

)
.

where ∆ is the (finite) set of fluents defined in the action theory.
Finally, let us focus on the actual program in charge of recovery, namely, pro-

cedure Adapt. Generally speaking, such procedure will try to reach a situation
in which Relevant is not true anymore—see test in line 2. To do so, the recovery
procedure “simulates” the performance of zero, one, or more tasks in compatible

DIS Technical Report, June 2011

14 ·

services (line 1). Every single task is included in a separate work list composed of
one work item; hence, every task list created by the recovery contains exactly one
task.
Observe that Adapt uses a simple breadth-first planning mechanism, which spe-

cialized what proposed in [Reiter 2001]. It returns shortest plans and during the
testing phase has been proven to be faster, on average. The planner first gener-
ates the actions (i.e., 4 actions: assign, start, etc.) to execute one of the available
tasks and, then, checks if any of such sequences makes recover from the deviation.
Otherwise, it generates the actions to execute a length-two sequence of tasks. The
planning technique is iterative deepening: if there exists no sequence whose length
is less or equal to n tasks, it tries with length-(n+ 1) task sequences5.
Observe that, the non-deterministic choice (i.e., in the form of (δ1|δ2)) does

not specify how many tasks are to be performed or even which ones on which
services. Such details are left to the automated planner, that is, search operator
Σ, to resolve at execution time. A successful execution would need to resolve all
the non-deterministic choices (i.e. the sequence length and the services and tasks
picked) in a way that would guarantee that condition Relevant would not hold true
anymore.
In fact, we use a specialized version of search operator Σ that relies on

some assumptions on the performable actions. Every assumption is of form
{actionPMS(x⃗), actionService(y⃗)}, meaning that action actionPMS executed by
the SmartPM engine with input x⃗ will be eventually ”complemented“ by action
actionService executed by a service with input y⃗. Vector of parameters y⃗ is a fully-
deterministic transformation of x⃗, which is accordant to a certain expression. Here
we are using the simple case where y⃗ is identically equal to x⃗, but one can cus-
tomize for specific tasks/actions. The obvious question that arises is what happens
if assumptions are not held (e.g., assign(srvc, [task]) is followed by a certain action
finishedTask(srvc, task, p) or a new exogenous event). In that case, the built re-
covery plan is considered as failed and a new one is built again starting from the
new situation.
It is worth highlighting that, because the monitor runs at a higher-priority level

than the actual process, the solution plan found for the recovery program Σ[Adapt]
would run at higher-priority than program Process. So, the process program
Process cannot progress until the recovery is finished. Consequently, after a sensed
deviation, the program executed would be equivalent to (Σ[Adapt()]; δ′), where
δ′ is the program remaining from procedure Process, thus matching exactly the
definition of Equation (6).

5. THE SMARTPM PROTOTYPE

This section aims at describing the internal structure of SmartPM. Figure 3 shows
its conceptual architecture. At the beginning, a responsible person designs the
process in the form of a WS-BPEL file plus some XML notations. Indeed process

5This keeps going deeper and deeper till reaching a sequences of 10 tasks or any task sequence that
recovers. If no task sequence of at most 10 tasks exists, it is assumed that no recovery is possible.

We have adopted 10 as bound to the length of the sequence as it is a reasonable assumption in
our scenario.

DIS Technical Report, June 2011

· 15

Fig. 3. Architecture of SmartPM.

designers are not intended, in our approach, to define processes using directly the
SmartPM framework. Conversely, on the basis of the requirements stemming from
the WORKPAD project, they specify the processes in WS-BPEL, and have avail-
able a kind of templates (specific for different scenarios) for specifying “semantic
aspects” needed in our approach (e.g., pre- e post-conditions, service capabilities
and required skills for a task, etc.). In the future, we aim to consider other (concep-
tual) languages for process specifications, in particular BPMN – Business Process
Modeling Notation – and YAWL.
Then, such files are loaded into SmartPM. The XML-to-IndiGolog Parser compo-

nent translates this specification in a Domain Program, the IndiGolog program cor-
responding to the designed process, and a set of Domain Axioms, which define the
initial situation and the set of available actions with their pre- and post-conditions.
The parser generates also a set of static routines, collectively named Execution
Monitor, that code the adaptation features (see Section 4)
When the program is translated in the Domain Program and Axioms, a compo-

nent named Communication Manager (CM) starts up all of device managers, used
by SmartPM to communicate with the services and sensors installed on devices. For
each real world device SmartPM holds a device manager. Each device manager is
also intended for notifying the corresponding device of every action performed by
the SmartPM engine as well as for notifying the SmartPM engine of actions executed
by the services of the corresponding device.
After this initialization process, CM activates the IndiGolog Engine, which is in

charge of executing IndiGolog programs. The IndiGolog Engine executes a sense-
think-act interleaved loop [Kowalski 1995], cycling continuously the following three
steps:

DIS Technical Report, June 2011

16 ·

Fig. 4. An example from emergency management

(1) check for exogenous events that have occurred;

(2) calculate the next program step; and

(3) if the step involves an action, execute the action, instructing the Communica-
tion Manager.

The IndiGolog Engine relies on two further modules named Transition System
and Temporal Projector. The former is used to compute the evolution of IndiGolog
programs according to the statements’ semantic, whereas the latter is in charge of
holding the current situation throughout the execution as well as letting evaluate
the fluent values for taking the right decision of the actions to perform.

6. A CONCRETE EXAMPLE FROM EMERGENCY MANAGEMENT

This section is aimed to show the application of SmartPM in a concrete case stem-
ming from WORKPAD. The example in Figure 4 depicts a (part of a) process
concerning the management of the aftermath of an earthquake. It is composed
by two main branches: the left, abstracted out for space reasons, concerns saving
people trapped under collapsed buildings, whereas the right branch is intended to
assess the zones that require a more thorough analysis. Let us focus on the right
branch.
For each critical point of interest (POI) of the affected area, an entire sub process

is enacted. For the sake of simplicity, we abstract it out as a sequence of three tasks.
The first two tasks are constrained to be executed by the same person and concern
moving to the POI and, then, taking some photos of such a POI. Finally, the next
task is to evaluate the photos taken and is in general executed by a different person.
If the evaluation is unsuccessful (i.e., the photos’ quality is not enough), new photos
need to be taken. Once all sub processes for every POI are carried on, there is a
synchronization which is followed by task “send data” that is intended to send all
the collected information to some headquarter. Table II shows the core procedures,
predicates and fluents that map the activity diagram above.

DIS Technical Report, June 2011

· 17

SITUATION CALCULUS PREDICATES, SHORTCUTS AND
PRE-CONDITIONS

Service(Srv1).
Service(Srv2).
Service(Srv3).
Service(Srv4).
Service(Srv5).

Task(Go).
Task(TakePhoto).
Task(EvaluatePhoto).
Task(SendData).

Capability(Camera).
Capability(Evaluation).
Capability(GPRS).

Provides(Srv1,Evaluation).
Provides(Srv1,GPRS).
Provides(Srv2,Camera).
Provides(Srv3,Evaluation).
Provides(Srv4,Camera).
Provides(Srv4,Evaluation).
Provides(Srv5,Camera).

Requires(TakePhoto,Camera).
Requires(EvaluatePhoto,Evaluation).
Requires(SendData,GPRS).

PoiType(StartingPoint).
.

PoiType(Church).

Location(o) = l ≡
o = Loc(x, y)∧
integer(x) ∧ (x >= 0) ∧ (x <= 10) ∧
integer(y) ∧ (y >= 0) ∧ (y <= 10).

PoiLocation(StartingPoint,Loc(0, 0)).
.

PoiLocation(Church,Loc(5, 6)).

Poss(start(srvc,TakePhoto, p), s) ≡
At(srvc, s) = p.

Available(srvc, s) ≡
Free(srvc, s) ∧ Connected(srvc, s).

Connected(srvc, s) ≡
Neigh(srvc, Srv1, s) ∨
∃srvc2.(Neigh(srvc, srvc2, s) ∧ Connected(srvc2, s)).

Neigh(srvc1, srvc2, s) ≡
At(srvc1, s) = p ∧ At(srvc2, s) = q
∧||q − p|| < range.

(a)

SITUATION CALCULUS FLUENTS

At(srvc, do(a, s)) = l ≡
[a = finishedTask(srvc,Go, p) ∧ PoiType(p)∧
PoiLocation(p, l)]

∨
[At(srvc, s) = l ∧ ¬∃srvc, l′, p′.Location(l′) ∧ PoiType(p′)∧
PoiLocation(p′, l′) ∧ a = finishedTask(srvc,Go, p′)].

PhotoBuild Church(do(a, s)) = true ≡
[∃srvc.a = finishedTask(srvc,TakePhoto, V) ∧ V = Church]

∨
[PhotoBuild Church(s) = true ∧
¬∃srvc.a = finishedTask(srvc,TakePhoto, V ′) ∧ V ′ = Church].

EvaluationOK Church(do(a, s)) = true ≡
[∃srvc.a = finishedTask(srvc,EvaluatePhoto, V) ∧ V = Church]

∨
[EvaluationOK Church(s) = true ∧
¬∃srvc.a = finishedTask(srvc,EvaluatePhoto, V ′) ∧ V ′ = Church].

.

INDIGOLOG PROCESS
Proc Process()
1 (TaskFlow(); InvokeSendData())

Proc TaskFlow()
1 (BranchA() ∥ BranchB())

Proc BranchA()
1 ...processes for rescue...

Proc BranchB()
1 (BranchB1() ∥ BranchB2() ∥ BranchB3())

Proc BranchB1()
1 while ¬(EvaluationOK Church)
2 do SequenceB1()

Proc SequenceB1()
1 (InvokeGoChurch();
2 InvokeTakePhotoChurch();
3 InvokeEvaluatePhotoChurch())

Proc InvokeGoChurch()
1 [ManageExecution(Go, church)]

Proc InvokeTakePhotoChurch()
1 [ManageExecution(TakePhoto, church)]

Proc InvokeEvaluatePhotoChurch()
1 [ManageExecution(EvaluatePhoto, church)]

.

Proc InvokeSendData()
1 [ManageExecution([SendData, input])]

(b)

Table II. The code of the example (parts). The complete version is available at
http://www.dis.uniroma1.it/∼marrella/public/TAAS/appendixes.zip

DIS Technical Report, June 2011

18 ·

On the left-hand side, the table shows the predicates to define 5 services, 4
tasks, 3 capabilities as well as to specify the capabilities that services provide and
tasks require. In addition, there exists predicate PoiType which defines the POIs
that are significant for the process domain. Predicate Location gives the definition
of the locations where services can be located and tasks can be executed. Once
predicate PoiLocation has been introduced, it is very important to associate POIs
to locations and predicate PoiLocation is exactly meant for this. Furthermore, the
left-hand side of the table shows an example of attaching pre-conditions to tasks.
Specifically, the following definition is intended to constrain service srvc that starts
task TakePhoto to be located in the location p where task needs to be executed:

Poss(start(srvc, TakePhoto, p), s) ≡ At(srvc, s) = p

The lower part of Table II(a) includes some additional definitions. The first
concerns Available(srvc, s); in this example, a service srvc is available to be assigned
to a task, if it is currently assigned to no task and, moreover, the device that hosts
service srvc is connected to the team network. To handle this last requirement, a
procedure Connected(srvc, s) is defined. It specifies that a service srvc is connected
to the team network if either it is in the radio range of device Srv1 (the service
elected as Coordinator), that deploys the SmartPM engine, or it is in proximity of
a further service srvc2 connected to the network (cf. the procedure Neigh).
Table II(b) starts showing the domain-dependent fluents used to capture the

state of the process instance. In particular, since the process depicted in Figure 4
requires to take some photos and evaluate them in three different POIs - respectively
called Church, School and BuildingA - the definition of three couple of fluents to
record these aspects are needed. For space reasons, here we refer only to those
fluents provided for POI identified as Church. Therefore, concerning the domain-
dependent fluents shown in the Table II(b), one can easily identify their successor
state axiom, following:

—At(Srvc, s) ≡ q evaluate to a value q in the domain of predicate Location. It is
aimed to represent the position of srvc in situation s.

—PhotoBuild Church(s) ≡ true if some pictures have been taken in that POI
identified as Church.

—EvaluationOK Church(s) ≡ true if some pictures have been evaluated success-
fully in that POI identified as Church.

Finally, the lower part of Table II(b) shows the SmartPM program of the process,
which describes the control flow of tasks to be executed.
The section concludes with delineating an example of recovering from a deviation

applied to the process define above. Please note that in the following we will not
describe the policies to recover from deviations, as we would fall into the case of
pre-planned adaptation. SmartPM will reason over the current situation to devise
the most opportune recovery plan without any a-priori policy. For the sake of
explanation, let now assume to have defined an exogenous event photoLost(p) where
p is a specific POI. This exogenous event models the event when some photos,
previously taken in a specific POI p, get lost (e.g., due to the unwilling deletion of
some files). Consequently, we need to change the successor-state axiom for fluent

DIS Technical Report, June 2011

· 19

PhotoBuild to model the effect of photoLost onto this fluent (now we are supposing
that p=Church) :

PhotoBuild Church(do(a, s)) = true ≡
[∃srvc.a = finishedTask(srvc,TakePhoto, V) ∧ V = Church]

∨
[PhotoBuild Church(s) = true ∧ a ̸= photoLost(Church)∧
(¬∃srvc.a = finishedTask(srvc,TakePhoto, V ′) ∧ V ′ = Church)].

Suppose now that in current situation s, PhotoBuild Church(s) = true, i.e. some
photos have been previously taken in that Location associated to the Church. In
this situation, exogenous event photoLost(Church) occurs (i.e., in the POI identified
as Church some photos get lost). Now, SmartPM should find a recovery program
which restores the previous value for the fluent. After performing some testing, we
experienced SmartPM finds the following recovery program, where two tasks need
to be executed by a certain service srvc (assuming At(srvc, s) ̸= l, where l is the
Location in which the Church is located):

ManageExecution(Go, srvc, Church)
ManageExecution(TakePhoto, srvc, Church)

The second task is what actually restores the value expected. But, in order for
srvc to take photo in the POI selected, it needs to be already close to that location.
This is the reason why task Go precedes TakePhoto in the program to recovery the
photos lost. Furthermore, before to assign the above two tasks, SmartPM engine
is also able to estimate if srvc will disconnect itself from the network during the
path covered to reach the Church (it happens, in particular, if the Church is far
away from the current position of the Coordinator). In such a case, to prevent any
disconnection, it is required the assignment of a further task Go to another service
srvc2 that is both available and in the radio range with the Coordinator :

ManageExecution(Go, srvc2, p’)

Since the main purpose is to guarantee the maintenance of the network, srvc2
should act as a ”bridge”; it must reach a specific POI p′ chosen on the fly by the
engine and well-located (according to the strength and to the range of the network)
in a position between the leader and service srvc. Once the photos have been
restored, the process can progress again.
In order to prove our approach, we performed some testing to learn the time

amount required to build the recovery plan over the process shown in the example.
The x-axis of the chart in Figure 5 shows the seconds needed to find a recovery plan
of a specific length in a area in which, respectively, 20, 30 and 40 POIs have been
fixed (cf. y-axis). The length of a plan is directly linked to the number of tasks
required to handle the adaptation. As an instance, in the example seen above,
the SmartPM engine found a 3-length recovery plan. For each of the three sets
of POIs specified, we ran 10 different tasks causing a relevant deviation from the
original process schema. We performed these tests in order to obtain, respectively,
1- , 2- and 3-length plans. The chart in Figure 5 captures the mean-time obtained
by these 10 executions on a netbook. By analyzing collected time values, it is
clear that increasing the number of POIs in the map - in other words, increasing
the size of the input - the time needed to find a plan of a specific length grew

DIS Technical Report, June 2011

20 ·

Fig. 5. Time needed to build a recovery plan in the example

exponentially. This kind of results could be expected, being the adaptation based
on the solution to a planning problem, which has EXPTIME complexity. However,
results obtained for a map composed by 20 POIs (that fit well a real case), are
quite acceptable. Moreover, we report such tests to show the practicability of the
approach. An engineered solution would adopt state-of-art planners, more efficient
in most causes, and not the naive IndiGolog implementation.

7. CONCLUSIONS

Most of existing PMSs are not completely appropriate for highly dynamic and
pervasive scenarios. Such scenarios are turbulent and subject to a higher frequency
of unexpected contingencies with respect to usual business settings, which show
a static and foreseeable behavior. This paper describes SmartPM, a (model and
a prototype of) PMS that is able to automatically adapt processes by recovering
them from exceptions, without relying either on the intervention of domain experts
or on the existence of pre-specified handlers to cope with specific exceptions.
Future work aims mostly at integrating SmartPM with state-of-art planners. In-

deed, current implementation relies on the IndiGolog built-in planner, which per-
forms a blind search. Current planners make use of advanced techniques for reduc-
ing the search space. A challenging issue then is how to convert action theories and
IndiGolog programs into the inputs of an automated planner (e.g., by translating to
PDDL).
Moreover, we would like to investigate how to remove the limitation of linear

recovery plans, on the basis of the results we gained in [de Leoni et al. 2009].
Finally we intend to show how to map all workflow patterns to the SmartPM model,
in order to create a library of predefined process schemas and related annotations
to be applied in concrete scenarios.

DIS Technical Report, June 2011

· 21

Acknowledgement.. Special thanks to Giuseppe De Giacomo for many useful
technical discussions and the continuous support to this research. Thanks also
to Arthur H.M. ter Hofstede for his suggestions improving the paper presentation.

REFERENCES

Adams, M., ter Hofstede, A. H. M., van der Aalst, W. M. P., and Edmond, D. 2007.
Dynamic, extensible and context-aware exception handling for workflows. In On the Move

to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS Proceedings,
Part I. Lecture Notes in Computer Science, vol. 4803. Springer, 95–112.

Battista, D., de Leoni, M., Gaetanis, A., Mecella, M., Pezzullo, A., Russo, A., and

Saponaro, C. 2008. ROME4EU: A Web Service-Based Process-Aware System for Smart De-
vices. In ICSOC ’08: Proceedings of the 6th International Conference on Service-Oriented
Computing. Lecture Notes in Computer Science, vol. 5364. Springer, 726–727.

Casati, F., Ceri, S., Paraboschi, S., and Pozzi, G. 1999. Specification and Implementation of
Exceptions in Workflow Management Systems. ACM Trans. Database Systems 24, 3, 405–451.

Casati, F. and Shan, M. 2001. Dynamic and Adaptive Composition of e-Services. Information

Systems 26, 3, 143–163.

Catarci, T., de Leoni, M., De Rosa, F., Mecella, M., Poggi, A., Dustdar, S., Juszczyk, L.,
Truong, H., and Vetere, G. 2007. The WORKPAD P2P Service-Oriented Infrastracture for
Emergency Management. In WETICE ’07: Proceedings of the 16th IEEE International Work-

shops on Enabling Technologies: Infrastructure for Collaborative Enterprises. IEEE, Washing-
ton, DC, USA.

Catarci, T., de Leoni, M.,Marrella, A.,Mecella, M.,Vetere, G., Salvatore, B.,Dustdar,

S., Juszczyk, L., Manzoor, A., and Truong, H.-L. 2008. Pervasive Software Environments
for Supporting Disaster Responses. IEEE Internet Computing 12, 1, 26–37.

Catarci, T., De Rosa, F., de Leoni, M., Mecella, M., Angelaccio, M., Dustdar, S., Krek,

A., Vetere, G., Zalis, Z. M., Gonzalvez, B., and Iiritano, G. 2006. WORKPAD: 2-Layered
Peer-to-Peer for Emergency Management through Adaptive Processes. In CollaborateCom
2006: Proceedings of the 2nd International Conference on Collaborative Computing: Network-
ing, Applications and Worksharing. IEEE.

Cetina, C., Giner, P., Fons, J., and Pelechano, V. 2009. Autonomic Computing through
Reuse of Variability Models at Runtime: The Case of Smart Homes. IEEE Computer 42, 10,
37–43.

Chiu, D., Li, Q., , and Karlapalem, K. 2000. A logical framework for exception handling
in ADOME workflow management system. In CAiSE2000: Proceedings of 12th International
Conference Advanced Information Systems Engineering. Lecture Notes in Computer Science,

vol. 1789. Springer, 110–125.

Cosa GmbH. 2008. COSA BPM product description. http://www.cosa.de/project/docs/en/

COSA57-Productdescription.pdf. Prompted on 1 February, 2009.

De Giacomo, G., Lespérance, Y., Levesque, H. J., and Sardina, S. 2009. IndiGolog: A high-
level programming language for embedded reasoning agents. In Multi-Agent Programming:
Languages, Platforms and Applications, R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-

Seghrouchni, Eds. Springer, New York, USA, Chapter 2, 31–72. ISBN: 978-0-387-89298-6.

De Giacomo, G., Reiter, R., and Soutchanski, M. 1998. Execution Monitoring of High-Level
Robot Programs. In KR’98: Proceedings of the Sixth International Conference on Principles

of Knowledge Representation and Reasoning. 453–465.

de Leoni, M. 2009. Adaptive Process Management in Highly Dynamic and Pervasive Scenarios.
In YR-SOC 2009: Proceedings Fourth European Young Researchers Workshop on Service Ori-

ented Computing. Electronic Proceedings in Theoretical Computer Science (EPTCS), vol. 2.
arXiv.org, 83–97.

de Leoni, M., De Giacomo, G., Lespérance, Y., and Mecella, M. 2009. On-line Adaptation

of Sequential Mobile Processes Running Concurrently. In SAC ’09: Proceedings of the 2009
ACM symposium on Applied Computing. ACM, 1345–1352.

DIS Technical Report, June 2011

22 ·

de Leoni, M., De Rosa, F., Marrella, A., Poggi, A., Krek, A., and Manti, F. 2007. Emer-
gency Management: from User Requirements to a Flexible P2P Architecture. In Proceedings
of the 4th International Conference on Information Systems for Crisis Response and Manage-

ment ISCRAM2007, B. Van de Walle, P. Burghardt, and C. Nieuwenhuis, Eds.

de Leoni, M., Marrella, A., Mecella, M., Valentini, S., and Sardina, S. 2008. Coordinating

Mobile Actors in Pervasive and Mobile Scenarios: An AI-based Approach. In WETICE’08:
Proceedings of the 17th IEE International Workshops on Enabling Technologies: Infrastructure
for collaboration enterprises. IEEE, 82–88.

de Leoni, M., Mecella, M., and De Giacomo, G. 2007. Highly Dynamic Adaptation in Process
Management Systems Through Execution Monitoring. In BPM’07: Proceedings of the 5th
Internation Conference on Business Process Management. Lecture Notes in Computer Science,

vol. 4714. Springer, 182–197.

Du, W., Davis, J., and Shan, M.-C. 1997. Flexible specification of workflow compensation scopes.
In GROUP ’97: Proceedings of the international ACM SIGGROUP conference on Supporting
group work. ACM, New York, NY, USA, 309–316.

Eder, J. and Liebhart, W. 1995. The Workflow Activity Model WAMO. In COOPIS 1995:Pro-
ceedings of the 3rd international conference on Cooperative Information Systems. Springer,
87–98.

Eder, J. and Liebhart, W. 1996. Workflow recovery. In COOPIS ’96: Proceedings of the First
IFCIS International Conference on Cooperative Information Systems. IEEE Computer Society,

Washington, DC, USA, 124.

Ellis, C. and Keddara, K. 2000. A Workflow Change is a Workflow. In Business Process

Management. Models, Techniques and Empirical Studies. LNCS 1806.

Franke, J., Charoy, F., Ulmer, C., and Antipolis, S. 2010. A Model for Temporal Coordina-

tion of Disaster Response Activities. In ISCRAM 2010: Proceedings of the 4th International
Conference on Information Systems for Crisis Response and Management, C. Z. Simon Trench,
Brian Tomaszewski, Ed.

Garlan, D., Kramer, J., and Wolf, A., Eds. 2002. Proceedings of the First Workshop on
Self-Healing Systems (WOSS 2002).

Ghallab, M., Nau, D., and Traverso, P. 2004. Automated Planning: Theory and Practice.
Morgan Kaufmann Publishers.

Golani, M. and Gal, A. 2005. Flexible business process management using forward stepping and
alternative paths. In BPM 2005: Proceedings of the 3rd Internation Conference on Business

Process Management. 48–63.

Göser, K., Jurisch, M., Acker, H., Kreher, U., Lauer, M., Rinderle, S., Reichert, M.,

and Dadam, P. 2007. Next-generation Process Management with ADEPT2. In Proceedings of
the BPM Demonstration Program at the Fifth International Conference on Business Process
Management (BPM’07). CEUR Workshop Proceedings, vol. 272. CEUR-WS.org.

Hagen, C. and Alonso, G. 2000. Exception Handling in Workflow Management Systems. IEEE
Trans. Software Engineering 26, 10, 943–958.

Heimann, P., Joeris, G., Krapp, C., and Westfechte, B. 1996. DYNAMITE: Dynamic Task
Nets for Software Process Management. In Proc. ICSE 1996.

Humayoun, S. R., Catarci, T., de Leoni, M., Marrella, A., Mecella, M., Bortenschlager,
M., and Steinmann, R. 2009. Designing Mobile Systems in Highly Dynamic Scenarios. The

WORKPAD Methodology. Journal on Knowledge, Technology & Policy 22, 1, 25–43.

Humayoun, S. R., Catarci, T., Leoni, M., Marrella, A., Mecella, M., Bortenschlager, M.,

and Steinmann, R. 2009. The WORKPAD User Interface and Methodology: Developing Smart
and Effective Mobile Applications for Emergency Operators. In UAHCI ’09: Proceedings of the
5th International Conference on Universal Access in Human-Computer Interaction. Part III.
Lecture Notes in Computer Science, vol. 5616. Springer, 343–352.

IBM Inc. 2008. An introduction to WebSphere Process Server and WebSphere Integration Devel-

oper. ftp://ftp.software.ibm.com/software/integration/wps/library/WSW14021-USEN-01.
pdf. Prompted on 1 February, 2009.

DIS Technical Report, June 2011

· 23

Jaccheri, M. and Conradi, R. 1993. Techniques for Process Model Evolution in EPOS. IEEE
Trans. Software Engineering 19, 12.

Kinateder, M. 2006. Sap advanced workflow techniques. https://www.sdn.sap.com/irj/

servlet/prt/portal/prtroot/docs/library/uuid/82d03e23-0a01-0010-b482-dccfe1c877c4.
Prompted on 1 February, 2009.

Kowalski, R. A. 1995. Using meta-logic to reconcile reactive with rational agents. Meta-logics

and logic programming, 227–242.

Ly, L. T., Rinderle, S., and Dadam, P. 2008. Integration and verification of semantic constraints
in adaptive process management systems. Data & Knowledge Engineering 64, 1, 3–23.

McCarthy, J. and Hayes, P. J. 1969. Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence 4, 463–502.

Mecella, M., de Leoni, M., Marrella, A., Catarci, T., Bortenschlager, M., and Stein-
mann, R. 2010. The WORKPAD Project Experience: Improving the Disaster Response through
Process Management and Geo Collaboration. In Proceedings of the 7th International Confer-

ence on Information Systems for Crisis Response and Management (ISCRAM2010).

Milner, R. 1980. A Calculus of Communicating Systems. Lecture Notes in Computer Science,
vol. 92. Springer.

Müller, R., Greiner, U., and Rahm, E. 2004. AGENTWORK: a workflow system supporting
rule-based workflow adaptation. Data & Knowledge Engineering 51, 2, 223–256.

Reiter, R. 2001. Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press.

Rinderle, S., Reichert, M., and Dadam, P. 2004. Correctness Criteria for Dynamic Changes
in Workflow Systems - A Survey. Data & Knowledge Engineering 50.

Sadiq, S. W., Marjanovic, O., and Orlowska, M. E. 2000. Managing Change and Time in
Dynamic Workflow Processes. International Journal of Cooperative Information Systems 9, 1–

2, 93–116.

ter Hofstede, A., van der Aalst, W., Adams, M., and Russell, N. 2010. Modern Business
Process Automation: YAWL and its Support Environment. Springer.

Tibco Software Inc. 2008. Introduction to TIBCO iProcess Suite. www.tibco.com/resources/
software/bpm/tibco_iprocess_suite_whitepaper.pdf. Prompted on 1 February, 2009.

van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., and Barros, A. P.
2003a. Workflow Patterns. Distributed and Parallel Databases 14, 1, 5–51.

van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., and Barros, A. P.
2003b. Workflow Patterns. Distributed and Parallel Databases 14, 1, 5–51.

Wagenknecht, A. and Rüppel, U. 2009. Improving Resource Management In Flood Response
With Process Models and Web GIS. In Proceedings of the 16th TIEMS Annual Conference.

International Emergency Management Society.

Weber, B., Reichert, M., Rinderle-Ma, S., and Wild, W. 2009. Providing Integrated Life
Cycle Support in Process-Aware Information Systems. International Journal of Cooperative
Information Systems (IJCIS) 18, 1, 115–165.

Weske, M. 2001. Formal Foundation and Conceptual Design of Dynamic Adaptations in a Work-
flow Management System. In HICSS01: Proceedings of the 34th Annual Hawaii International

Conference on System Sciences. IEEE Computer Society.

Weske, M. 2007. Business Process Management: Concepts, Languages, Architectures. Springer-

Verlag Berlin Heidelberg.

DIS Technical Report, June 2011

24 ·

APPENDIX

A. PRELIMINARIES

In this appendix, we provide a brief overview of the logical framework used to for-
malize SmartPM and its adaptation features. The Situation Calculus [McCarthy
and Hayes 1969; Reiter 2001] is a logical language specifically designed for repre-
senting dynamically changing worlds in which all changes are the result of named
actions. A possible history of actions is represented by a so-called situation, a first-
order term in the language. The constant S0 denotes the initial situation, where no
actions have yet been performed. Sequences of actions are built using the special
function symbol do: do(a, s) denotes the successor situation resulting from perform-
ing action a in situation s. Properties that hold in a situation are called fluents.
Technically, these are predicates taking a situation term as their last argument. For
example, fluent DoorOpen(x, s) may denote that door x is open in situation s. A
distinguished predicate Poss(a, s) is used to state that action a is executable in s,
i.e., the precondition of action a.

Within this language, one can formulate action theories describing how the world
changes as the result of the available actions. For instance, a basic action theory
[Reiter 2001] is built from a set of domain-independent foundational axioms to
describe the structure of situations, one successor state axiom per fluent (capturing
the effects and non-effects of actions), one precondition axiom per action (specifying
when the action is executable), and initial state axioms describing what is true
initially (i.e., what is true in the initial situation S0). For example, the successor
state axiom for fluent DoorOpen(x, s) and the precondition for action open are as
follows:

DoorOpen(x, do(a, s)) ≡
(a = open(x) ∧ ¬Locked(x, s)) ∨DoorOpen(x, s) ∧ a ̸= close(x);

Poss(open(x), s) ≡ ¬DoorOpen(x, s).

That is, a door is open after an action a has been performed iff a denotes the
action of opening that door and the door is not locked, or the door was open before
a and a action is not that one of closing it. The action of opening a door is possible
if the door is closed.

On top of Situation Calculus action theories, logic-based programming languages
can be defined, which, in addition to the primitive actions, allow the definition
of complex actions. The IndiGolog language [De Giacomo et al. 2009] is a high-
level programming language equipped with standard imperative constructs (e.g.,
sequence, conditional, iteration, etc) as well as procedures and primitives for ex-
pressing various types of concurrency and prioritized interrupts. More interesting,
the language includes nondeterministic constructs to accommodate loose specifica-
tion of programs by allowing “gaps” that ought to be resolved by the reasoner/-
planner or executor. To resolve such gaps successfully at execution time, IndiGolog
includes a lookahead operator. The complete set of constructs available in IndiGolog
is summarized in Table III.

The interrupt construct is also of particular interest. Regarding interrupts, it

DIS Technical Report, June 2011

· 25

Construct Meaning
a A primitive action
ϕ? Wait while the ϕ condition is false
(δ1; δ2) Sequence of two sub-programs δ1 and δ2
proc P (−→v) δ Invocation of a procedure passing a vector −→v of parameters
(δ1|δ2) Non-deterministic choice among (sub-)program δ1 and δ2.
if ϕ then δ1 else δ2 Conditional statement: if ϕ holds, δ1 is executed; otherwise δ2.
while ϕ do δ Iterative invocation of δ
(δ1 ∥ δ2) Concurrent execution
δ∗ Non-deterministic iteration of program execution
Σ(δ) Emulating off-line execution
πa.δ Non-deterministic choice of argument a followed by the execution of δ.
⟨ϕ → δ⟩ δ is repeatedly executed until ϕ becomes false, releasing control to anyone

else able to execute.

Table III. IndiGolog constructs

turns out that these can be explained using other constructs of IndiGolog

⟨ ϕ → δ ⟩ def
= while Interrupts running do

if ϕ then δ else false endIf
endWhile

To see how this works, first assume that the special fluent Interrupts running is
identically true. When an interrupt ⟨ϕ → δ⟩ gets control, it repeatedly executes
δ until ϕ becomes false, at which point it blocks, releasing control to anyone else
able to execute. The control release also occurs if ϕ cannot progress (e.g., since no
action meets its precondition).
From the formal point of view, IndiGolog programs are just logical terms and the

language (single-step) semantics is expressed using the following two predicates:

—Trans(δ′, s′, δ′′, s′′): a single step of program δ′ in situation s′ may lead to situa-
tion s′′ with δ′′ remaining to be executed.

—Final(δ′, s′): program δ′ may legally terminate in situation s′.

With these two predicates characterized via a set of axioms, it is not diffi-
cult to define what is means to execute a program. Originally, in languages
like Golog and ConGolog, programs were conceived to be executed (verified)
offline; the interpreter looks for a sequence of actions [a1, . . . , am] such that
Do(δ, s, do(am, do(am−1, . . . , do(a1, S0)))) is entailed by the specification, where
Do(δ, s, s′) is intended to mean that situation s′ represents a legal execution of
program δ starting from situation s; formally:

Do(δ, s′, s) ≡ ∃δ′′.Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′),

where Trans∗ stands for the reflexive transitive closure of Trans.
Clearly, this type of execution remains infeasible for large programs and pre-

cludes both runtime sensing information and reactive behavior. To deal with these
drawbacks, IndiGolog provides a formal notion of interleaved planning, sensing, and
action. Roughly speaking, an online execution of program finds a next possible
action, executes it in the real world, obtains sensing information afterward, and
repeats the cycle until the program is finished. The fact that actions are quickly
executed without much deliberation and sensing information is gathered after each
step makes the approach realistic for dynamic and changing environments. To cope

DIS Technical Report, June 2011

26 ·

with nondeterministic choices in programs and the impossibility of backtracking
actions in the real world, IndiGolog provides a planning construct Σ(δ)—-the search
operator—as a local, controlled form of off-line verification such that the amount
of lookahead to be performed is under the control of the programmer. When the
executor reaches a program of the form Σ(δ), a complete successful execution of
program δ is searched before even the first action is performed. This search, of
course, implies reasoning about the various different executions that δ may yield.
For more details on IndiGolog, we refer the reader to [De Giacomo et al. 2009].
We close the appendix by noting that, besides the solid theoretical foundation

behind IndiGolog, a full-fledged sophisticated interpreter for it is freely available.6

B. TRANSLATION FROM BPEL4WS TO INDIGOLOG AND SITUATION CALCU-
LUS

Process designers are not intended, in our approach, to define processes using di-
rectly the SmartPM framework. Conversely, on the basis of the requirements stem-
ming from the WORKPAD project, we assume they specify the processes in WS-
BPEL, and have available a kind of templates (specific for different scenarios) for
specifying “semantic aspects” needed in our approach (e.g., pre- e post-conditions,
etc.). In the future, we aim to consider other (conceptual) languages for process
specifications, in particular BPMN – Business Process Modeling Notation – and
YAWL.
Therefore, we provide in SmartPM a module able to translate (most of) WS-BPEL

specifications into IndiGolog programs and complaint Situation Calculus domain
theories7. There are valuable features of IndiGolog for processes modeling that WS-
BPEL is unable to model. Firstly, designers are able to formalize explicitly the
pre-conditions of tasks. Secondly, SmartPM is able to describe conditions which
do not model WS-BPEL-variables (or equivalent). Unlike WS-BPEL, IndiGolog
can accommodate the specification and dynamics of resources (e.g., the capabilities
of human beings and services) that can be of some interest during the process
performance. More generally, in IndiGolog one can specify other properties of the
world that can affect the process execution. All these aspects, which are not directly
expressible in WS-BPEL, are added in our approach as XML annotations to the
WS-BPEL specification. Though not mandatory, they may accommodate extra
information about the process execution environment; this information may allow
for more accurate sensing of deviations and, hence, yield better process adaptation.
In our validation, we have provided such annotations as pre-defined templates, in
order to ease as much as possible the specification by the process designers.
We provide here some insight into the technique for translating WS-BPEL spec-

ifications into IndiGolog. On the basis of such a technique, SmartPM supports at

6http://sourceforge.net/projects/indigolog/
7A feature we do not consider is one-way jumps. This does not limit the construct supported, as
indeed, no workflow patterns [van der Aalst et al. 2003a] have been implemented in [ter Hofstede
et al. 2010] through one-way jumps. Indeed, one-way jumps, which are similar to arbitrary GOTO

statements, are often unnecessary, since one can transform a process specification to one containing
no one-way jumps, while the same behavior is observed.

DIS Technical Report, June 2011

· 27

BPEL Sample Code Translation
assign

<assign name="A">}
<copy>
<from variable="source">
<to variable="dest">
</copy>

</assign>

Proc A()

1 Copydest
source;

invoke
<invoke name="B"
inputVar="input"
outputVar="output"
operation= "task1" />

Proc B()
1 ManageExecution([Task , input]);

sequence
<sequence name="Seq">
<...subProc1...>

. . .
<...subProcN...>

</sequence>

Proc Seq()
1 (subProc1(); ...; subProcN());

flow
<flow name="Parallel">
<...subProc1...>

. . .
<...subProcN...>

</flow>

Proc Parallel()
1 (subProc1() ∥ ... ∥ subProcN());

if
<if name="Select">
<condition>cond</condition>

<...subProc1...>
<else>

<...subProc2...>
</else>
</if>

Proc Select()
1 if cond1
2 then subProc1()
3 else subProc2()

while
<while name="Loops"
condition="cond">

<...subProc1...>
</while>

Proc Loops()
1 while cond
2 do subProc1()

for each
<forEach name="FE" parallel="yes"

countername="n">
<startCounterVal>MinVal</startCounterVal>
<finalCounterVal>MaxVal</finalCounterVal>
<scope>

<variables>
<variable name="XYZ" type="ABC" />

...
</variables>
< ... name="branch" ...>

</scope>
</forEach>

Proc FE()
1 FE Helper(condMinV al)

Proc FE Helper(n)
1 if (n ≤ condMaxV al)
2 then FE Helper(n + 1) ∥ branch(n)

Table IV. From WS-BPEL to IndiGolog

least the same workflow patterns as WS-BPEL does. A comprehensive analysis of
the patterns supported by WS-BPEL is illustrated in [ter Hofstede et al. 2010].
We start by describing the syntax of variable declarations. In order to allow for

complex data representation when designing a process, each variable is represented
as an XML complex type, whose definition is provided with a further XML schema.

<variables>

<variable name="A" type="xs:A-type" >

.

<variable name="X" type="xs:X-type" >

DIS Technical Report, June 2011

28 ·

</variables>

When mapping to the SmartPM model, each variable defined in the WS-BPEL
specification is translated to a Situation Calculus fluent of the same name (e.g.,
A(s), ..., X(s) above). The values of such fluents describe the state of the process
instance in a specific situation. In general, each fluent can assume values that are
denoted by complex tuples. Together with the fluent, the translation also generates
a situation independent predicate (e.g., DomainA, ... , DomainX above) that states
the admissible values for a given fluent, i.e., its domain. The generic successor-state
axiom is as follows:

X (do(a, s)) = y ≡
[∃srvc.a = finishedTask(srvc, t, V) ∧ V = i ∧DomainX (y)]

∨
[X (s) = y ∧
¬∃srvc.a = finishedTask(srvc, t, V ′) ∧ V ′ = i]

(7)

where t and i are, respectively, the task and the relevant input which can modify
the value of the variable/fluent X .
Table IV shows how the typical WS-BPEL’s constructs can be translated in

IndiGolog and Situation Calculus. Each construct is mapped onto an IndiGolog
procedure. With the exception of primitive constructs for variable assignment and
task invocation, the structured constructs can be nested arbitrarily. Consequently,
IndiGolog procedures may call, in turn, other procedures.
We focus now on the for-each construct, which structure is shown in the lower

part of Table IV. It allows to support a special kind of forks known in the liter-
ature as “Multiple Instances with a Priori Run-Time Knowledge” [van der Aalst
et al. 2003b] (a.k.a. “multitask”), which is very important in concrete scenar-
ios. The number of branches that are initiated depends on some variable val-
ues. Once initiated, these branches are independent of each other and run con-
currently. Every branch can define its own variables whose scope is local of the
specific variable. It follows that there exist multiple variables of the same name,
once per branch. The reader should note note the recursive invocation of proce-
dure FE Helper that takes the counter value as input. At each recursive step, a
new invocation of procedure branch(n) is done, and, concurrently, FE Helper is
invoked again after incrementing the counter by 1. Procedure branch(n) maps
the generic branch and its definition follows the guidelines as from Table IV.
When mapping the generic branch, the only difference is that it needs to take
the current counter value as input. The same would also hold for the possible
nested procedures. The current counter value is, then, required to be passed to
every invocation of ManageExecution([Task , (input, n)]). The counter value is
also required to be returned to SmartPM in the output set when services perform
finishedTask(srvc, t, (output, n)).
When variables are defined in the scope of a for-each branch, they are local.

IndiGolog does not support local fluents, i.e. fluents accessible only inside given
procedures. Since fluents are always global, we need to refine the notion of mapping
of variables to fluents with respect to the one defined above.
For the sake of explanation, let us assume that the WS-BPEL specification defines

a variable Z in the scope of a for-each construct. This is mapped into a functional

DIS Technical Report, June 2011

· 29

fluent Z (n, s) where the first argument n maps the local WS-BPEL’s variable of
n-th branch. In the light of above, when fluents map local variables of WS-BPEL
for-each branches, the following is a refinement of the generic successor state
axiom given in Equation 7:

Z (n, do(a, s)) = y ≡
[∃srvc.a = finishedTask(srvc, t, (V, n)) ∧ V = i ∧DomainZ (y)]

∨
[Z (n, s) = y ∧
¬∃srvc.a = finishedTask(srvc, t, (V ′, n)) ∧ V ′ = i]

(8)

where t and i are, respectively, the task and the relevant input which can modify
the value of the variable/fluent Z .
The translation of the constructs wait, receive, reply and repeat-until can be easily

derived from those which we have already discussed.The complete WS-BPEL code
of the process shown in Section 6 and its translation in Situation Calculus and in
the executable IndiGolog code can be downloaded at http://www.dis.uniroma1.
it/~marrella/public/TAAS/appendixes.zip

DIS Technical Report, June 2011

	copertinaTR4 2011
	SmartPM_Technical_Report.pdf

