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Abstract
Mixed-Integer optimization is a powerful tool for modeling many optimization problems arising from
real-world applications. Finding a first feasible solution represents the first step for several MIP solvers.
The Feasibility pump is a heuristic for finding feasible solutions to mixed integer linear problems which
is effective even when dealing with hard MIP instances. In this work, we start by interpreting the
Feasibility Pump as a Frank-Wolfe method applied to a nonsmooth concave merit function. Then, we
define a general class of functions that can be included in the Feasibility Pump scheme for measuring
solution integrality and we identify some merit functions belonging to this class. We further extend our
approach by dynamically combining two different merit functions. Finally, we define a new version of
the Feasibility Pump algorithm, which includes the original version of the Feasibility Pump as a special
case, and we present computational results on binary MILP problems showing the effectiveness of our
approach.
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1 Introduction

Many real-world problems can be modeled as Mixed Integer Programming (MIP) problems,
namely as minimization problems where some (or all) of the variables only assume integer
values. Finding quickly a first feasible solution is crucial for solving this class of problems. In
fact, many local-search approaches for MIP problems such as Local Branching [16], guide dives
and RINS [12] can be used only if a feasible solution is available.
In the literature, several heuristics methods for finding a first feasible solution for a MIP problem
have been proposed (see e.g. [3]-[5], [8], [18]-[21], [23], [26] ). Recently, Fischetti, Glover and
Lodi [15] proposed a new heuristic, the well-known Feasibility Pump, that turned out to be very
useful in finding a first feasible solution even when dealing with hard MIP instances. The FP
heuristic is implemented in various MIP solvers such as BONMIN [9].
The basic idea of the FP is that of generating two sequences of points {x̄k} and {x̃k} such
that x̄k is LP-feasible, but may not be integer feasible, and x̃k is integer, but not necessarily
LP-feasible. To be more specific the algorithm starts with a solution of the LP relaxation x̄0

and sets x̃0 equal to the rounding of x̄0. Then, at each iteration x̄k+1 is chosen as the nearest
LP-feasible point in ℓ1-norm to x̃k, and x̃k+1 is obtained as the rounding of x̄k+1. The aim of the
algorithm is to reduce at each iteration the distance between the points of the two sequences,
until the two points are the same and an integer feasible solution is found. Unfortunately, it
can happen that the distance between x̄k+1 and x̃k is greater than zero and x̃k+1 = x̃k, and
the strategy can stall. In order to overcome this drawback, random perturbations and restart
procedures are performed.
As the algorithm has proved to be effective in practice, various papers devoted to its further
improvements have been developed. Fischetti, Bertacco and Lodi [7] extended the ideas on which
the FP is based in two different directions: handling MIP problems with both 0-1 and integer
variables, and exploiting the FP information to drive a subsequent enumeration phase. In [1], in
order to improve the quality of the feasible solution found, Achterberg and Berthold consider an
alternative distance function which takes into account the original objective function. In [17],
Fischetti and Salvagnin proposed a new rounding heuristic based on a diving-like procedure and
constraint propagation. The Feasibility Pump has been further extended to the case of mixed
integer nonlinear programming problems in [10, 11].
In [8], J.Eckstein and M.Nediak noticed that the FP heuristic may be seen as a form of Frank-
Wolfe procedure applied to a nonsmooth merit function which penalizes the violation of the 0-1
constraints. In practice, the Feasibility Pump combines a local algorithm (namely the Frank-
Wolfe algorithm) with a suitably developed perturbing procedure for solving a specific global
optimization problem:

x∗ = argmin{f(x) : x ∈ P},

where P is the relaxation of the feasible set of the original MIP Problem and f(x) is a function
penalizing the violation of the integrality constraints. Therefore the Feasibility Pump can be
seen as a form of Iterated Local Search or Basin Hopping algorithm (see e.g. [6, 25, 27]).
In this paper, we analyze in deep the relationship between the Feasibility Pump and the Frank-
Wolfe algorithm. In this context, we define a new class of merit functions that can be included
in the basic FP scheme [15]. A reported extended computational experience seems to indicate
that the use of these new merit functions improves the FP efficiency.
The paper is organized as follows. In Section 2, we give a brief review of the Feasibility Pump
heuristic. In Section 3, we show the equivalence between the FP heuristic and the Frank-Wolfe
algorithm applied to a nonsmooth merit function. In Section 4, we define a new class of merit
functions for measuring the solution integrality, we introduce new nonsmooth merit functions
and we discuss their properties. We present our algorithm in Section 5. In Section 6, we extend
our approach by dynamically combining two different merit functions. Computational results
are shown in Section 7, where we give a detailed performance comparison of our algorithm with
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the FP. Further, we show that using somehow more than one merit function at time can improve
the efficiency of the algorithm. Some conclusions are drawn in Section 8.

In the following, given a concave function f : Rn → R, we denote by ∂f(x) the set of supergra-
dients of f at the point x, namely

∂f(x) = {v ∈ Rn : f(y)− f(x) ≤ vT (y − x), ∀ y ∈ Rn}.

2 The Feasibility Pump Heuristic

We consider a MIP problem of the form:

min cTx

s.t.Ax ≥ b (MIP)

xj ∈ {0, 1} ∀j ∈ I,

where A ∈ Rm×n and I ⊂ {1, 2, . . . , n} is the set of indices of zero-one variables. Let P =
{x : Ax ≥ b, 0 ≤ xj ≤ 1, ∀ j ∈ I} denote the polyhedron of the LP-relaxation of (MIP). The
Feasibility Pump starts from the solution of the LP relaxation problem x̄0 := argmin{cTx :
x ∈ P} and generates two sequences of points x̄k and x̃k: x̄k is LP-feasible, but may be integer
infeasible; x̃k is integer, but not necessarily LP-feasible. At each iteration x̄k+1 ∈ P is the
nearest point in ℓ1-norm to x̃k:

x̄k+1 := argmin
x∈P

Δ(x, x̃k)

where
Δ(x, x̃k) =

∑

j∈I

∣xj − x̃kj ∣.

The point x̃k+1 is obtained as the rounding of x̄k+1. The procedure stops if at some index l, x̄l

is integer or, in case of failing, if it reaches a time or iteration limit. In order to avoid stalling
issues and loops, the Feasibility Pump performs a perturbation step. Here we report a brief
outline of the basic scheme:

The Feasibility Pump (FP) - basic version

Initialization: Set k = 0, let x̄0 := argmin{cTx : x ∈ P}

While (not stopping condition) do

Step 1 If (x̄k is integer) return x̄k

Step 2 Compute x̃k = round(x̄k)

Step 3 If (cycle detected) perturb(x̃k)

Step 4 Compute x̄k+1 := argmin{Δ(x, x̃k) : x ∈ P}

Step 5 Update k = k + 1

End While

Now we give a better description of the rounding and the perturbing procedures used respectively
at Step 2 and at Step 3 (See e.g. [7], [15]):
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Round: This function transforms a given point x̄k into an integer one, x̃k. The easiest
choice is that of rounding each component x̄kj with j ∈ I to the nearest integer, while
leaving the continuous components of the solution unchanged. Formally,

x̃kj =

⎧

⎨

⎩

[x̄kj ] if j ∈ I

x̄kj otherwise
(1)

where [⋅] represents scalar rounding to the nearest integer.

Perturb: The aim of the perturbation procedure is to avoid cycling and it consists in two
heuristics. To be more specific:

– if x̃kj = x̃k+1
j for all j ∈ I a weak perturbation is performed, namely, a random number

of integer constrained components, chosen as to minimize the increase in the distance
Δ(x̄k+1, x̃k+1), is flipped.

– If a cycle is detected by comparing the solutions obtained in the last 3 iterations, or
in any case after R iterations, a strong random perturbation is performed. For each
j ∈ I a uniformly random value is generated, �j ∈ [−0.3, 0.7] and if

∣x̄k+1
j − x̃k+1

j ∣+max{�j , 0} > 0.5

the component x̃k+1
j is flipped.

Remark 1 The objective function Δ(x, x̃k) discourages the optimal solution of the relaxation
from being “too far” from x̃k. In practice, the method tries to force a large number of variables
of x̄k+1 to have the same (integer) value as x̃k (see [15]).

3 The FP heuristic as a Frank-Wolfe algorithm for minimizing

a nonsmooth merit function

In a recent work J.Eckstein and M.Nediak [8] noticed that the feasibility pump heuristic may be
seen as a nonsmooth Frank-Wolfe merit function procedure. In order to better understand this
equivalence we recall the unitary stepsize Frank-Wolfe method for concave non-differentiable
functions. Let us consider the problem

min f(x)
x ∈ P

(2)

where P ⊂ Rn is a non empty polyhedral set that does not contain lines going to infinity in
both directions, f : Rn → R is a concave, non-differentiable function, bounded below on P .
The Frank-Wolfe algorithm with unitary stepsize can be described as follows.
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Frank-Wolfe - Unitary Stepsize (FW1) Algorithm

Initialization: Set k = 0, let x0 ∈ Rn be the starting point, compute g0 ∈ ∂f(x0)

While xk /∈ argmin
x∈P

(gk)Tx

Step 1 Compute a vertex solution xk+1 of

min
x∈P

(gk)Tx

Step 2 Compute gk+1 ∈ ∂f(xk+1), update k = k + 1

End While

The algorithm involves only the solution of linear programming problems, and the following
result, proved in [29], shows that the algorithm generates a finite sequence and that it terminates
at a stationary point x★, namely a point satisfying the following condition:

(g★)T (x− x★) ≥ 0, ∀x ∈ P (3)

with g★ ∈ ∂f(x★).

Proposition 1 The Frank-Wolfe algorithm with unitary stepsize converges to a vertex statio-
nary point of problem (2) in a finite number of iterations.

Now we consider the basic FP heuristic without any perturbation (i.e. without Step 3) and we
show that it can be interpreted as the Frank-Wolfe algorithm with unitary stepsize applied to a
concave, nondifferentiable merit function.
First of all, we can easily see that

Δ(x, x̃k) =
∑

j∈I:x̃k
j=0

xj −
∑

j∈I:x̃k
j=1

xj .

At each iteration, the Feasibility Pump for mixed 0-1 problems computes, at Step 2, the rounding
of the solution x̄k, thus giving x̃k. Then, at Step 4, it computes the solution of the LP problem

x̄k+1 ∈ argminΔ(x, x̃k)

s.t. Ax ≥ b (4)

0 ≤ xj ≤ 1 ∀j ∈ I.

These two operations can be included in the unique step of calculating the solution of the
following LP problem:

min
∑

j∈I:x̄k
j<

1
2

xj −
∑

j∈I:x̄k
j≥

1
2

xj

s.t. Ax ≥ b (5)

0 ≤ xj ≤ 1 ∀j ∈ I.

Since the function

v(t) =

⎧

⎨

⎩

1 if t < 1
2

−1 if t ≥ 1
2

(6)
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is such that v(t) ∈ ∂min{t, 1 − t}, Problem (5) can be seen as a generic iteration of the Frank
Wolfe method with unitary stepsize applied to the following minimization problem

min
∑

i∈I

min{xi, 1− xi}

s.t. Ax ≥ b (7)

0 ≤ xi ≤ 1 ∀i ∈ I.

4 New nonsmooth merit functions for the FP approach

As we have seen in the previous section, the basic Feasibility Pump is equivalent to minimizing
a separable nonsmooth function which penalizes the 0-1 infeasibility, namely

f(x) =
∑

i∈I

min{xi, 1− xi}. (8)

When using the FrankWolfe unitary stepsize algorithm for solving Problem (7), at each iteration,
if xk is not a stationary point, we get a new point xk+1 such that

(gk)T (xk+1 − xk) < 0,

with gk ∈ ∂f(xk). Then, from the concavity of the objective function we have

f(xk+1) ≤ f(xk) + (gk)T (xk+1 − xk) < f(xk), (9)

which means that at each iteration a reduction of the merit function is obtained. Anyway, this
might not correspond to a reduction in the number of variables that violate integrality.

Example 1 Let us consider the following two points

x =
(

0,
1

2
, 0, 0

)T

; y =
(

0,
1

6
,
1

6
, 0
)T

.

Let f be the function defined in (8). It is easy to notice that

f(y) < f(x),

but the number of noninteger components of y is greater than the number of noninteger compo-
nents of x.

As the main goal is finding an integer feasible solution, it would be better to use a function
having the following features:

(i) it decreases whenever the number of integer variables increases;

(ii) if it decreases, then the number of noninteger variables does not increase.

A function satisfying these features is the following:

 (x) = card{xi : i ∈ I, xi /∈ {0, 1} }. (10)

The function (10) can be rewritten as:

 (x) =
∑

i∈I

s(min{xi, 1− xi}) (11)
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where s : R → R+ is the step function:

s(t) =

⎧

⎨

⎩

1 if t > 0

0 otherwise.

Since the step function is a nonconvex and discontinuous function, minimizing (11) over a
polyhedral set is a very hard problem. In the following we prove a general result to define
approximations of function (11) that are easier to handle from a computational point of view
and guarantee satisfaction of (i) and (ii) when evaluated on the vertices of a polyhedron.

Proposition 2 Let V ⊂ [0, 1]n be the set of vertices of a polytope P = {x : Ax ≥ b, x ∈ [0, 1] }.
Let �l and �u be the following values:

�l = min
x∈V

l(x)

�u = min
x∈V

u(x)

where

l(x) =

{

min{xi : i = 1, . . . , n; xi ∕= 0} if x ∕= 0
1 if x = 0;

u(x) =

{

max{xi : i = 1, . . . , n; xi ∕= 1} if x ∕= e
1 if x = e.

Let � : [0, 1]n → R be a separable function

�(x) =
∑

i∈I

'(xi). (12)

We assume that ' : [0, 1] → R satisfies the following:

1)
'(0) = '(1); (13)

2) there exists an M > 0 such that

(i) for �̄ ∈ {0, 1} and �̃ ∈ [�l, �u] we have

'(�̄)− '(�̃) ≤ −M ; (14)

(ii) for �̄, �̃ ∈ [�l, �u] we have

∣'(�̄)− '(�̃)∣ ≤
M

n
. (15)

Then, for x, y ∈ V :

a)  (x) <  (y) implies �(x) < �(y);

b) �(x) < �(y) implies  (x) ≤  (y).

Proof.
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a) We consider two points x, y ∈ V such that  (x) <  (y). We can define two sets of indices
related to the non-integer components of x and y:

U = {i ∈ {1, . . . , n} ∣ i ∈ I, xi /∈ {0, 1}},

W = {j ∈ {1, . . . , n} ∣ j ∈ I, yj /∈ {0, 1}}.

Then we can write

�(x)− �(y) =
∑

i∈I

'(xi)−
∑

j∈I

'(yj) =

=
∑

i∈U

'(xi) +
∑

i∈I∖U

'(xi)−
∑

j∈W

'(yj)−
∑

j∈I∖W

'(yj). (16)

Since  (x) <  (y), we have that
∣U ∣ < ∣W ∣

and
∣I ∖ U ∣ > ∣I ∖W ∣.

Let us assume, without loss of generality, that

∣W ∣ − ∣U ∣ = 1,

and there exists an index |̄ such that

W ∖ {|̄} = U

(I ∖ U) ∖ {|̄} = I ∖W.

Then we can write

�(x)− �(y) = '(x|̄)− '(y|̄) +
∑

j∈U

'(xj) +
∑

j∈I∖U
j ∕=|̄

'(xj)−
∑

j∈W

j ∕=|̄

'(yj)−
∑

j∈I∖W

'(yj) =

= '(x|̄)− '(y|̄) +
∑

j∈W

j ∕=|̄

'(xj) +
∑

j∈I∖U
j ∕=|̄

'(xj)−
∑

j∈W

j ∕=|̄

'(yj)−
∑

j∈I∖U
j ∕=|̄

'(yj) =

= '(x|̄)− '(y|̄) +
∑

j∈I∖U
j ∕=|̄

('(xj)− '(yj)) +
∑

j∈W

j ∕=|̄

('(xj)− '(yj)) ≤

≤ '(x|̄)− '(y|̄) +
∑

j∈I∖U
j ∕=|̄

('(xj)− '(yj)) +
∑

j∈W

j ∕=|̄

∣'(xj)− '(yj)∣ (17)

By using (13) we obtain

�(x)− �(y) ≤ '(x|̄)− '(y|̄) +
∑

j∈W

j ∕=|̄

∣'(xj)− '(yj)∣. (18)

Now we notice that x|̄ ∈ {0, 1}, y|̄ ∈ [�l, �u] and xj , yj ∈ [�l, �u] for all j ∈ W ∖ {|̄} .
Then, by using (14) and (15), we have

�(x)− �(y) ≤ '(x|̄)− '(y|̄) +
∑

j∈W

j ∕=|̄

∣'(xj)− '(yj)∣ ≤ −M + (∣I∣ − 1)
M

n
< 0. (19)

Hence we have
�(x) < �(y).
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b) We assume by contradiction that there exist two points x, y ∈ V such that �(x) < �(y)
and

 (x) >  (y). (20)

By (20), recalling the first part of the proof, we have that �(x) > �(y), which contradicts
our initial assumption.

□

Summarizing, if an approximation �(x) satisfying the assumptions of Proposition 2 is available,
we can solve, in place of the original FP problem (7), the following problem

min �(x) =
∑

i∈I

'(xi)

s.t. Ax ≥ b (21)

0 ≤ xi ≤ 1 ∀i ∈ I.

As the method we use for solving the minimization problem stated above is the Frank-Wolfe
algorithm, which at each step moves from a vertex to another guaranteeing the reduction of the
chosen approximation, we have ( by point b) of Proposition 2) that, at each iteration of the
algorithm, the number of the noninteger components of the current solution does not increase.
Taking into account Proposition 2 and the ideas developed in [28, 32], we consider the following
'(⋅) terms to be used in the objective function of problem (21):

Logarithmic function
'(t) = min

{

ln(t+ "), ln[(1− t) + "]
}

(22)

Hyperbolic function
'(t) = min

{

− (t+ ")−p,−[(1− t) + "]−p
}

(23)

Exponential function

'(t) = min
{

1− exp(−�t), 1− exp(−�(1− t))
}

(24)

Logistic function

'(t) = min
{

[1 + exp(−�t)]−1, [1 + exp(−�(1− t))]−1
}

(25)

where ", �, p > 0. In Fig. 1, we compare the ' term related to the FP heuristic with those given
by (22)-(25).

Now we prove that, for a particular choice of the ' term, the assumptions of Proposition 2 are
satisfied.

Proposition 3 For the term (22), there exists a value "̄ > 0 such that for any " ∈ (0, "̄]
assumptions 1) and 2) of Proposition 2 are satisfied.

Proof. It can be easily noticed that when x ∈ {0, 1} we have

'(x) = ln ",

then assumption 1) of Proposition 2 is satisfied.

Now, without any loss of generality, we suppose

�l = min{�l, 1− �u} (26)
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Figure 1: Comparison between the original FP term (dashed line) and the new terms (solid
line).

and we notice that there exists a value "̄ > 0 such that for any " ∈ (0, "̄] the following inequality
holds:

ln "− ln(�l + ") + n(ln(1/2 + ")− ln(�l + ")) ≤ 0. (27)

As the function '(t) is strictly increasing in [0, 1
2
] and strictly decreasing in (1

2
, 1] and it is

symmetric with respect to the point t = 1
2
, we have for �̄ ∈ {0, 1} and �̃ ∈ [�l, �u]

'(�̄)− '(�̃) ≤ '(0)− '(�l).

Then we set
M = '(�l)− '(0) = ln(�l + ")− ln ", (28)

and (i) in Assumption 2) of Proposition 2 is satisfied.

As the maximum of '(t) is attained at t = 1
2
and due to the structure of function '(t), we have

for any choice of �̄, �̃ ∈ [�l, �u]:

∣'(�̄)− '(�̃)∣ ≤ '(1/2)− '(�l). (29)

Since ii) in Assumption 2) needs to be verified for any choice of �̄, �̃ ∈ [�l, �u], by (29) it is
sufficient to show that

'(1/2)− '(�l) ≤
M

n
.

By using (28) and (27), we can easily verify that for any " ∈ (0, "̄], the following inequality holds:

'(0)− '(�l) + n('(1/2)− '(�l)) = (30)

= ln "− ln(�l + ") + n(ln(1/2 + ")− ln(�l + ")) ≤ 0.
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Then (ii) in Assumption 2) of Proposition 2 is satisfied. □

The result proved in Proposition 3 for the term (22) can also be proved for the terms (23)-(25)
repeating the same arguments, thus all the merit functions (22)-(25) are suitable to penalize the
number of variables that violate the integrality constraints.

We remark that functions (22)-(25) have also another interesting theoretical property: they can
be used in an exact penalty approach like that proposed in [28]. In fact, it is possible to prove
that terms (22)-(25) can be used to transform a MIP problem into an equivalent continuous
problem:

Proposition 4 Let f be a Lipschitz continuous function bounded on P. For every penalty term

�(x) =
∑

i∈I

'(xi)

with ' as in (22)-(25) a value "̄ > 0 exists such that, for any " ∈]0, "̄], problem

min f(x), s.t. x ∈ P, xi ∈ {0, 1}, ∀i ∈ I (31)

and problem
min f(x) + �̃(x, "), s.t. x ∈ P, 0 ≤ xi ≤ 1, ∀i ∈ I (32)

where

�̃(x, ") =

⎧



⎨



⎩

�(x) if � is given by (8) and ' by (22)-(23)

1

"
�(x) if � is given by (8) and ' by (24)-(25)

have the same minimum points.

Proof. the proof follows the same arguments as in [28]. See Appendix A for further details. □

This result suggests that these new merit functions can be used to define new Feasibility Pump
heuristics that improve the quality of the solution in terms of objective function value like those
proposed in [1] and [8]. In fact, the heuristic proposed in [1] can be seen as a Frank-Wolfe
algorithm applied to problem (32) with the penalty term (8). Furthermore, the restarting rules
used in the Feasibility Pump algorithm can be reinterpreted as techniques for escaping from
noninteger stationary points.
We can also include these functions into an algorithmic framework to determine the minimizer
of a nonlinear programming problem with integer variables (see e.g. [31]). Anyway, the use of
the continuous reformulation of the original mixed integer problem is beyond the scope of this
paper and will be the subject of a future work.
In the next Section we will focus on finding a first feasible solution to a MIP problem. In
particular, we tackle problem (21) by a modified Feasibility Pump approach based on the concave
functions described above.

5 A reweighted version of the Feasibility Pump heuristic

The use of the merit functions (22)-(25) defined in the previous section leads to a new FP
scheme in which the ℓ1-norm used for calculating the next LP-feasible point is replaced with a
“weighted” ℓ1-norm of the form

ΔW (x, x̃) =
∑

j∈I

wj ∣xj − x̃j ∣ = ∥W (x− x̃)∥1, (33)
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where
W = diag(w1, . . . , wn)

and wj , j = 1, . . . , n are positive weights depending on the merit function � chosen. The main
feature of the method is the use of an infeasibility measure that

- tries to discourage the optimal solution of the relaxation from being far from x̃ (similarly
to the original FP algorithm);

- takes into account, in some way, the information carried by the LP-feasible points obtained
at the previous iterations of the algorithm for speeding up the convergence to 0-1 feasible
points.

Here we report an outline of the algorithm:

Reweighted Feasibility Pump (RFP) - basic version

Initialization: Set k = 0, let x̄0 := argmin{cTx : x ∈ P}

While (not stopping condition) do

Step 1 If (x̄k is integer) return x̄k

Step 2 Compute x̃k = round(x̄k)

Step 3 If (cycle detected) perturb(x̃k)

Step 4 Compute x̄k+1 := argmin{∥W k(x− x̃k)∥1 : x ∈ P}

Step 5 Update k = k + 1

End While

We assume that the round and perturb procedures are the same as those described in Section 2 for
the original version of the FP heuristic. Anyway, different rounding and perturbing procedures
can be suitably developed.
Following the same reasoning of Section 3, we can reinterpret the reweighted FP heuristic without
perturbation as the unitary stepsize Frank-Wolfe algorithm applied to the merit function �. Let
us now consider a generic iteration k of the reweighted FP. At Step 2, the algorithm rounds the
solution x̄k, thus giving x̃k. Then, at Step 4, it computes the solution of the LP problem

x̄k+1 ∈ argminΔW k(x, x̃k)

s.t. Ax ≥ b (34)

0 ≤ xj ≤ 1 ∀j ∈ I.

Similarly to the FP algorithm, these two operations can be included in the unique step of
calculating the solution of the following LP problem:

min
∑

j∈I:x̄k
j<

1
2

wk
j xj −

∑

j∈I:x̄k
j≥

1
2

wk
j xj

s.t. Ax ≥ b (35)

0 ≤ xj ≤ 1 ∀j ∈ I.

By setting
wk
j = ∣gkj ∣

12



with gk ∈ ∂�(x̄k), Problem (35), as we have already said, can be seen as the iteration of the
Frank Wolfe method with unitary stepsize applied to the minimization problem (21).

In order to highlight the differences between the ℓ1-norm and the weighted ℓ1-norm we report
the following example:

Example 2 Consider the MILP problem:

min cTx (36)

s.t. x ∈ P

x ∈ {0, 1}3

where P ⊂ [0, 1]3 is the polyhedron in Fig. 2. Let xL =
(

9
20
, 1
8
, 1
8

)

be the solution of the linear
relaxation of (36) and xI = (0, 0, 0) be its rounding. The minimization of Δ(x, xI) = ∥x− xI∥1
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Figure 2: Feasible set of Problem 36.

over P leads to xN =
(

1
8
, 1
8
, 1
8

)

, since ∥xN − xI∥1 < ∥x− xI∥1, for all x ∈ P .
Consider now the weighted ℓ1-norm obtained using the logarithmic merit function

�(x) =
∑

i∈I

min
{

ln(xi + "), ln[(1− xi) + "]
}

,

where " is a small positive value. By minimizing the weighted distance between x and xI over
P , we obtain the point xF = (1, 0, 0). In fact, we have

ΔW (xF , xI) < ΔW (x, xI),

for all x ∈ P . Thus the ℓ1-norm finds a solution which does not satisfy the integrality con-
straints, while the reweighted ℓ1-norm gets an integer feasible solution.

Finally, we want to remark that the original Feasibility Pump Algorithm is a special case of the
Reweighted Feasibility Pump obtained by setting W k = I.

13
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Figure 3: Behaviour of the function obtained combining exponential and logistic function

6 Combining Two Merit Functions

As we have already said, the main drawback of the FP heuristic is its tendency to stall (i.e. to get
stuck in a point that is not an integer feasible solution). For this reason, a random perturbation
(or a restart) is performed. A good idea might be that of modifying the objective function (in
addiction to the random perturbation/restart usually adopted) any time the algorithm stalls.
This modification may help escaping from the last stationary point obtained and speed up the
convergence to an integer feasible solution. A possibility might be that of considering a convex
combination of two different merit functions:

�(x) = ��1(x) + (1− �)�2(x) (37)

with � ∈ [0, 1], and modifying the � parameter as soon as the algorithm stalls. This is equivalent
to use, in the RFP algorithm:

1) a matrix W k with the following terms:

wk
j = �k∣gkj ∣+ (1− �k)∣ℎkj ∣ j = 1, . . . , n

where gkj ∈ ∂�1(x̄
k) and ℎkj ∈ ∂�2(x̄

k);

2) an updating rule for the � parameter that slightly (significantly) changes the penalty term
anytime a perturbation (restart) is performed.

In Figure 3 we can see the behaviour of a function obtained by combining the exponential and
the logistic function.
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7 Numerical Results

In this section we report computational results to compare our version of the FP with the
Feasibility Pump algorithm described in [15]. The test set used in our numerical experience
consists of 143 instances of 0-1 problems from MIPLIB2003 [2] and COR@L libraries. All the
algorithms were implemented in C and we have used ILOG Cplex [24] as solver of the linear
programming problems. All tests have been run on an Intel Core2 E8500 system (3.16GHz)
with 3.25GB of RAM.
We compare the FP with the reweighted version in two different scenarios:

1 Randomly generated starting points: for the terms (8), (22)-(25), we solved the
corresponding penalty formulation (21) by means of the Frank-Wolfe algorithm using 1000
randomly generated starting points. The aim of the experiment was to highlight the ability
of each penalty formulation to find an integer feasible solution.

2 FP vs RFP: in order to evaluate the effectiveness of the new penalty functions, we
compared the Feasibility Pump algorithm with the reweighted Feasibility Pump, in which
the distance ΔW (x, x̃) is defined using the terms (22)-(25).

3 FP vs Combined RFP: we made a comparison between the Feasibility Pump algorithm
and the reweighted Feasibility Pump with the distance ΔW (x, x̃) obtained combining two
different penalty terms. The aim of the experiment was to show that the combination of
two different functions can somehow improve the RFP algorithm performance.

We performed our experiments using:

- Penalty term (8) denoted by FP;

- Penalty term (22) denoted by Log, with " = 0.1;

- Penalty term (23) denoted by Hyp, with " = 0.1;

- Penalty term (24) denoted by Exp, with � = 0.5;

- Penalty term (25) denoted by Logis, with � = 0.1.

We stop the algorithms if an integer solution is found or if the limit of 1500 iterations is reached.
Due to the random effects introduced by perturbations and major restarts, each problem is
tested on a particular penalty function on 10 runs (with different random seeds).

7.1 Computational results for randomly generated starting points

In this first experiment we applied Frank-Wolfe algorithm to solve problem (21) with the objec-
tive functions (8), (22)-(25). The algorithm stops when it finds a stationary point (which is not
necessarily integer feasible). The goal of the experiment was to understand how good is each
function in finding an integer feasible solution. In order to obtain reliable statistics we used 1000
randomly generated starting points. The results obtained on the MIP problems when using ran-
domly generated starting points are shown in Figure 4, where we report the box plots related to
the distribution of the number of integer feasible solutions found by each function (we discarded
the problems where no function found an integer feasible solution). On each box, the central
mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend
to the most extreme data points not considered outliers, and outliers are plotted individually.
We can observe that the results obtained by means of the Exp and the Logis functions, in terms
of number of integer feasible solutions found, are slightly better than those obtained using the

15



0

100

200

300

400

500

600

700

800

900

1000

FP EXP LOG HYP LOGIS

Figure 4: Comparison between the original FP term and the new terms for randomly generated
starting points.
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Figure 5: Number of integer feasible solutions found in the parallel experiment.

FP. FP, in turn, guarantees better results than Log and Hyp penalty functions. Anyway, the
logarithmic and hyperbolic functions find, for a consistent number of problems, the highest num-
ber of integer feasible solutions, so giving a good tool for finding an integer feasible solution.
This preliminary computational experience seems to show that the functions have a different
behavior in forcing the integrality of the solution. These diversities could be somehow exploited
into a multistart strategy. In particular, we could develop a new framework where the mini-
mization of different functions is carried out in parallel. In order to investigate the effect of the
parallel use of different functions, we applied the Frank-Wolfe algorithm to three formulations
(using three different randomly generated starting points) and we chose the solution with the
highest number of integer components among the three. We compared this strategy with the one
where we use the same formulation on three different starting points. In Figure 5, we report the
results obtained on 333 repetitions of the parallel experiment, when using for each repetition:

- the same formulation with three different starting points;

- three different formulations (FP, Exp and Logis) each one with a different starting point.

We discarded the problems where in both cases no integer feasible solution over the 333 repeti-
tions was found. The results show that using three different formulations is better than using

16



just one formulation. Then, a wider availability of efficient penalty functions is important since
it can ease the search of integer feasible solutions for different classes of problems.

7.2 Comparison between FP and RFP

In order to evaluate the ability of finding a first feasible solution, we report in Table 1, for each
penalty term:

∙ The number of problems for which no feasible solution has been found (Not found);

∙ The number of problems for which a feasible solution has been found at least once (Found
at least once);

∙ The number of problems for which a feasible solution has been found for all the ten runs
(Found 10 times);

∙ The mean number of feasible solutions found (Average number of f.s. found).

As we can easily see from Table 1, FP, Exp and Logis terms have a similar behavior and they
are slightly better than Hyp and Log terms.
In Table 2, in order to show the efficiency in terms of objective function value, we report for
each penalty term:

∙ Number of problems for which the best o.f. value (mean over ten runs) is obtained (Best
Mean o.f.);

∙ Number of problems for which the best o.f. value (minimum over ten runs) is obtained
(Best Min o.f.).

As we can see by taking a look at Table 2, the Log and Hyp terms guarantee the best perfor-
mance in terms of objective function value. Furthermore, Exp and Logis terms are comparable
and perform better than FP term.

Not found Found at least once Found 10 times Mean number of f.s. found

FP 16 9 128 8.61

Exp 15 11 127 8.75

Log 18 15 120 8.28

Hyp 27 15 111 7.65

Logis 16 11 126 8.71

Table 1: Comparison between FP and RFP (Feasible solutions)

Best mean o.f. Best min o.f.

FP 24 24

Exp 28 27

Log 30 26

Hyp 32 28

Logis 27 25

Table 2: Comparison between FP and RFP (Objective function value)

The detailed results of the comparison between the Feasibility Pump algorithm and the reweighted
version obtained using the penalty terms (22)-(25) are shown in Tables 7 - 11. The results related
to the problems for which an integer feasible solution is found in all the ten runs are reported
in Tables 7 - 9. On the vertical axis of the tables, we have
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∙ the mean number of iterations needed to find a solution (Iter),

∙ the mean objective function value of the first integer feasible solution found (Obj),

∙ the mean CPU time (Time).

The results related to the problems for which an integer feasible solution is found in less than
ten runs are reported in Tables 10 - 11. On the vertical axis of the tables, we have

∙ the number of times an integer feasible solution is found (F. s. found),

∙ the mean number of iterations needed to find a solution (Iter),

∙ the mean CPU time (Time).

In case of failure, we report “-” for both Iter and Time. By taking a look at the tables, we
can notice that the RFP algorithm obtained using the Exp penalty (Exp RFP algorithm) and
the one obtained using the Logis penalty (Logis RFP algorithm) are competitive with the FP
in terms of both number of iterations and CPU time. They are also better than the RFP
algorithm with the Log penalty (Log RFP algorithm) and the one with the Hyp penalty (Hyp
RFP algorithm) that, in addition, have a larger number of failures. Despite these facts, Log
RFP and Hyp RFP algorithms generally give good results in terms of objective function value.
In order to better assess the differences in terms of iterations and CPU time between FP and
the various versions of the RFP algorithm, we report in Table 3 the geometric means for all the
algorithms calculated over 108 instances (those problems for which a feasible solution is found
in all the ten runs). In the calculations of the geometric means individual values smaller than 1
are replaced by 1. The results in Table 3 seem to confirm that Exp and Logis RFP algorithms
are competitive with FP algorithm.

FP Exp, " = 0.1 Log, " = 0.1 Hyp, " = 0.1 Logis,� = 0.1

Iter Time Iter Time Iter Time Iter Time Iter Time

5.774 1.793 4.851 1.683 5.684 1.657 7.193 1.757 4.869 1.678

Table 3: Comparison between FP and RFP (Geometric Means)

In order to better assess the differences between the FP algorithm and the Reweighted FP
algorithm, we considered the 126 problems for which an integer feasible solution is found in all
the ten runs by FP, Exp RFP and Logis RFP algorithms. We divided the problems in three
different classes depending on the CPU time t (seconds) needed by the FP algorithm to solve
the problem:

- Easy. Problems solved by FP in a time t ≤ 1 (81 problems);

- Medium. Problems solved by FP in a time 1 < t ≤ 20 (34 problems);

- Hard. Problems solved by FP in a time t > 20 (11 problems).

We report in Figure 6 the results, in terms of CPU time, obtained by the FP, Exp RFP and Logis
RFP algorithms on the three classes of problems. Exp RFP and Logis RFP are comparable with
FP on the Easy and Medium classes, while they outperform it on the Hard class. Once again,
we could develop a new framework where different algorithms are used in parallel. In order to
investigate the effect of the parallel use of different algorithms, we ran three algorithms and we
chose the solution with the lowest CPU time among the three. We report in Figure 7 the results
obtained using:

- 3 runs of the FP algorithm;
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- one different algorithm (FP, Exp RFP and Logis RFP) for each run.

By taking a look at the results, we can easily see that the use of different functions improves
the performance in Medium and Hard classes, while guarantees comparable results on the Easy
class.
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Figure 6: Results in terms of CPU time for the three classes of problems.
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Figure 7: Results in terms of CPU time for the parallel experiment.

7.3 Comparison between FP and combined RFP

In this subsection, we show the effects of combining two different functions. We report the
results obtained combining the following functions:

- Fp term and Log, denoted by FP+Log;

- Exp term and Log term, denoted by Exp+Log;

- Logis term and Log term, denoted by Logis+Log;

- Exp term and Logis term, denoted by Exp+Logis.

We set  1(x) equal to the penalty function obtained using the first term and  2(x) equal to the
other penalty function. We start with �0 = 1 and we reduce it every time a perturbation occurs.
More precisely, we can have two different cases:

- Weak Perturbation Update: �k+1 = 0.5�k
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- Strong Perturbation Update: �k+1 = 0.1�k

When a strong perturbation occurs, it means that the algorithm is stuck in a cycle. Then the
updating rule significantly changes the penalty term, so moving towards the function belonging
to the second class.
In order to evaluate the ability of finding a first feasible solution, we report in Table 4, for each
penalty term:

∙ The number of problems for which no feasible solution has been found (Not found);

∙ The number of problems for which a feasible solution has been found at least once (Found
at least once);

∙ The number of problems for which a feasible solution has been found for all the ten runs
(Found 10 times);

∙ The mean number of feasible solutions found (Average number of f.s. found).

As we can easily see from Table 4, All terms have a similar behavior.
In Table 5, in order to show the efficiency in terms of objective function value, we report for
each penalty term:

∙ Number of problems for which the best o.f. value (mean over ten runs) is obtained (Best
Mean o.f.);

∙ Number of problems for which the best o.f. value (minimum over ten runs) is obtained
(Best Min o.f.).

As we can see by taking a look at Table 5, the combined terms guarantee better performance
in terms of objective function value than the FP term. Furthermore, Exp+Log combination
guarantees the best performance.

Not solved Solved at least once Solved 10 times Mean number of f.s. found

FP 16 9 128 8.61

FP+Log 17 11 125 8.61

Exp+Log 19 6 128 8.55

Logis+Log 17 9 127 8.58

Exp+Logis 16 10 127 8.59

Table 4: Comparison between FP and Combined RFP (Feasible solutions)

Best mean o.f. Best min o.f.

FP 19 19

FP+Log 31 30

Exp+Log 35 33

Logis+Log 32 30

Exp+Logis 32 30

Table 5: Comparison between FP and Combined RFP (Objective function value)

The detailed results of the comparison between the Feasibility Pump algorithm and the reweighted
version obtained using the combied penalty terms are shown in Tables 12 - 16. The results re-
lated to the problems for which an integer feasible solution is found in all the ten runs are
reported in Tables 12 - 14. On the vertical axis of the tables, we have
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∙ the mean number of iterations needed to find a solution (Iter),

∙ the mean objective function value of the first integer feasible solution found (Obj),

∙ the mean CPU time (Time).

The results related to the problems for which an integer feasible solution is found in less than
ten runs are reported in Tables 15 - 16. On the vertical axis of the tables, we have

∙ the number of times an integer feasible solution is found (F. s. found),

∙ the mean number of iterations needed to find a solution (Iter),

∙ the mean CPU time (Time).

In case of failure, we report “-” for both Iter and Time. By taking a look at the tables, we
can notice that the Combined RFP algorithm obtained using the Exp and the Logis penalty
(Exp+Logis RFP algorithm) guarantees the best performance. Furthermore, all the versions of
the Combined RFP algorithm are competitive with the standard FP algorithm. We report in
Table 6 the geometric means for all the algorithms calculated over 123 instances (those problems
for which a feasible solution is found in all the ten runs). In the calculations of the geometric
means individual values smaller than 1 are replaced by 1. The results in Table 6 seem to
confirm that the Exp+Logis RFP Algorithm is the best among the combined versions of the
RFP algorithm and that all the combined RFP algorithms behave favorably when compared to
the original FP algorithm in terms of CPU time.

FP FP+Log Exp+Log Logis+Log Exp+Logis

Iter Time Iter Time Iter Time Iter Time Iter Time

6.252 2.034 6.474 1.630 6.438 1.650 6.388 1.663 5.765 1.617

Table 6: Comparison between FP and Combined RFP (Geometric Means)
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Figure 8: Results in terms of CPU time for the three classes of problems.

In order to better assess the differences between the FP algorithm and the Exp+Logis RFP
algorithm, we considered the 124 problems for which an integer feasible solution is found in all
the ten runs by the two algorithms. We divided the problems in three different classes depending
on the CPU time t (seconds) needed by FP to solve the problem:

- Easy. Problems solved by FP in a time t ≤ 1 (81 problems);

- Medium. Problems solved by FP in a time 1 < t ≤ 20 (33 problems);

21



- Hard. Problems solved by FP in a time t > 20 (10 problems).

We report in Figure 8 the results, in terms of CPU time, obtained by the FP and Exp+Logis
RFP algorithms on the three classes of problems. As we can see, Exp+Logis RFP improves the
performance in all the classes.

7.4 Benchmarking Algorithms via Performance Profiles

In order to give a better interpretation of the results generated by the various algorithms we
decided to use performance profiles [14]. We consider a set A of na algorithms, a set P of np
problems and a performance measure mp,a (e.g. number of iteration, CPU time). We compare
the performance on problem p by algorithm a with the best performance by any algorithm on
this problem using the following performance ratio

rp,a =
mp,a

min{mp,a : a ∈ A}
.

Then, we obtain an overall assessment of the performance of the algorithm by defining the
following value

�a(�) =
1

np
size{p ∈ P : rp,a ≤ �},

which represents the probability for algorithm a ∈ A that the performance ratio rp,a is within
a factor � ∈ R of the best possible ratio. The function �a represents the distribution function
for the performance ratio. Thus �a(1) gives the fraction of problems for which the algorithm a
was the most effective, �a(2) gives the fraction of problems for which the algorithm a is within
a factor of 2 of the best algorithm, and so on.
In Figure 9, we report the performance profiles related to the comparison between FP, Exp RFP
and Logis RFP, in terms of number of iterations and CPU time. It is clear that Exp RFP and
Logis RFP functions have a higher number of wins in terms of number of iterations and Exp
RFP has the highest number of wins in terms of computational time. Furthermore, the two
RFP algorithms are better in terms of robustness.
In Figure 10, we report the performance profiles related to the comparison between FP and the
combined version of the RFP obtained using Exp and Logis functions, in terms of number of
iterations and CPU time. We can notice that the FP is slightly better in the number of wins,
but the combined RFP is better in terms of robustness. The performance profiles related to the
CPU time clearly show that the combined RFP outperforms the FP both in terms of number
of wins and robustness.

8 Conclusions

In this paper, we focused on the problem of finding a first feasible solution for a 0-1 MIP problem.
We started by interpreting the Feasibility Pump heuristic as a Frank-Wolfe method applied to
a nonsmooth concave merit function. Then we noticed that the reduction of the merit function
used in the FP scheme can correspond to an increase in the number of noninteger variables of
the solution. For this reason, we proposed new concave penalty functions that can be included in
the FP scheme having two important properties: they decrease whenever the number of integer
variables increases; if they decrease, then the number of noninteger variables does not increase.
Due to these properties, the functions proposed should speed up the convergence towards integer
feasible points. We reported computational results on a set of 143 0-1 MIP problems. This
numerical experience shows that the new version of the Feasibility Pump obtained using two
of the proposed functions (namely Exp and Logis) compares favorably with the original version
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of the FP. Furthermore, it highlights that the use of more than one merit function at time
(i.e. parallel framework, combination of functions) can significantly improve the efficiency of the
algorithm.
In [13], we reinterpret the FP for general MIP problems as a Frank-Wolfe method applied to a
suitably chosen function and we extend our approach to this class of problems. In order to not
get the present work cumbersome, we decided not to report these results.
Future work will be devoted to the definition of new perturbing procedures based on the proposed
functions, to the development of new FP-like methods that, by taking into account the objective
function values, guarantee the improvement of the solution quality, and to an extensive numerical
experience performed on general MIP problems.

9 Appendix A

For convenience of the reader we report the proof of Proposition 4. We recall a general result
concerning the equivalence between an unspecified optimization problem and a parameterized
family of problems.

Consider the problems

min f(x) (38)

s.t. x ∈W

min f(x) +  (x, ") (39)

s.t. x ∈ X

We state the following

Theorem 1 Let W and X be compact sets. Let ∥ ⋅ ∥ be a suitably chosen norm. We make the
following assumptions.

A1) The function f is bounded on X and there exists an open set A ⊃ W and a real number
L > 0, such that, ∀ x, y ∈ A, f satisfies the following condition:

∣f(x)− f(y)∣ ≤ L∥x− y∥. (40)

The function  satisfies the following conditions:

A2) ∀ x, y ∈W and ∀ " ∈ ℝ+,
 (x, ") =  (y, ").

A3) There exist a value "̂ and, ∀ z ∈ W , there exists a neighborhood S(z) such that, ∀ x ∈
S(z) ∩ (X ∖W ), and " ∈]0, "̂], we have

 (x, ")−  (z, ") ≥ L̂∥x− z∥, (41)

where L̂ > L is chosen as in (40). Furthermore, let S =
∪

z∈W

S(z), ∃ x̄ /∈ S such that

lim
"→0

[ (x̄, ")−  (z, ")] = +∞, ∀ z ∈W, (42)

 (x, ") ≥  (x̄, "), ∀ x ∈ X ∖ S, ∀ " > 0. (43)

Then, ∃ "̃ ∈ ℝ such that, ∀ " ∈]0, "̃], Problems (38) and (39) have the same minimum points.
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Proof. See [28].

Now we give the proof of the Proposition 4, with

W =
{

x ∈ P : xi ∈ {0, 1}, ∀i ∈ I
}

, X =
{

x ∈ P : 0 ≤ xi ≤ 1, ∀i ∈ I
}

.

Proof of Proposition 4. As we assume that the function f satisfies assumption A1) of Theo-
rem 1, the proof can be derived by showing that every penalty term (22)-(25) satisfies assumption
A2) and A3) of Theorem 1.

Consider the penalty term (22).
Let c be the cardinality of I, for any x ∈W we have

 (x, ") = c ⋅ log(")

and A2) is satisfied.
We now study the behavior of the function �(xi), i ∈ I, in a neighborhood of a point zi ∈ {0, 1}.
We distinguish three different cases:

1. zi = 0 and 0 < xi < � with � < 1
2
: We have that �(xi) = ln(xi + ") which is continuous

and differentiable for 0 < xi < �, so we can use mean value Theorem obtaining that

�(xi)− �(zi) =

(

1

x̃i + "

)

∣xi − zi∣, (44)

with x̃i ∈ (0, xi). Since x̃i < �, we have

�(xi)− �(zi) ≥

(

1

�+ "

)

∣xi − zi∣. (45)

Choosing � and " such that

�+ " ≤
1

L̂
, (46)

we obtain
�(xi)− �(zi) ≥ L̂∣xi − zi∣. (47)

2. zi = 1 and 1 − � < xi < 1 with � < 1
2
: We have that �(xi) = ln(1 − xi + ") which

is continuous and differentiable for 1 − � < xi < 1, so we can use mean value Theorem
obtaining that

�(xi)− �(zi) =

(

−
1

1− x̃i + "

)

(xi − zi) =
( 1

1− x̃i + "

)

∣xi − zi∣, (48)

with x̃i ∈ (xi, 1). Since � <
1
2
and x̃i > 1− � we have 1

1−x̃i
> 1

�
then

�(xi)− �(zi) ≥

(

1

�+ "

)

∣xi − zi∣. (49)

We have again that (47) holds when � and " satisfy (46).

3. zi = xi = 0 or zi = xi = 1: We have �(xi)− �(zi) = 0.
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We can conclude that, when � and " satisfy (46),

 (x, ")−  (z, ") ≥ L̂
∑

i∈I

∣xi − zi∣ ≥ L̂ sup
i∈I

∣xi − zi∣ (50)

for all z ∈W and all x such that supi∈I ∣xi − zi∣ < �.

Now we define S(z) = {x ∈ Rn : supi∈I ∣xi−zi∣ < �} and S =
∪N

i=1 S(zi) where N is the number
of points z ∈W .
Let x̄ /∈ S be such that ∃j ∈ I : x̄j = � (x̄j = 1− �) and x̄i ∈ {0, 1} for all i ∕= j, i ∈ I.
Let {"k} be a sequence such that "k → 0 for k → ∞, we can write for each z ∈W :

lim
k→∞

[ (x̄, "k)−  (z, "k)] = lim
k→∞

(

[ln(�+ "k) + (c− 1) ln("k)]− c ln("k)
)

=

lim
k→∞

(

ln(�+ "k)− ln("k)
)

= +∞

and (42) holds.
Then ∀x ∈ X∖S, and ∀" > 0 we have for the monotonicity of the logarithm:

 (x, ")−  (x̄, ") =
∑

i ∕=j

min{ln(xi + "), ln(1− xi + ")} − (c− 1) ln(")

+ min{ln(x|̃ + "), ln(1− x|̃ + ")} − ln(�+ ") ≥ 0,

where � ≤ x|̃ ≤ 1− �. Then (43) holds, and Assumption A3) is satisfied.
The proofs of the equivalence between (31) and (32) using the other penalty terms follow by
repeating the same arguments used here. □
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Problem FP Exp , " = 0.1 Log, " = 0.1 Hyp, � = 0.5 Logis, � = 0.1

Iter Obj Time Iter Obj Time Iter Obj Time Iter Obj Time Iter Obj Time

a1c1s1 25.60 21615.71 2.96 22.70 20365.53 2.37 15.90 20648.03 1.67 26.20 20248.53 2.10 14.70 19736.22 2.56

aflow30a 19.90 5691.70 0.07 12.00 4685.30 0.05 13.40 4049.80 0.04 11.30 3431.10 0.03 14.80 5224.80 0.05

aflow40b 8.50 5711.90 0.12 12.80 5897.20 0.16 11.70 6230.50 0.14 23.30 5934.30 0.21 6.70 4911.10 0.09

cap6000 18.10 -1733965.90 1.20 21.10 -1478513.70 1.50 19.20 -1724741.60 1.01 23.40 -1607966.90 0.94 15.70 -1887299.50 1.22

dano3mip 3.00 1000.00 19.82 1.00 1000.00 18.92 1.00 1000.00 15.51 1.00 1000.00 15.63 2.00 1000.00 26.64

danoint 113.30 87.15 2.78 122.40 87.05 3.69 45.40 85.80 1.09 151.20 88.85 2.84 97.70 87.63 3.35

fast0507 3.00 179.00 97.38 2.00 185.00 98.55 1.00 190.00 85.09 1.00 192.00 86.99 3.00 185.00 103.97

fiber 7.60 14951893.74 0.02 7.90 15096530.88 0.03 9.20 15701099.78 0.03 7.60 12604483.15 0.03 7.60 15472237.20 0.02

fixnet6 11.40 11727.70 0.02 114.00 31150.40 0.25 78.70 24590.60 0.17 64.60 23190.40 0.09 5.40 14731.30 0.01

glass4 25.00 11525809584.00 0.05 105.60 10109632700.00 0.22 73.60 10712142477.00 0.15 258.50 12344594103.00 0.26 100.70 9849049943.00 0.21

harp2 188.80 -47961545.60 1.52 398.00 -48273596.10 3.31 431.40 -41761358.90 3.65 245.00 -46349981.30 2.18 360.20 -44859132.60 3.03

liu 1.00 8398.00 0.09 1.00 8398.00 0.09 1.00 8398.00 0.10 1.00 8398.00 0.09 1.00 8398.00 0.10

markshare1 1.00 292.00 0.00 1.00 292.00 0.00 1.00 292.00 0.00 1.00 292.00 0.00 1.00 292.00 0.00

markshare2 1.00 160.00 0.00 1.00 160.00 0.00 1.00 160.00 0.00 1.00 160.00 0.00 1.00 160.00 0.00

mas74 1.00 19197.47 0.00 1.00 19197.47 0.00 1.00 19197.47 0.00 1.00 19197.47 0.00 1.00 19197.47 0.00

mas76 1.00 44877.42 0.00 1.00 44877.42 0.00 1.00 44877.42 0.00 1.00 44877.42 0.00 1.00 44877.42 0.00

mkc 3.60 -271.65 0.10 3.80 -271.85 0.11 3.70 -271.85 0.11 3.50 -271.85 0.09 3.30 -271.65 0.15

mod011 1.00 0.00 0.07 1.00 0.00 0.07 1.00 0.00 0.10 1.90 3683598.35 0.14 1.00 0.00 0.07

modglob 1.00 602725627.40 0.00 1.00 562873856.90 0.00 1.00 667672982.90 0.00 1.00 663659861.20 0.01 1.00 598677581.40 0.00

net12 42.00 337.00 6.79 153.80 337.00 21.06 142.20 337.00 14.97 113.90 337.00 18.53 117.10 337.00 18.40

nsrand-ipx 3.60 346416.00 0.22 3.20 402048.00 0.27 4.10 355872.00 0.25 5.10 304112.00 0.25 3.10 401408.00 0.27

opt1217 1.00 0.00 0.01 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.01 1.00 -12.00 0.01

pk1 1.00 36.00 0.00 1.00 36.00 0.00 1.00 36.00 0.00 1.00 36.00 0.00 1.00 36.00 0.00

pp08aCUTS 3.40 12982.00 0.01 4.00 13104.00 0.01 3.60 11770.00 0.01 3.40 12051.00 0.01 3.90 12581.00 0.01

pp08a 3.10 12810.00 0.00 3.40 13152.00 0.01 3.00 13189.00 0.00 3.00 13615.00 0.00 5.20 13226.00 0.01

qiu 5.60 1539.38 0.19 4.80 1524.65 0.21 5.00 1387.35 0.19 4.40 669.84 0.22 4.30 1687.76 0.28

set1ch 4.20 104900.20 0.01 3.90 101702.80 0.01 33.60 96175.68 0.03 31.10 92687.93 0.03 4.60 105014.45 0.01

seymour 4.00 471.00 2.50 3.00 480.00 2.41 3.00 482.00 1.80 2.00 495.00 1.57 3.00 471.00 2.52

sp97ar 5.20 1468425892.00 5.39 4.50 1722631846.00 6.59 4.00 893925335.90 5.65 4.00 17668956146.00 4.47 4.70 1479783859.00 6.86

swath 84.80 36527.08 7.11 61.30 28614.67 5.37 61.90 35450.07 5.23 566.80 48160.31 36.22 34.30 21903.21 3.51

tr12-30 83.70 243560.80 0.22 154.20 260762.20 0.45 62.50 260330.90 0.20 114.10 247401.30 0.31 114.30 245892.50 0.30

vpm2 5.80 23.88 0.00 4.00 20.93 0.01 5.00 20.65 0.00 3.50 19.25 0.00 5.30 20.25 0.00

Table 7: Comparison on MIPLIB problems (integer feasible solution found in all the ten runs). FP vs RFP
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Problem FP Exp , " = 0.1 Log, " = 0.1 Hyp, � = 0.5 Logis, � = 0.1

Iter Obj Time Iter Obj Time Iter Obj Time Iter Obj Time Iter Obj Time

22433 8.50 21527.40 0.06 12.20 21527.50 0.07 13.20 21509.00 0.09 50.80 21550.30 0.14 7.80 21550.80 0.07

23588 51.60 8310.40 0.11 46.80 8314.90 0.12 392.30 8316.40 0.80 380.90 8293.70 0.77 69.40 8325.00 0.17

bc1 2.20 12.90 0.58 2.40 15.34 0.51 2.90 13.36 0.46 2.70 15.59 0.44 2.40 16.24 0.59

bienst1 11.40 89.92 0.09 1.00 68.25 0.06 1.00 68.25 0.07 1.00 68.25 0.07 1.30 75.93 0.10

bienst2 13.30 127.10 0.12 1.00 68.25 0.07 1.00 68.25 0.06 1.00 68.25 0.08 1.00 102.22 0.10

binkar10-1 27.20 609256.29 0.15 26.70 909412.54 0.15 31.40 608918.49 0.17 74.70 1509667.48 0.40 29.40 1009533.69 0.17

dano3-3 12.50 1000.00 31.74 1.00 1000.00 13.29 1.00 996.08 16.48 1.00 758.11 11.58 1.20 997.24 17.73

dano3-4 7.80 1000.00 23.95 1.00 1000.00 13.61 1.00 1000.00 13.25 1.00 1000.00 13.17 1.00 974.74 15.88

dano3-5 9.10 997.67 26.46 1.00 1000.00 14.59 1.00 1000.00 14.88 1.00 1000.00 14.83 1.00 1000.00 16.52

mcf2 146.70 82.97 3.67 85.20 85.70 2.62 100.30 86.50 2.38 183.30 86.85 3.65 173.70 82.70 6.06

mkc1 1.00 -460.93 0.12 1.00 -146.86 0.08 1.00 -311.19 0.15 1.00 -289.23 0.07 1.00 -525.33 0.12

neos5 1.00 21.00 0.00 1.00 21.00 0.00 1.00 22.00 0.01 1.00 21.00 0.00 1.00 22.00 0.01

neos6 11.80 141.60 3.50 20.00 146.80 4.80 191.30 157.40 20.42 540.50 158.40 49.85 34.60 142.20 6.97

neos13 1.00 -28.43 1.29 1.00 0.00 0.72 1.00 0.00 0.64 1.00 -37.43 0.75 1.00 -13.14 1.27

neos14 5.50 215724354.30 0.03 6.40 237071334.90 0.03 6.40 253618668.00 0.03 5.00 275922098.90 0.02 5.00 247318443.50 0.03

neos17 2.60 0.68 0.04 2.60 0.66 0.04 2.60 0.61 0.04 2.60 0.61 0.04 2.60 0.75 0.04

neos18 1.00 36.00 0.13 2.00 34.00 0.14 20.60 37.80 0.70 39.00 40.50 1.12 2.00 34.00 0.13

neos-430149 137.70 497.95 0.79 177.10 499.60 0.82 423.10 498.66 1.76 356.30 539.58 1.42 118.40 516.19 0.72

neos-476283 3.00 1056.42 444.74 1.00 729.57 121.23 1.00 681.38 116.94 1.00 630.09 152.10 1.00 680.77 71.75

neos-480878 3.00 590.70 0.10 3.00 624.72 0.10 3.00 546.81 0.08 3.00 556.93 0.09 3.00 610.31 0.11

neos-494568 2.00 29.00 1.48 1.00 -74.00 2.96 2.00 -83.00 1.45 4.90 238.70 1.88 1.00 26.00 1.67

neos-504674 85.80 30961.35 0.25 45.90 29748.56 0.14 56.00 29114.83 0.17 83.80 30126.00 0.25 11.30 29898.73 0.05

neos-504815 82.40 13912.75 0.20 118.30 15388.38 0.29 82.10 13813.72 0.20 158.00 15177.66 0.38 164.80 14854.18 0.40

neos-512201 191.20 5373.11 0.53 171.80 5165.76 0.50 210.00 5248.57 0.62 160.20 5270.02 0.48 198.80 5287.04 0.58

neos-522351 6.40 103262.07 0.48 4.90 38323.98 0.34 4.70 32313.14 0.30 6.40 31111.00 0.26 5.90 86648.70 0.58

neos-525149 1.00 61.00 12.01 1.00 63.00 11.22 1.00 63.00 9.88 1.00 66.00 7.89 1.00 63.00 7.34

neos-538867 60.40 6425.00 0.33 70.60 6072.50 0.43 53.80 8814.00 0.23 124.90 9108.50 0.50 58.30 6242.00 0.34

neos-538916 38.20 5650.00 0.20 24.90 5955.80 0.16 102.40 7938.10 0.46 160.60 7922.10 0.70 35.80 6139.80 0.20

neos-547911 18.40 15.30 7.81 5.20 15.60 3.25 12.80 15.80 3.41 15.60 15.60 2.39 9.70 14.70 6.10

neos-555694 9.00 55.90 0.35 4.00 24.80 0.21 8.50 90.39 0.33 28.10 106.77 0.57 66.30 108.52 1.10

neos-555771 56.00 130.84 1.10 17.10 91.99 0.45 45.80 123.10 0.87 16.10 95.79 0.38 169.00 110.21 2.64

neos-565815 1.00 14.00 9.12 2.00 14.00 10.13 55.00 14.70 24.38 62.20 14.80 23.44 1.00 14.00 7.32

neos-570431 4.70 27.00 0.27 5.40 37.70 0.32 4.20 14.30 0.23 5.00 19.30 0.17 5.00 29.70 0.29

neos-584851 4.00 -4.00 0.04 2.80 -3.90 0.04 39.90 -3.30 0.14 87.10 -2.50 0.31 3.80 -4.80 0.05

neos-603073 8.00 47327.85 0.08 10.40 46853.05 0.13 5.00 46611.70 0.06 5.00 46550.72 0.06 9.30 46704.76 0.11

neos-611838 4.00 4849174.32 2.18 3.00 4342869.45 1.91 3.40 4102837.86 2.93 3.50 4309473.45 2.45 3.40 5043085.61 2.16

neos-612125 3.00 4792546.67 2.81 4.80 4232007.52 3.64 4.60 4378948.77 4.26 4.10 4364312.31 3.17 3.00 4793407.04 1.83

neos-612143 3.00 4805355.24 2.92 5.20 4139911.87 2.44 4.10 4166564.73 1.80 4.20 4408307.64 3.14 3.00 4598667.63 1.90

Table 8: Comparison on COR@L problems (integer feasible solution found in all the ten runs). FP vs RFP - Part I
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Problem FP Log, " = 0.1 Hyp, " = 0.1 Exp, � = 0.5 Logis, � = 0.1

Iter Obj Time Iter Obj Time Iter Obj Time Iter Obj Time Iter Obj Time

neos-612162 3.40 4827358.83 2.93 3.40 4436190.19 3.16 4.90 4252915.18 2.71 4.50 4311181.25 3.46 3.00 5166641.34 1.99

neos-655508 0.00 63015042.00 0.04 0.00 63015042.00 0.04 0.00 63015042.00 0.04 0.00 63015042.00 0.04 0.00 63015042.00 0.04

neos-775946 124.10 764.30 3.25 126.40 857.61 3.26 41.90 714.14 1.87 80.80 749.25 1.98 98.80 794.52 2.47

neos-780889 2.00 10821585.00 48.19 2.40 11040195.00 52.38 2.00 10967417.50 50.68 2.80 11258515.00 63.65 2.00 10906187.50 50.17

neos-801834 2.00 64502.00 0.80 1.00 54872.00 0.40 2.00 61289.00 0.36 2.00 60964.00 0.38 2.00 62990.00 0.84

neos-824695 3.70 77.00 0.75 3.70 77.00 0.80 3.90 77.00 0.85 3.70 77.00 0.82 4.10 77.00 0.82

neos-825075 4.00 218.00 0.06 8.00 544.00 0.10 3.00 8.00 0.06 198.30 903.00 0.92 3.00 218.00 0.06

neos-826250 3.10 63.00 0.40 3.30 63.00 0.44 3.30 63.00 0.42 3.30 63.00 0.42 3.10 63.00 0.38

neos-826812 2.70 83.01 0.72 2.80 83.01 0.68 2.70 83.01 0.66 2.80 83.01 0.69 2.70 83.01 0.73

neos-827175 2.00 121.00 1.80 2.00 121.00 2.24 2.00 121.00 2.23 2.00 121.00 2.24 2.00 121.00 1.81

neos-839859 1.00 94247985.64 0.20 1.00 131658548.10 0.21 1.00 58556618.20 0.20 1.00 58556618.20 0.21 1.00 131658548.10 0.21

neos-860300 14.30 7685.30 3.13 13.70 8203.30 2.45 25.60 7092.90 2.03 144.90 9005.70 4.52 10.70 6677.80 2.85

neos-886822 2.00 138398.00 0.26 1.00 178597.50 0.20 1.00 28820.50 0.17 1.00 28820.50 0.16 2.00 178597.50 0.25

neos-892255 3.60 18.70 0.15 3.70 18.90 0.14 3.80 18.80 0.13 10.80 48.40 0.33 3.70 18.90 0.14

neos-906865 2.00 9105.20 0.05 2.00 9910.60 0.05 2.00 9910.20 0.05 2.00 10714.80 0.04 2.00 10712.40 0.05

neos-955215 2.20 9037.66 0.01 3.00 967.60 0.01 3.00 911.58 0.01 3.00 897.42 0.01 3.40 928.70 0.01

neos-1058477 2.80 3.58 0.02 2.40 3.76 0.02 2.80 2.78 0.02 2.40 3.74 0.03 3.80 5.40 0.03

neos-1171448 1.00 0.00 0.60 1.00 0.00 0.50 1.00 0.00 0.53 1.00 0.00 0.45 1.00 0.00 0.49

neos-1200887 1.00 -38.00 0.02 1.00 -52.00 0.02 1.00 -42.00 0.02 1.00 -38.00 0.02 1.00 -44.00 0.02

neos-1211578 1.00 -51.00 0.00 1.00 -48.00 0.01 1.00 -44.00 0.00 1.00 -52.00 0.00 1.00 -48.00 0.00

neos-1225589 27.20 23555348134.00 0.05 10.60 24272916822.00 0.02 29.30 23041323223.00 0.06 26.20 23771592587.00 0.05 16.60 22423855518.00 0.03

neos-1228986 1.00 -92.00 0.00 1.00 -80.00 0.00 1.00 -72.00 0.01 1.00 -70.00 0.01 1.00 -75.00 0.00

neos-1337489 1.00 -51.00 0.00 1.00 -48.00 0.01 1.00 -44.00 0.00 1.00 -52.00 0.00 1.00 -48.00 0.00

neos-1413153 2.00 119.12 0.37 1.00 119.12 0.39 1.00 119.12 0.38 1.00 119.12 0.40 1.00 119.12 0.37

neos-1415183 1.00 425.60 0.53 1.00 128.61 0.46 1.00 128.61 0.48 1.00 128.61 0.47 1.00 425.60 0.58

neos-1437164 23.60 25.90 0.14 63.80 23.30 0.35 22.50 22.70 0.13 42.00 21.00 0.25 9.20 23.50 0.06

neos-1440447 1.00 -52.00 0.01 1.00 -56.00 0.01 1.00 -60.00 0.01 1.00 -46.00 0.01 1.00 -60.00 0.01

neos-1460265 35.70 15925.00 0.18 17.40 15820.00 0.11 25.90 15910.00 0.15 40.80 15840.00 0.21 28.80 15905.00 0.16

neos-1480121 2.00 89.33 0.00 2.00 95.80 0.00 2.00 95.80 0.00 2.00 95.80 0.00 2.00 89.33 0.00

neos-1489999 5.80 476.90 0.05 6.80 483.00 0.06 5.10 498.30 0.05 4.70 487.40 0.05 6.20 481.50 0.05

neos-1516309 9.00 54363.50 0.13 12.70 53987.00 0.17 11.70 53707.00 0.15 9.80 54282.00 0.13 11.80 53105.00 0.15

neos-1595230 3.50 20.40 0.10 4.10 21.30 0.10 4.50 20.50 0.11 4.90 21.80 0.10 4.00 20.30 0.10

neos-1597104 4.60 -7.10 8.08 4.30 -7.50 11.10 8.70 -2.00 8.98 28.50 -7.50 30.90 4.00 -6.50 8.50

neos-1599274 3.00 36277.60 0.17 3.00 37547.60 0.17 6.00 37347.60 0.14 17.20 52419.12 0.38 5.30 53258.16 0.17

neos-1620807 8.80 9.50 0.02 7.20 9.50 0.02 10.50 9.80 0.02 7.80 9.80 0.02 7.00 9.10 0.02

prod1 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

qap10 516.80 502.40 1690.54 1.00 406.00 7.45 1.00 406.00 7.91 2.00 406.00 11.95 1.00 406.00 8.74

roy 38.30 5810.25 0.03 30.30 5887.40 0.02 17.20 5761.75 0.02 30.70 5806.61 0.03 37.20 5590.45 0.03

Table 9: Comparison on COR@L problems (integer feasible solution found in all the ten runs). FP vs RFP - Part II
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Problem FP Exp , " = 0.1 Log, " = 0.1 Hyp, � = 0.5 Logis, � = 0.1

F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time

10teams 10 122.40 7.34 10 107.00 6.24 1 - - 0 - - 10 92.30 5.86

air04 10 11.20 12.52 10 4.60 8.13 5 - - 0 - - 10 21.20 19.56

air05 10 2.00 2.42 10 3.00 2.88 10 7.00 4.58 1 - - 10 5.00 3.51

misc07 10 39.60 0.13 10 62.90 0.20 10 490.80 0.96 8 - - 10 46.50 0.16

momentum1 10 474.20 577.99 10 382.40 482.49 5 - - 0 - - 10 450.70 544.05

nw04 10 1.00 0.94 10 1.00 1.79 8 - - 7 - - 10 1.00 1.48

p2756 0 - - 0 - - 0 - - 0 - - 0 - -

protfold 10 360.20 107.67 9 - - 0 - - 0 - - 10 553.50 162.36

t1717 10 18.00 366.80 10 56.40 918.95 5 - - 1 - - 10 24.10 511.38

Table 10: Comparison on MIPLIB problems (feasible solution found in less than ten runs). FP vs RFP
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Problem FP Exp , " = 0.1 Log, " = 0.1 Hyp, � = 0.5 Logis, � = 0.1

F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time

aligninq 10 380.10 6.01 10 621.70 9.54 2 - - 0 - - 8 - -

lrn 0 - - 0 - - 0 - - 0 - - 0 - -

neos2 0 - - 0 - - 0 - - 0 - - 0 - -

neos3 0 - - 0 - - 0 - - 0 - - 0 - -

neos11 10 5.30 0.90 10 14.40 1.81 10 111.80 4.56 8 - - 10 14.70 1.76

neos12 10 5.00 7.80 10 5.00 8.02 6 724.00 154.67 0 - - 10 6.00 8.28

neos-583731 0 - - 0 - - 0 - - 0 - - 0 - -

neos-593853 1 - - 10 69.70 0.93 7 - - 0 - - 6 - -

neos-598183 10 91.70 0.87 9 - - 10 71.40 0.65 6 - - 10 83.30 0.78

neos-631694 0 - - 0 - - 0 - - 0 - - 0 - -

neos-709469 4 - - 3 - - 0 - - 0 - - 3 - -

neos-777800 10 13.70 5.19 10 16.90 6.52 10 54.70 12.67 2 - - 10 4.00 1.98

neos-791021 0 - - 0 - - 0 - - 0 - - 0 - -

neos-799711 0 - - 10 83.80 659.80 10 1.30 194.87 10 26.70 198.20 9 - -

neos-799716 0 - - 9 - - 9 - - 7 - - 4 - -

neos-803219 0 - - 0 - - 2 - - 5 - - 0 - -

neos-803220 5 - - 9 - - 10 253.00 1.55 10 183.30 1.15 9 - -

neos-806323 0 - - 0 - - 0 - - 0 - - 0 - -

neos-807639 2 - - 2 - - 1 - - 1 - - 0 - -

neos-807705 0 - - 0 - - 0 - - 2 - - 0 - -

neos-810286 10 139.10 46.72 10 90.30 29.90 3 - - 0 - - 10 10.00 5.77

neos-810326 10 668.10 76.05 6 - - 0 - - 0 - - 9 - -

neos-820879 10 5.00 1.68 10 19.10 4.79 10 47.30 8.69 6 - - 10 11.00 3.86

neos-829552 10 1.00 17.86 10 2.00 17.82 10 33.50 52.66 1 - - 10 1.00 17.46

neos-862348 9 - - 9 - - 10 415.30 4.34 10 259.40 2.95 8 - -

neos-880324 0 - - 0 - - 0 - - 0 - - 0 - -

neos-912015 6 - - 5 - - 0 - - 0 - - 6 - -

neos-932816 2 - - 2 - - 1 - - 0 - - 0 - -

neos-941698 10 29.80 0.80 10 48.80 1.11 10 435.00 5.78 0 - - 10 47.40 1.10

neos-948268 10 5.00 6.36 10 6.00 6.16 10 9.00 9.07 2 - - 10 7.00 7.93

neos-957270 0 - - 0 - - 0 - - 0 - - 0 - -

neos-957389 0 - - 0 - - 0 - - 0 - - 0 - -

neos-1215259 7 - - 5 - - 0 - - 0 - - 8 - -

neos-1281048 10 131.80 1.79 10 338.60 4.60 7 - - 0 - - 10 173.00 2.65

neos-1396125 2 - - 0 - - 5 - - 4 - - 2 - -

neos-1441553 0 - - 0 - - 0 - - 0 - - 0 - -

Table 11: Comparison on COR@L problems (feasible solution found in less than ten runs). FP vs RFP
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Problem FP FP - Log Exp - Log Logis - Log Exp - Logis

Iter Obj Time Iter Obj Time Iter Obj Time Iter Obj Time Iter Obj Time

10teams 122.40 994.40 7.34 231.90 975.80 13.09 197.60 1008.60 9.48 192.40 998.00 10.84 201.00 1007.20 11.37

a1c1s1 25.60 21615.71 2.96 30.10 22509.27 2.20 38.00 22635.76 2.74 24.90 23436.21 2.12 20.80 22357.30 2.05

aflow30a 19.90 5691.70 0.07 10.10 3636.30 0.01 7.50 3309.30 0.01 8.40 3747.80 0.02 8.20 4176.30 0.01

aflow40b 8.50 5711.90 0.12 6.70 4085.40 0.04 9.20 4663.10 0.05 8.00 4581.20 0.05 7.20 4962.50 0.04

air04 11.20 61461.90 12.52 28.60 69078.20 65.59 19.30 70144.90 45.23 9.80 59614.30 23.25 28.20 68491.40 70.62

air05 2.00 32368.00 2.42 13.80 36682.50 16.54 21.00 36708.80 24.20 40.70 44456.90 27.54 3.00 29948.00 6.04

cap6000 18.10 -1733965.90 1.20 28.80 -1799142.90 1.01 17.60 -1755643.20 0.67 8.20 -1735379.30 0.35 6.20 -2007735.40 0.29

dano3mip 3.00 1000.00 19.82 1.00 1000.00 10.83 1.00 1000.00 10.17 1.00 1000.00 10.44 1.00 1000.00 10.64

danoint 113.30 87.15 2.78 173.80 82.00 3.40 80.10 83.28 1.76 180.20 84.00 3.60 111.00 82.10 2.46

fast0507 3.00 179.00 97.38 1.00 186.00 7.37 1.00 186.00 6.63 1.00 186.00 9.94 3.00 195.00 23.47

fiber 7.60 14951893.74 0.02 6.20 9512215.27 0.02 6.20 9512708.95 0.02 8.00 14195745.63 0.02 7.00 14123680.53 0.02

fixnet6 11.40 11727.70 0.02 113.70 27806.50 0.12 143.70 31703.80 0.15 114.50 29716.30 0.12 121.90 27972.00 0.13

glass4 25.00 11525809584.00 0.05 76.40 8157128425.00 0.05 107.00 7479410064.00 0.07 89.40 7453308715.00 0.06 102.70 7863699741.00 0.07

liu 1.00 8398.00 0.09 1.00 4720.00 0.06 1.00 4720.00 0.06 1.00 4720.00 0.06 1.00 4720.00 0.07

markshare1 1.00 292.00 0.00 1.00 292.00 0.00 1.00 292.00 0.00 1.00 292.00 0.00 1.00 292.00 0.00

markshare2 1.00 160.00 0.00 1.00 160.00 0.00 1.00 160.00 0.00 1.00 160.00 0.00 1.00 160.00 0.00

mas74 1.00 1917.47 0.00 1.00 19197.47 0.00 1.00 19197.47 0.00 1.00 19197.47 0.00 1.00 19197.47 0.00

mas76 1.00 44877.42 0.00 1.00 44877.42 0.00 1.00 44877.42 0.00 1.00 44877.42 0.00 1.00 44877.42 0.00

misc07 39.60 4236.50 0.13 75.10 4388.50 0.10 75.20 4442.50 0.11 58.90 4251.50 0.09 67.20 4237.00 0.10

mkc 3.60 -271.65 0.10 3.50 -271.85 0.10 3.40 -271.85 0.08 3.50 -271.85 0.10 3.40 -271.85 0.10

mod011 1.00 0.00 0.07 1.00 0.00 0.04 1.00 0.00 0.04 1.00 0.00 0.04 1.00 0.00 0.03

modglob 1.00 602725627.40 0.00 1.00 625805480.20 0.00 1.00 562041867.10 0.00 1.00 560046949.70 0.00 1.00 625805480.20 0.00

net12 42.00 337.00 6.79 133.20 337.00 4.20 109.30 337.00 3.32 197.10 337.00 5.56 168.80 337.00 4.88

nsrand-ipx 3.60 346416.00 0.22 4.00 345600.00 0.28 3.20 378336.00 0.30 4.20 347168.00 0.31 3.20 393680.00 0.29

nw04 1.00 19882.00 0.94 5.00 19657.00 25.29 12.80 29484.60 64.31 11.20 42121.80 50.59 1.00 19882.00 0.43

opt1217 1.00 0.00 0.01 1.00 -12.00 0.01 1.00 -12.00 0.01 1.00 -12.00 0.00 1.00 -12.00 0.01

pk1 1.00 36.00 0.00 1.00 36.00 0.00 1.00 36.00 0.00 1.00 36.00 0.00 1.00 36.00 0.00

pp08aCUTS 3.40 12982.00 0.01 3.70 12223.00 0.01 3.70 12030.00 0.01 3.70 12208.00 0.01 4.60 12624.00 0.01

pp08a 3.10 12810.00 0.00 3.00 12505.00 0.00 3.00 12453.00 0.00 3.00 12439.00 0.00 3.80 12949.00 0.00

qiu 5.60 1539.38 0.19 3.80 1390.67 0.13 4.30 1491.29 0.13 5.10 954.68 0.13 4.80 1741.11 0.13

set1ch 4.20 104900.20 0.01 6.00 83983.00 0.01 6.00 83983.00 0.01 8.90 83247.70 0.01 4.00 84122.05 0.01

seymour 4.00 471.00 2.50 3.00 482.00 1.05 3.00 482.00 1.07 2.00 481.00 1.06 3.00 477.00 1.12

sp97ar 5.20 1468425892.00 5.39 6.00 876827395.70 1.39 4.00 998491944.60 1.36 4.00 934439637.40 1.40 7.00 1606141803.00 1.66

swath 84.80 36527.08 7.11 69.60 36824.53 3.12 69.20 33118.44 3.32 64.10 27368.93 3.13 61.90 29633.73 3.17

t1717 18.00 201829.70 366.80 69.70 512750.40 373.76 65.50 525868.20 386.00 59.20 363772.90 256.13 52.00 417769.40 427.11

tr12-30 83.70 243560.80 0.22 55.80 262726.40 0.09 83.60 265720.40 0.14 113.20 263093.10 0.17 98.90 271277.70 0.15

vpm2 5.80 23.88 0.00 6.20 20.38 0.00 6.60 19.75 0.00 6.20 20.23 0.00 6.40 22.10 0.00

Table 12: Comparison on MIPLIB problems (integer feasible solution found in all the ten runs). FP vs Combined RFP
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Problem FP FP - Log Exp - Log Logis - Log Exp - Logis

Iter Obj Time Iter Obj Time Iter Obj Time Iter Obj Time Iter Obj Time

22433 8.50 21527.40 0.06 16.40 21540.30 0.05 12.70 21548.30 0.04 12.20 21517.00 0.04 11.40 21541.80 0.04

23588 51.60 8310.40 0.11 95.50 8322.60 0.14 39.80 8301.80 0.06 61.90 8287.70 0.09 35.10 8325.00 0.05

bc1 2.20 12.90 0.58 2.10 9.44 0.17 2.40 10.28 0.17 2.00 10.66 0.17 2.10 9.93 0.17

bienst1 11.40 89.92 0.09 1.00 83.92 0.05 1.00 68.25 0.06 1.00 68.25 0.06 1.00 68.25 0.06

bienst2 13.30 127.10 0.12 1.00 76.03 0.05 1.00 78.00 0.05 1.00 74.00 0.06 1.00 72.42 0.05

binkar10-1 27.20 609256.29 0.15 20.90 408583.99 0.05 20.70 508570.60 0.05 35.90 508968.41 0.08 25.60 608858.49 0.06

dano3-3 12.50 1000.00 31.74 1.00 641.91 8.47 1.00 623.32 8.46 1.00 627.64 8.48 1.00 653.48 8.67

dano3-4 7.80 1000.00 23.95 1.00 651.90 8.63 1.00 674.14 8.51 1.00 668.04 8.53 1.00 665.13 8.65

dano3-5 9.10 997.67 26.46 1.00 691.88 8.62 1.00 709.29 8.72 1.00 706.27 8.74 1.00 670.24 8.62

mcf2 146.70 82.97 3.67 118.80 85.70 2.39 136.30 85.80 3.03 103.80 83.85 2.12 115.20 84.45 2.58

mkc1 1.00 -460.93 0.12 1.00 -566.15 0.03 1.00 -566.15 0.03 1.00 -566.15 0.04 1.00 -566.15 0.03

neos5 1.00 21.00 0.00 2.00 18.00 0.00 1.00 17.00 0.00 2.00 17.50 0.00 2.00 18.00 0.00

neos6 11.80 141.60 3.50 5.30 129.00 0.87 23.40 131.80 2.33 17.50 149.40 2.06 31.40 142.90 2.92

neos11 5.30 10.00 0.90 6.90 9.10 0.84 7.80 9.00 0.74 8.70 9.00 0.77 14.80 10.60 1.93

neos12 5.00 20.00 7.80 39.00 19.50 35.79 20.20 16.20 10.34 41.70 20.60 20.00 4.00 19.00 7.25

neos13 1.00 -28.43 1.29 1.00 -14.95 0.86 1.00 -15.04 0.86 1.00 -16.47 0.78 1.00 -46.34 0.48

neos14 5.50 215724354.30 0.03 4.70 243613848.30 0.01 5.00 281907988.40 0.01 5.00 291385913.70 0.01 5.20 265456557.80 0.01

neos17 2.60 0.68 0.04 2.60 0.58 0.03 2.60 0.58 0.03 2.30 0.54 0.04 2.80 0.58 0.03

neos18 1.00 36.00 0.13 7.20 32.90 0.17 8.30 29.10 0.17 10.00 33.30 0.22 2.00 34.00 0.07

neos-430149 137.70 497.95 0.79 132.30 438.86 0.27 219.00 465.04 0.39 162.20 522.29 0.29 174.40 533.29 0.30

neos-476283 3.00 1056.42 444.74 1.00 523.17 8.48 1.00 511.24 8.37 1.00 514.88 8.48 1.00 541.27 11.13

neos-480878 3.00 590.70 0.10 3.60 542.04 0.04 3.50 540.16 0.03 3.60 553.33 0.04 3.30 562.90 0.03

neos-494568 2.00 29.00 1.48 2.00 -82.00 0.22 2.00 -82.00 0.22 2.00 -81.00 0.22 1.00 -72.00 0.23

neos-504674 85.80 30961.35 0.25 124.60 30946.73 0.15 35.00 31121.71 0.06 80.80 31777.31 0.12 31.10 29473.78 0.05

neos-504815 82.40 13912.75 0.20 96.10 13720.27 0.11 32.90 13982.71 0.05 103.40 15708.03 0.13 54.30 13976.53 0.07

neos-512201 191.20 5373.11 0.53 157.60 5557.65 0.19 165.30 5458.20 0.29 134.10 5407.88 0.23 193.20 5524.32 0.24

neos-522351 6.40 103262.07 0.48 5.30 40010.80 0.07 5.80 46605.30 0.08 4.70 30080.06 0.07 4.70 49141.50 0.08

neos-525149 1.00 61.00 12.01 1.00 65.00 1.60 1.00 65.00 1.61 1.00 65.00 1.47 1.00 63.00 1.46

neos-538867 60.40 6425.00 0.33 82.20 6830.00 0.23 70.30 5419.50 0.19 50.20 5645.00 0.12 69.70 6989.50 0.19

neos-538916 38.20 5650.00 0.20 30.70 6109.20 0.08 49.30 6398.70 0.12 31.70 5846.60 0.08 36.30 6430.40 0.09

neos-547911 18.40 15.30 7.81 12.60 15.00 1.15 15.70 15.00 2.20 11.50 15.40 2.60 7.30 15.30 1.70

neos-555694 9.00 55.90 0.35 16.20 78.56 0.18 17.70 87.49 0.21 17.00 61.18 0.21 4.00 25.00 0.09

neos-555771 56.00 130.84 1.10 17.60 86.74 0.20 11.60 104.41 0.15 16.40 90.83 0.19 4.00 43.60 0.09

neos-565815 1.00 14.00 9.12 8.30 14.50 2.36 5.20 14.80 2.22 9.30 15.40 3.07 5.10 14.20 2.41

neos-570431 4.70 27.00 0.27 4.30 16.00 0.12 3.70 15.10 0.11 3.70 14.80 0.12 5.50 23.80 0.16

neos-584851 4.00 -4.00 0.04 9.50 -5.50 0.04 10.60 -5.20 0.04 12.30 -6.30 0.04 2.50 -4.10 0.03

neos-598183 91.70 48288.78 0.87 18.20 47013.60 0.06 218.30 47841.88 0.46 16.40 47547.14 0.06 135.10 49824.98 0.29

neos-603073 8.00 47327.85 0.08 5.70 46725.08 0.02 5.80 46760.97 0.02 5.50 46171.88 0.02 38.30 49371.71 0.09

neos-611838 4.00 4849174.32 2.18 6.20 3730351.88 0.75 5.20 3645759.07 0.66 5.80 3811374.06 0.82 3.00 3577497.64 0.69

neos-612125 3.00 4792546.67 2.81 5.70 4097819.37 0.97 4.30 3998758.87 0.82 4.20 3928947.03 0.70 3.70 4068154.44 0.93

neos-612143 3.00 4805355.24 2.92 5.90 3838432.32 0.76 5.90 3848910.24 0.69 3.80 3911342.26 0.63 4.00 3666814.85 0.74

neos-612162 3.40 4827358.83 2.93 5.80 3681085.94 0.73 5.90 3927845.17 0.73 4.20 3834411.42 0.61 3.10 3533947.53 0.52

neos-655508 0.00 63015042.00 0.04 0.00 63015042.00 0.03 0.00 63015042.00 0.02 0.00 63015042.00 0.02 0.00 63015042.00 0.03

Table 13: Comparison on COR@L problems (integer feasible solution found in all the ten runs). FP vs Combined RFP - Part I

36



Problem FP FP - Log Exp - Log Logis - Log Exp - Logis

Iter Obj Time Iter Obj Time Iter Obj Time Iter Obj Time Iter Obj Time

neos-775946 124.10 764.30 3.25 14.60 391.98 0.50 22.00 530.29 0.61 4.50 531.10 0.39 18.80 496.09 0.57

neos-777800 13.70 -80.00 5.19 4.00 -80.00 1.37 11.30 -80.00 5.14 19.90 -80.00 9.23 10.20 -80.00 6.81

neos-780889 2.00 10821585.00 48.19 2.10 10032625.00 100.65 3.30 10260442.50 96.59 2.00 10178090.00 93.20 2.10 10034935.00 83.28

neos-801834 2.00 64502.00 0.80 2.00 55577.00 0.37 2.00 60875.00 0.37 2.00 61233.00 0.37 1.00 54051.00 0.38

neos-810286 139.10 3431.90 46.72 81.30 3435.40 44.06 74.20 3377.30 44.79 83.30 3316.10 42.20 114.10 3485.80 80.34

neos-820879 5.00 34433.70 1.68 10.70 38492.40 1.32 12.40 37749.10 1.40 13.50 37945.10 1.61 6.50 37208.20 0.98

neos-824695 3.70 77.00 0.75 3.80 77.00 0.64 3.70 77.00 0.63 3.90 77.00 0.65 3.90 77.00 0.67

neos-825075 4.00 218.00 0.06 9.00 465.00 0.06 4.00 108.00 0.04 3.00 8.00 0.04 6.20 395.00 0.04

neos-826250 3.10 63.00 0.40 3.20 63.00 0.35 3.30 63.00 0.38 3.40 63.00 0.37 3.40 63.00 0.38

neos-826812 2.70 83.01 0.72 2.70 83.01 0.59 2.40 83.01 0.56 2.80 83.01 0.62 2.70 83.01 0.62

neos-827175 2.00 121.00 1.80 2.00 121.00 1.12 2.00 121.00 1.12 2.00 121.00 1.13 2.00 121.00 1.14

neos-829552 1.00 26.69 17.86 7.00 2.91 24.91 5.20 2.92 24.53 11.60 42.40 32.62 2.00 6.67 20.52

neos-839859 1.00 94247985.64 0.20 1.00 58556618.20 0.18 1.00 58556618.20 0.17 1.00 58556618.20 0.17 1.00 131658548.10 0.18

neos-860300 14.30 7685.30 3.13 15.90 7321.60 0.87 21.60 7044.40 1.16 17.10 6285.70 0.93 9.70 8861.70 0.73

neos-886822 2.00 138398.00 0.26 1.00 28820.50 0.17 1.00 28820.50 0.16 1.00 28820.50 0.16 1.00 178597.50 0.27

neos-892255 3.60 18.70 0.15 3.90 18.90 0.09 8.00 45.60 0.18 3.90 20.60 0.10 11.50 46.30 0.25

neos-906865 2.00 9105.20 0.05 2.00 10823.90 0.03 2.00 10819.70 0.03 2.00 11060.30 0.03 2.00 9744.10 0.03

neos-941698 29.80 22.30 0.80 48.40 10.00 0.55 98.20 10.40 1.02 64.50 8.30 0.73 62.30 10.20 0.79

neos-948268 5.00 60.00 6.36 13.70 60.00 12.52 6.00 60.00 6.28 7.00 60.00 6.52 3.00 60.00 5.44

neos-955215 2.20 9037.66 0.01 3.00 809.42 0.01 3.00 809.35 0.01 3.00 808.92 0.01 3.40 1029.15 0.01

neos-1058477 2.80 3.58 0.02 2.00 1.47 0.01 2.80 1.46 0.01 3.20 11.00 0.02 4.40 31.25 0.02

neos-1171448 1.00 0.00 0.60 1.00 0.00 0.26 1.00 0.00 0.26 1.00 0.00 0.26 1.00 0.00 0.28

neos-1200887 1.00 -38.00 0.02 1.00 -52.00 0.02 1.00 -52.00 0.01 1.00 -52.00 0.01 1.00 -52.00 0.02

neos-1211578 1.00 -51.00 0.00 1.00 -69.00 0.00 1.00 -69.00 0.00 1.00 -69.00 0.00 1.00 -69.00 0.00

neos-1225589 27.20 23555348134.00 0.05 43.60 25241744868.00 0.08 30.00 23484230439.00 0.06 51.30 27161430594.00 0.10 31.40 23827160202.00 0.06

neos-1228986 1.00 -92.00 0.00 1.00 -104.00 0.00 1.00 -104.00 0.00 1.00 -104.00 0.00 1.00 -104.00 0.00

neos-1281048 131.80 173712.90 1.79 243.00 174774.20 1.90 285.60 183703.90 2.08 167.70 175805.50 1.31 308.40 180675.60 2.25

neos-1337489 1.00 -51.00 0.00 1.00 -69.00 0.00 1.00 -69.00 0.00 1.00 -69.00 0.00 1.00 -69.00 0.00

neos-1413153 2.00 119.12 0.37 1.00 119.12 0.35 1.00 119.12 0.35 1.00 119.12 0.35 1.00 119.12 0.36

neos-1415183 1.00 425.60 0.53 1.00 128.61 0.43 1.00 128.61 0.43 1.00 128.61 0.43 1.00 128.61 0.44

neos-1437164 23.60 25.90 0.14 37.30 17.60 0.19 21.10 18.90 0.11 19.70 19.00 0.10 28.70 19.40 0.15

neos-1440447 1.00 -52.00 0.01 1.00 -77.00 0.01 1.00 -79.00 0.00 1.00 -78.00 0.00 1.00 -78.00 0.00

neos-1460265 35.70 15925.00 0.18 175.10 15410.00 1.03 91.70 15490.00 0.51 108.20 15520.00 0.61 143.20 15520.00 0.80

neos-1480121 2.00 89.33 0.00 2.00 95.80 0.00 2.00 95.80 0.00 2.00 95.80 0.00 2.00 96.60 0.00

neos-1489999 5.80 476.90 0.05 6.90 484.30 0.05 6.30 481.60 0.05 6.20 488.30 0.05 6.20 483.50 0.05

neos-1516309 9.00 54363.50 0.13 11.90 54069.00 0.12 12.40 52941.00 0.13 10.80 52827.00 0.12 17.70 53687.50 0.16

neos-1595230 3.50 20.40 0.10 3.80 20.50 0.07 5.00 21.00 0.07 4.70 22.10 0.07 3.70 20.50 0.07

neos-1597104 4.60 -7.10 8.08 8.20 -2.60 1.07 8.20 -2.60 1.05 6.00 -3.40 1.11 4.60 -6.90 0.98

neos-1599274 3.00 36277.60 0.17 8.60 52367.76 0.13 9.20 51694.48 0.14 9.40 51652.80 0.14 3.00 37687.60 0.07

neos-1620807 8.80 9.50 0.02 10.60 9.70 0.02 7.00 9.10 0.02 9.20 9.70 0.02 6.90 9.70 0.01

prod1 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

qap10 516.80 502.40 1690.54 1.00 406.00 7.33 1.00 406.00 10.21 1.00 406.00 7.37 1.00 406.00 10.64

roy 38.30 5810.25 0.03 212.00 5788.85 0.08 98.10 5393.15 0.04 264.00 5622.95 0.10 319.80 5878.40 0.12

Table 14: Comparison on COR@L problems (integer feasible solution found in all the ten runs). FP vs Combined RFP - Part II
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Problem FP FP - Log Exp - Log Logis - Log Exp - Logis

F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time

harp2 10 188.80 1.52 10 525.90 4.28 9 - - 9 - - 10 257.40 2.19

momentum1 10 474.20 577.99 9 - - 10 215.80 56.10 9 - - 10 578.20 118.96

p2756 0 - - 0 - - 0 - - 0 - - 0 - -

protfold 10 360.20 107.67 9 - - 10 524.90 89.36 10 361.60 83.31 9 - -

Table 15: Comparison on MIPLIB problems (integer feasible solution found in less than ten runs). FP vs Combined RFP
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Problem FP FP - Log Exp - Log Logis - Log Exp - Logis

F.s found Iter Time F.s found Iter Time F.s found Iter Time F.s found Iter Time F.s found Iter Time

aligninq 10 380.10 6.01 10 623.90 3.68 9 - - 8 - - 7 - -

lrn 0 - - 0 - - 0 - - 0 - - 0 - -

neos2 0 - - 0 - - 0 - - 0 - - 0 - -

neos3 0 - - 0 - - 0 - - 0 - - 0 - -

neos-583731 0 - - 0 - - 0 - - 0 - - 0 - -

neos-593853 1 - - 0 - - 0 - - 0 - - 0 - -

neos-631694 0 - - 0 - - 0 - - 0 - - 0 - -

neos-709469 4 - - 3 - - 2 - - 4 - - 7 - -

neos-791021 0 - - 0 - - 0 - - 0 - - 0 - -

neos-799711 0 - - 0 - - 0 - - 0 - - 0 - -

neos-799716 0 - - 0 - - 0 - - 0 - - 0 - -

neos-803219 0 - - 0 - - 0 - - 1 - - 1 - -

neos-803220 5 - - 8 - - 10 258.00 0.53 10 273.70 0.60 10 275.60 0.55

neos-806323 0 - - 0 - - 0 - - 0 - - 0 - -

neos-807639 2 - - 2 - - 2 - - 2 - - 1 - -

neos-807705 0 - - 0 - - 0 - - 0 - - 2 - -

neos-810326 10 668.10 76.05 8 - - 10 773.30 109.01 10 366.50 59.75 9 - -

neos-862348 9 - - 9 - - 10 65.50 0.86 10 180.40 2.15 10 62.80 0.81

neos-880324 0 - - 0 - - 0 - - 0 - - 0 - -

neos-912015 6 - - 7 - - 5 - - 2 - - 2 - -

neos-932816 2 - - 4 - - 0 - - 2 - - 2 - -

neos-957270 0 - - 0 - - 0 - - 0 - - 0 - -

neos-957389 0 - - 0 - - 0 - - 0 - - 0 - -

neos-1215259 7 - - 8 - - 1 - - 5 - - 5 - -

neos-1396125 2 - - 1 - - 0 - - 0 - - 0 - -

neos-1441553 0 - - 0 - - 0 - - 0 - - 0 - -

Table 16: Comparison on COR@L problems (feasible solution found in less than ten runs). FP vs Combined RFP
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