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Abstract— Artful processes are informal processes typically carried

out by those people whose work is mental rather than physical (man-

agers, professors, researchers, engineers, etc.), the so called “knowledge

workers”. MAILOFMINE is a tool, the aim of which is to automatically

build, on top of a collection of e-mail messages, a set of workflow models

that represent the artful processes laying behind the knowledge workers

activities. After an outline of the approach and the tool, this paper focuses

on the mining algorithm, able to efficiently compute the set of constraints

describing the artful process. Finally, an experimental evaluation of it is

reported.

Index Terms— Process mining, artful process, declarative workflows.

I. INTRODUCTION

For a long time, formal business processes (e.g., the ones of public
administrations, of insurance/financial institutions, etc.) have been
the main subject of workflow related research. Informal processes,
a.k.a. “artful processes”, are conversely carried out by those people
whose work is mental rather than physical (managers, professors,
researchers, engineers, etc.), the so called “knowledge workers” [1].
In contrast to business processes that are formal and standardized,
often informal processes are not even written down, let alone defined
formally, and can vary from person to person even when those
involved are pursuing the same objective. Knowledge workers create
informal processes “on the fly” to cope with many of the situations
that arise in their daily work. Though informal processes are fre-
quently repeated, they are not exactly reproducible even by their
originators – since they are not written down – and can not be easily
shared either. Their outcomes and their information exchanges are
done very often by means of e-mail conversations, which are a fast,
reliable, permanent way of keeping track of the activities that they
fulfill.

Understanding artful processes involving knowledge workers is
becoming crucial in many scenarios. Here we mention some of them:

• personal information management (PIM), i.e., how to organize
one’s own activities, contacts, etc. through the use of software on
laptops and smart devices (iPhones/iPads, smartphones, tablets).
Here, inferring artful processes in which a person is involved
allows the system to be proactive and thus drive the user through
its own tasks (on the basis of the past) [2];

• information warfare, especially in supporting anti-crime intel-
ligence agencies: let us suppose that a government bureau is
able to access the e-mail account of a suspected person. People
planning a crime or an act out of law are used to speak a
language of their own to express duties and next moves, where
meanings may not match with the common sense. Though, a
system should build the processes that lay behind their com-
munications anyway, exposing the activities and the role of the
actors. At that point, translating the sense of misused words
becomes an easier task for investigators, and allows inferring
the criminal activities of the suspected person(s);

• enterprise engineering: in design and engineering, it is important
to preserve more than just the actual documents making up the

product data. Preserving the “soft knowledge” of the overall
process (the so-called product life-cycle) is of critical importance
for knowledge-heavy industries. Hence, the idea here is to take
to the future not only the designs, but also the knowledge about
processes, decision making, and people involved [3], [4], [5].

The objective of the MAILOFMINE approach, firstly introduced
in [6], is to automatically build, on top of a collection of e-mail
messages, a set of workflow models that represent the artful processes
laying behind the knowledge workers activities. Here, we outline
the general approach and enter into the detail of the process mining
algorithm, able to infer constraints (indeed our approach is based on
a declarative specification of process models). Then we present some
experiments, showing the validity and efficiency of the technique.

The work here presented is related to the so called process mining,
a.k.a. workflow mining [7], that is the set of techniques allowing
the extraction of structured process descriptions, stemmed from a
set of recorded real executions (stored in the event logs). ProM [8]
is one of the most used plug-in based software environment for
implementing workflow mining techniques. Most of the mainstream
process mining tools model processes as Workflow Nets (WFNs – see
[9]), explicitly designed to represent the control-flow dimension of a
workflow. From [10] onwards, many techniques have been proposed,
in order to address specific issues: pure algorithmic (e.g., α algorithm
[11] and its evolution α

++ [12]), heuristic (e.g., [13]), genetic (e.g.,
[14]). Indeed, heuristic and genetic algorithms have been introduced
to cope with noise, that the pure algorithmic techniques were not able
to manage. A very smart extension to the previous research work has
been recently achieved by the two-steps algorithm proposed in [15].

The need for flexibility in the definition of processes leads to an
alternative to the classical “imperative”: the “declarative” approach.
Rather than using a procedural language for expressing the allowed
sequences of activities, it is based on the description of workflows
through the usage of constraints: the idea is that every task can be
performed, except what does not respect them. Such constraints, in
DecSerFlow [16] and ConDec [17] (now named Declare), are formu-
lations of Linear Temporal Logic and have a graphical representation
as well. [18] outlines an algorithm for mining Declare [18], [19], [20]
processes, implemented in ProM. The technique is based on [21],
[22], [20], for the translation of Declare constraints into automata,
and [23], for the optimization of such task. [24] described the usage
of inductive logic programming techniques to mine models expressed
as a SCIFF [25] theory, finally translated to the ConDec notation.

The technique introduced in this paper differs from both [24] and
[18] in that it does not directly verify the candidate constraints over
the whole set of traces in input. It prepares an ad-hoc knowledge base
of its own, so to further analyze the response to specific queries.

We believe that the declaration of collaborative workflows con-
straints can be expressed by means of regular expressions, rather
than LTL formulae: regular expressions express finite languages (i.e.,
processes with finite traces, where the number of enacted tasks
is limited). LTL formulae are thought to be used for verifying
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Fig. 1. The MAILOFMINE approach

properties over semi-infinite runs instead. On the contrary, human
processes have an end, other than a starting point. We envision the
process schemes like grammars describing the language spoken by
collaborative organisms in terms of activities, thus being more related
to formal languages rather than temporal logic.

The remainder of this paper is organized as follows: Section II
outlines the overall approach of MAILOFMINE, then Section III
describes the process model we adopt in our mining approach.
Section IV describes in detail the mining technique. Section VIII
presents an extensive validation of the technique, and finally Section
IX draws some concluding remarks, outlining future activities.

II. THE MAILOFMINE APPROACH

The MAILOFMINE approach (and the tool we are currently
developing) adopts a modular architecture, the components of which
allow to incrementally refine the mining process. We describe it into
three parts: (i) the preliminary steps, from the retrieval of e-mail
messages to the reconstruction of communication threads; (ii) the
extraction of key parts, the activities and tasks indicia detection, and
the tasks definition; (iii) the final steps, from the activities definition
to the final mined process extraction.

A. Preliminary Steps and E-mail Clustering

Initially we need to extract e-mail messages from the given
archive(s). Archives are compliant to different standards, according
to the e-mail client in use, hence the component for reading the
messages is intended to be plug-in based: each plug-in is a com-
ponent able to access different archive formats (e.g., .pst, Mozilla
Thunderbird files, etc.) and/or online providers (e.g., Gmail accounts,
etc.). The outcome is the population of a database, on the basis of
which all the subsequent steps are carried out. The first of them is
the clustering of retrieved messages into extended communication
threads, i.e., flows of messages which are related to each other. The

considered technique, detailed in [6], which is used to guess such
a connection, is based not only on the Subject field (e.g., looking
at “Fwd:” or “Re:” prefixes) or SMTP Header fields (e.g., reading
the “In-Reply-To” field), but on the application of a more complex
object matching decision method. Such indicators, indeed, though
likely trustworthy, might be misleading: (i) in the everyday life, it
is a common attitude to reply to old messages for talking about
new topics, which may have nothing to do with the previous one;
(ii) conversely, it may happen that a new message is related to a
previous, though written and sent as if it were a new one.

Once the communication threads are recognized, we can assume
them all as activity indicia candidates.

After the clustering into threads, messages are analyzed in order
to identify key parts. Key parts are identified by adding, to a well-
known technique for the removal of quoted material [26], an iterative
approach over the e-mail messages in the thread. Such an approach
is based on the Unix diff command, performed between a given
e-mail and the key parts identified so far.

B. Identifying Activities

Once key parts and messages in threads are gathered,
MAILOFMINE can build activity indicia as the concatenation of all
the key parts. Then, the clustering algorithm is used again, this time
to identify the matches between activity indicia. E.g., let us suppose
to have (i) a thread Tdel41 related to the writing of Deliverable
4.1 of a research project, (ii) another thread Tdel52 related to the
writing of Deliverable 5.2 of the same research project, and, finally,
(iii) a Tair dealing with an airplane flight booking, for the next
review meeting. Thus, the algorithm is expected to cluster as follows:
{Tdel41, Tdel52}, {Tair}. Its output represents the activities set.

By taking into account the activities set and the key parts
(task indicia candidates), the clustering algorithm checks for match-
ing key parts, identifying them as tasks. E.g., let us suppose to
have (i) a key part kairData specifying the booked airplane data,
(ii) another key part kairBook containing the confirmation of the
booking, and, finally, (iii) a kdel41: “Please find attached Deliver-
able 4.1”. Thus, the algorithm is expected to cluster as follows:
{kairData, kairBook}, {kdel41}.

Hence, each set is a task indicium for one task. The analysis,
though, does not terminate here. In order to understand whether the
task under investigation is clarifying or productive, MAILOFMINE
checks (i) if any document oriented outcome in the original e-mail
messages was attached; (ii) if key parts contain Speech Acts [27],
according to the technique proposed by [28]. If at least one of the
listed conditions holds, it is productive. Otherwise, it is considered as
clarifying. The detection of Speech Acts is supposed to be assisted by
the experts, who are required to provide a dictionary of keywords of
their domain field, as in [28]. For further information on the relation
between Speech Acts and workflows, see [29].

Taking as input all of the preceding outcomes, MAILOFMINE
starts searching for execution constraints between tasks within the
activities they belong to. For this step, we adopt the MINERful
algorithm, explained further in Section IV. Specifically, on the basis
of all the possible constraints, a selection of those that are valid over
most of the activity indicia is made. The selected constraints for each
activity are its PDG.

C. Mining the Process

Once activities and tasks are recognized, a supervised learning
process takes place, in order to cluster activities into processes. This
step cannot be fully performed by the system, since no linguistic
connection could exist among related activities. E.g., the activity
of drawing slides and the reservation of the airplane could sound
completely apart, though those slides could be the material to present
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at a review meeting, hold in the city which the airplane was booked
to reach.

The activity grammar should not be exposed to the user building
the test and verification set, of course. Instead, the threads are shown
as witnesses for the activity; hence, the user associates part of them to
different processes, and the learner associates all the related activities
to processes.

Once processes are identified, MAILOFMINE performs the second
step for the construction of the PDG, i.e., the mining of production
rules among activities inside the same process, by using the MIN-
ERful techniques for regular pattern mining again.

III. THE PROCESS MODEL

As previously introduced, a process scheme (or process for short)
is a semi-structured set of activities, where the semi-structuring
connective tissue is represented by the set of constraints stating
the interleaving rules among activities or tasks. Constraints do not
force the tasks to follow a tight sequence, but rather leave them the
flexibility to follow different paths, though respecting a set of rules
that avoid illegal or non-consistent states in the execution.

Here, we adopt the Declare [18] taxonomy of constraints as the
basic language for defining artful processes in a declarative way.
But whereas in Declare constraints are translated into LTL formulas,
we express each constraint through regular expressions, as shown in
Table I.

The Existence(m, a) constraint imposes the a character to appear
at least m times in the string. The Absence(n, a) constraint holds
if a occurs at most n − 1 times in the string. Init(a) makes each
string start with a. RespondedExistence(a, b) holds if, whenever
a is read, b was already read or is going to be read (i.e., no matter if
before or afterwards). Instead, Reponse(a, b) enforces it by forcing
a b to appear after a, if a was read. Precedence(a, b) forces b to
occur after a as well, but the condition to be verified is that b was
read - namely, you can not have any b if you did not read an a

before. AlternateResponse(a, b) and AlternatePrecedence(a, b)
both strengthen respectively Response(a, b) and Precedence(a, b)
by stating that each a (b) must be followed (preceded) by
at least one occurrence of b (a). The “alternation” is in
that you can not have two a (b) in a row before b (a).
ChainResponse(a, b) and ChainPrecedence(a, b), in turn, spe-
cialize AlternateResponse(a, b) and AlternatePrecedence(a, b),
both declaring that no other character can occur between a and b.
The difference between the two is in that the former is verified
for each occurrence of a, the latter for each occurrence of b.
CoExistence(a, b) holds if both RespondedExistence(a, b) and
RespondedExistence(b, a) hold. Succession(a, b) is valid if
Response(a, b) and Precedence(a, b) are verified. The same holds
with AlternateSuccession(a, b), equivalent to the conjunction of
AlternateResponse(a, b) and AlternatePrecedence(a, b),
and with ChainSuccession(a, b), with respect to
ChainResponse(a, b) and ChainPrecedence(a, b).
NotChainSuccession(a, b) expresses the impossibility for b

to occur immediately after a. NotSuccession(a, b) generalizes the
previous by imposing that, if a is read, no other b can be read
until the end of the string. NotCoExistence(a, b) is even more
restrictive: if a appears, not any b can be in the same string.

The translation of constraints into regular expressions of Ta-
ble I could be optimized further, although some redundancies
are kept in order to provide a better readability and give con-
fidence to the reader in finding similarities between constraints.
E.g., you can easily see how Response, AlternateResponse

and ChainResponse strengthen along the hierarchy, similarly to
Precedence, AlternatePrecedence and ChainPrecedence. Ex-
amples are made so to give a hint on the sense of such constraints.

Some characters are strongly emphasized to put in evidence how the
constraint work and what it checks. The underlined characters are the
“implying”, namely, their presence is the condition that triggers the
constraint: if they did not appear, the constraint would have had no
effect on the structure of the string.

In addition to the above constraints, we consider also the ones
described in Table II. Taking inspiration from the relational data
model cardinality constraints, we call (i) Participation(a) the
Existence(m, a) constraint for m = 1 and (ii) Unique(a) the
Absence(n, a) constraint for n = 2, since the former states that
a must appear at least once in the string, whereas the latter causes a

to occur no more than once. End(a) is the dual of Init(a), in the
sense that it constrain each string to end with a. Beware that End(a)
would be clueless in a LTL interpretation, since LTL is thought to
express temporal logic formulae over infinite traces. On the contrary,
it makes perfectly sense to have a concluding task for a finite process,
expressed by means of a regular automaton like the one underlying
any regular expression.

A. An Example

Here we outline a brief example (cf. [6]). Let us suppose to have
an e-mail archive, containing various process instances indicia, and
to focus specifically on the planning of a new meeting for a research
project. We suppose to execute the overall MAILOFMINE technique,
and we report the possible result, starting from the list of tasks in
activities (Process Description 1). Then we consider the tasks of the
“Agenda” activity only.

Process Description 1 Activities and tasks list
Activity: �Agenda�

Task: p (“proposeAgenda”): Productive
Actors: {Y ou: Contributor, Community: Spectator}
Duration: 4 dd.

Task: r (“requestAgenda”): Clarifying
Actors: {Participant: Contributor, Community: Spectator}
Duration: ⊥

Task: c (“commentAgenda”): Clarifying
Actors: {Participant: Contributor, Community: Spectator}
Duration: ⊥

Task: n (“confirmAgenda”): Productive
Actors: {Y ou: Contributor, Community: Spectator}
Duration: 2 dd.

We suppose that a final agenda will be committed (“confirmA-
genda” – n) after that requests for a new proposal (“requestAgenda”
– r), proposals themselves (“proposeAgenda” – p) and comments
(“commentAgenda” – c) have been circulated.

Some terms used in the example, e.g., Y ou, Contributor,
Community, Productive, Clarifying, etc. refer to the classification
MAILOFMINE operate on messages during the mining phases, and
are explained in [6]. For the purposes of this paper, the reader can
skip them. The aforementioned tasks and activities are bound to
the following constraints. We start with the existence constraints of
Process Description 2, each focusing on a single task.

Process Description 2 Existence constraints on the example tasks
and activities
Activity: �Agenda �

Task: “proposeAgenda”, p: [0, ∗]
Task: “requestAgenda”, r: [0, ∗]
Task: “commentAgenda”, c: [0, ∗]
Task: “confirmAgenda”, n: [1, 1], End(n)

In Process Description 3 we report the relation constraints, namely
holding between couple of tasks.



4

Constraint Regular expression Example
Existence constraints

Existence(m,a) [ˆa]*(a[ˆa]*){m,}[ˆa]* bcaac for m = 2
Absence(n, a) [ˆa]*(a[ˆa]*){0,n}[ˆa]* bcaac for n = 3

Init(a) a.* accbbbaba

Relation constraints
RespondedExistence(a, b) [ˆa]*((a.*b)|(b.*a))*[ˆa]* bcaaccbbbaba

Response(a, b) [ˆa]*(a.*b)*[ˆa]* bcaaccbbbab
AlternateResponse(a, b) [ˆa]*(a[ˆa]*b)*[ˆa]* bcaccbbbab

ChainResponse(a, b) [ˆa]*(ab[ˆaˆb]*)*[ˆa]* bcabbbab
Precedence(a, b) [ˆb]*(a.*b)*[ˆb]* caaccbbbaba

AlternatePrecedence(a, b) [ˆb]*(a[ˆb]*b)*[ˆb]* caaccbaba

ChainPrecedence(a, b) [ˆb]*(ab[ˆaˆb]*)*[ˆb]* cababa

CoExistence(a, b) [ˆaˆb]*((a.*b)|(b.*a))*[ˆaˆb]* bcaccbbbaba

Succession(a, b) [ˆaˆb]*(a.*b)*[ˆaˆb]* caaccbbbab

AlternateSuccession(a, b) [ˆaˆb]*(a[ˆaˆb]*b)*[ˆaˆb]* caccbab
ChainSuccession(a, b) [ˆaˆb]*(ab[ˆaˆb]*)*[ˆaˆb]* cabab

Negative relation constraints
NotChainSuccession(a, b) [ˆa]*(a[ˆaˆb])*[ˆa]* bcaaccbbbba

NotSuccession(a, b) [ˆa]*(a[ˆb]*)*[ˆaˆb]* bcaacca

NotCoExistence(a, b) [ˆaˆb]*((a[ˆb]*)|(b[ˆa]*))? caacca

TABLE I
SEMANTICS OF DECLARE CONSTRAINTS AS REGULAR EXPRESSIONS

Constraint Regular expression Example
Existence constraints
Participation(a) ≡ Existence(1, a) [ˆa]*(a[ˆa]*)+[ˆa]* bcaac

Unique(a) ≡ Absence(2, a) [ˆa]*(a)?[ˆa]* bcac

End(a) .*a bcaaccbbbaba

TABLE II
ADDITIONAL CONSTRAINTS IN MAILOFMINE

Process Description 3 Relation constraints on the example tasks and
activities
Activity: �Agenda �
response(r, p)
respondedExistence(c, p)
succession(p, n)

IV. THE MINERFUL ALGORITHM

MINERful is the algorithm for mining declarative constraints out
of activities traces. As described in Section III, tasks can be abstracted
like characters appearing over finite strings, which, in turn, represent
process traces. Thus, MINERful works on collections of finite strings,
actually. Therefore, it solves the more general problem of finding
a specific set of regular patterns out of a number of strings. We
will interchangeably use the terms “task” and “character”, as well
as “trace” and “string”, then. MINERful is based on the concept of
MINERfulKB: it holds all of the useful information related to a local
scope in the analysis of a single activity, extracted from the given
traces and tailored to the further discovery of constraints that possibly
lay behind. The first step of MINERful is to synthesize such a matrix
(Section VI-A), indeed, in order to easily mine the declarative model
afterwards (Section VI-B).

V. DEFINITIONS

For the definition of MINERful interplay, we have to keep in mind
that it is referred to a couple of characters: one is considered as the
pivot, ρ, the other is the searched, σ. For the definition of MINERful
ownplay, only the pivot ρ matters, since it is focused on the statistics
referred to a single activity only. For sake of simplicity, examples will
consider a as the pivot ρ and b as the searched σ, over an alphabet
Σ = {a, b, c}.

Definition 1 (MINERful interplay): A tuple D = �δ, b→, b
←�

where
δ(·) δ : Z∞ → N1 is the distances function, mapping a distance

between ρ and σ to the number of cases they appeared at
that distance in a string (e.g., δ(2) = 10 means that we have

the evidence of a searched σ appearing 2 characters after
the pivot ρ, as in the substring cacbcc, over 10 cases);

b
→

b
→ ⊂ N is the in-between onwards appearances counter

(e.g., if it is equal to 2, it means that the pivot ρ appeared
2 times between the preceding occurrence of ρ and the
following first occurrence of the searched σ, as in the
substring accaacb);

b
←

b
← ⊂ N is the in-between backwards appearances counter

(e.g., if it is equal to 3, it means that the pivot ρ appeared
3 times between the following occurrence of ρ and the
preceding first occurrence of the searched σ, as in the
substring bcacaaca);

The distance represents the number of characters between ρ and
σ. It is a positive value if σ follows ρ, negative if it preceds ρ. With a
slight abuse of notation, we consider δ(+∞) and δ(−∞) to denote
the number of cases in which the searched σ, respectively, did not
appear in a string after the pivot ρ, or did not appear in a string
before ρ. δ(0) counts the number of cases in which the searched σ

did not appear nor before neither after ρ in the string.
Definition 2 (MINERful ownplay): A tuple E = �γ, gi, gl� where
γ(·) γ : N → N1 is the global appearances function (e.g.,

g(4) = 2 means that it happened to the pivot ρ to appear
exactly four times in two strings only, as for a, having
aabbabccaaabab and babacaa in the analyzed collection
of traces);

g
i

g
i ∈ N is the number of strings where the pivot ρ appeared

as the initial one (e.g., if g
i = 5, five strings started with

a);
g
l

g
l ∈ N is the number of strings where the pivot ρ appeared

as the last one (e.g., if gl = 0, no string ended with a);
Provided the information model, we describe the functions that

lead from tasks to the related information.
Definition 3 (MINERful interplay function): A total function f

I :
Σ×Σ → D, linking each couple of characters ρ, σ ∈ Σ to a single
tuple d ∈ D.

Definition 4 (MINERful ownplay function): A total function f
S :

Σ → S , linking each character ρ ∈ Σ to a single tuple e ∈ E .
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Given this all, we say that the MINERfulKB is an interpretation for
both the MINERful interplay function and the MINERful ownplay
function, namely K = {fD

, f
E}.

Such an interpretation is given by the application of the MINERful
to a collection of strings, as described in the following Section VI.

Given two characters, namely �ρ, σ� ∈ ΣT , where ΣT is the actual
alphabet, appearing over a set of traces T , we denote the application
on ρ,σ of the MINERful interplay function, intepreted over T , as
f
D
T (ρ,σ) = Dρ,σ = �δρ,σ, b→ρ,σ, b←ρ,σ�. Similarly, the application on
ρ of the MINERful ownplay function, intepreted over T , is denoted
as f

E
T (ρ) = Eρ = �γρ, giρ, glρ�

We remark here that the MINERful interplay expresses a local
view on two characters, measuring the distances and the alternations
between the first and the second. Thus, in order to correctly interpret
the MINERful interplay function, you should focus on substrings,
starting from the pivot ρ and ending in the searched σ (or viceversa,
in case of negative distances). Beware that such substrings are not
related to the first occurrence of ρ in the string: any ρ is the initial
(final) character for a following (preceding) substring ending in
(starting from) σ, each separatedly analyzed. On the contrary, in order
to give a correct interpretation to the MINERful ownplay function,
you should take into account the whole string at once. For instance,
suppose to have a string like this: aabbac. Then, we might have Da,·
described in Table III, whereas

Ea = �γa =

�
�3, 1�
�x, 0� ∀x ∈ N \ {3}

�
, g

i
a = 1, gla = 0�

.

VI. THE ALGORITHM

Algorithm 1 The MINERful pseudo-code algorithm (bird-eye watch-
ing)

KT ← computeKBOnwards(T,ΣT )
KT ← computeKBBackwards(T,ΣT )
B ← discoverConstraints(KT ,ΣT , |T |)

A. Construction of the MINERfulKB

The input of this algorithm is a bag of strings, called T , and an
alphabet ΣT . The assignment of variables simply consists in the
definition of the alphabet ΣT . At the end of the run, we have the
interpretations for both MINERful interplay function and MINERful
ownplay function, respectively {fD

T , f
E
T } ≡ KT , computed on the

basis of T .
The MINERfulKB is designed to be tailored to the further reason-

ing for constraints discovery. Thus, the latter step becomes easier and
faster, than analyzing it directly from the raw data (the bag of strings).
At the same time, it must be fast itself: moving the whole complexity
to this step would take no advantage. The algorithm presented here
is built to be completely on-line, i.e., it improves the MINERfulKB
as new strings occur and as new characters in the string are read,
with no need to go back on previous data in the end.

a) The algorithm: Before starting the description of the code
in Algorithm, we resume here the notation adopted. Sets differ from
lists in that they can not have multiple copies of the same value.
Therefore, if, e.g., X = {x} =⇒ X ∪ {x} = {x}, i.e., unions
are implicitely meant to be distinct: the reader has to keep this in
mind when looking at instructions like R ← R ∪ {σ} (see line 12
in Algorithm 2). Lists, though, have an explicit positional indexing
over the values inserted. Hence, �πρ[j] (see line 26 in Algorithm 2), is
pointing at the j-th element in the �πρ list. Strings are considered as
lists of characters: thus, t[i] refers to the i-th character in the string
t (see line 11 in Algorithm 2). Lists and strings are provided with a

Algorithm 2 The computeKBOnwards function pseudo-code algo-
rithm

1: ∀x ∈ Z∞
. δ(x) := 0

2: ∀x ∈ N. γ(x) := 0
3: for all t ⊆ T do

4: g
i
t[0] := g

i
t[0] + 1

5: R ← ∅ # R: set of characters already appeared in t

6: ∀r, s ∈ ΣT Nr,s ← 0 #
N : counter for missing s characters after r

7: ∀r ∈ ΣT , �πr ← {} #
�πr: vector of indexes where r appears in t

8: ∀r, s ∈ ΣT , Wr,s ← 0 #
W : counter for r’s repeated before the next s

9: ∀r, s ∈ ΣT , �Wr,s ← ⊥ #
�W : flag for granting the update of W

10: for i = 1 to |t| do

11: σ ← t[i]
12: R ← R ∪ {σ}
13: �πσ ← �πσ ◦ {i}
14: for all ρ ∈ R do

15: if ρ = σ then

16: for all s ∈ ΣT \ {ρ} do

17: Nρ,s ← Nρ,s + 1
18: if �Wρ,s = ⊥ then

19: �Wρ,s ← �
20: else

21: Wρ,s ← Wρ,s + 1
22: end if

23: end for

24: else

25: for j = 1 to | �πρ| do

26: δρ,σ(i− �πρ[j]) := δρ,σ(i− �πρ[j]) + 1
27: end for

28: Nρ,σ ← 0
29: if �Wρ,σ = � then

30: b
→
ρ,σ := b

→
ρ,σ +Wρ,σ

31: �Wρ,σ ← ⊥, Wρ,σ ← 0
32: end if

33: end if

34: end for

35: end for

36: for all r ∈ R do

37: for all s̄ ∈ ΣT \R do

38: δr,s̄(0) := δr,s̄(0) + | �πs|
39: end for

40: for all s̄ ∈ Nr do

41: δr,s̄(+∞) := δr,s̄(+∞) +Nr,s

42: end for

43: if | �πr| = 1 then

44: δr,r(+∞) := δr,r(+∞) + 1
45: end if

46: end for

47: for all s ∈ ΣT do

48: γs(| �πs|) := γs(| �πs|) + 1
49: end for

50: g
l
t[|t|] := g

l
t[|t|] + 1

51: end for
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−∞ · · · −4 −3 −2 −1 0 +1 +2 +3 +4 +5 · · · +∞
δa,a 0 0 1 1 0 1 0 1 0 1 1 0 0 0 b→a,a = 0; b←a,a = 0

δa,b 2 0 0 0 1 1 0 1 2 1 0 0 0 0 b→
a,b = 1; b←

a,b = 0

δa,c 3 0 0 0 0 0 0 1 0 0 1 1 0 0 b→a,c = 2; b←a,c = 0

TABLE III
EXAMPLES OF STATISTICAL VALUES STORED IN THE INTERPRETED MINERFULKB

concatenation function, ◦: for instance, the effect of �πσ ← �πσ ◦ {i}
is to add i as the last element in �πσ (see line 13 in Algorithm 2).
For pointing at a specific element in a map (indexed multi-set), we
put the “coordinates” in the subscript of the set identificator: e.g.,
Nr,s is the element in N corresponding to r and s (see line 6 in
Algorithm 2).

In order to ease the reader to distinguish between assignments of
temporary variables (like the ones from line 5 to line 9 in Algo-
rithm 2) and the update of the interpretation for the MINERfulKB
(see e.g., line 4 in Algorithm 2), we denote the former with ←, the
latter with :=.

We consider passes by reference in the invocation of procedures,
so that passed objects are subjected to direct side effects from within
the procedure body.

b) Explanation of Algorithm 2: From line 1 to line 2, the
interpretations of the γ and δ functions are initialized, supposing that
they are constant and equal to 0, whatever the value the variables
assume. Then, for each string t in T (line 3), the first character
appearing (t[0]) is recorded into the related g

i
t[0] as the first (line

4). After the initialization of auxiliary data structures, whose role is
briefly explained in-line on the code itself and further in this Section,
the analysis of the single characters in the string begins (line 10). First
of all, the encountered character σ is added to the set of appeared
characters in t, namely R (if it is not already in – see VI-A.0.b). Next,
the current index is concatenated (◦ operation) to the list of positions
where σ appeared in t ( �πσ), at line 13. On line 14 the algorithm
starts the computation of interleaving statistics between characters.

For each of the characters already appeared in the string, ρ, the
algorithm proceeds differently, depending on whether a character
already appeared is read again (ρ = σ) or not (line 15).

In the first case, the temporary counter for cases in which s (where
s is any other character in ΣT but ρ) did not appear anymore after
an occurrence of ρ (Nρ,s) is incremented by 1 (line 17). This is due
to the fact that such counter will be reset if s appears afterwards (see
line 28), and its value is going to be “flushed” to δr,s̄(+∞) at the end
of the string t (see line 41). From line 18 to line 22, the algorithm
updates the counters for repeated occurrences of ρ before the next
occurrence of s: �Wρ,s is the flag for incrementing the Wρ,s counter;
hence, if it is set to false, it gets true, whereas if it is already true,
Wρ,s is incremented by one. This is due to the fact that when the
next occurrence of s is found in the string, the value of Wρ,s will be
flushed as an increment to b

→
ρ,s (see line 30), before �Wρ,s and Wρ,s

are reset, respectively, to ⊥ and 0, (line 31).
If the encountered σ differs from ρ in the loop over R, then

the value assumed by δρ,σ at the current distance between ρ and
σ has to be incremented by 1. Though, we may have not only one
position where ρ appeared, but many. Think to aaccccacab . . ., for
instance: there, the pivot a appeared at position 1, 2, 7 and 9, and
the searched b at position 10. Thus, b must be recorded to appear
at distance 1, 3, 8 and 9 from a. Reminding that �πρ collects all of
the indexes where ρ is read (see line 13), this is what happens at
line 26, actually – repeated for each position of ρ in �πρ, i.e., inside
the loop starting at line 25. This is probably one of the most difficult
steps of the algorithm, though it prevents the analysis to be repeated
like a transitive closure on each string for each appeared character to

gather information. As we said at the beginning of Section VI-A, the
analysis for the MINERful interplay to get interpreted must be local
to each occurrence of ρ, but the construction of the MINERfulKB
had not to be too complex: this is the most noticeable example of
how we managed both the requirements.

The final part of the outermost cycle updates counters on the basis
of the previously gathered information. The instruction of line 38
records the number of times that the read character r occurred in t

as the counter of how many times s (which was not read) missed,
i.e., once for each of the appeared r. The statement at line 44 is
due to the need of recording that if r appeared once and then no
more in the string, then δr,r(+∞) must be incremented by one in
the interpretation. This is the only case where this operation makes
sense. If we had used for δr,r(+∞) the technique used at line 38,
it would have been meaningless, since always occurs a last r, after
which no more r are read afterwards (this is the reason why the
cycle for computing the value of Nr,s is executed for each s �= r

– see line 16). On line 48, the function distributing the number of
appearances of each character s in the alphabet ΣT over T is updated:
the number of occurrences of s in t, namely | �πs|, is the argument,
and the referred value is incremented by 1. | �πs| can be 0 as well,
if it was never read in t. In the end (line 50), the counter for the
appearances as last for the ending character of �t is incremented by
1.

c) A running example for the computation of the δ function and

the b counter: Since the work of the algorithm on δ and b (thus
respectively on N , and on W and �W ) can lead to some difficulties
in the understanding, we explain it through an example. Suppose to
have a t string like this: aabbac. Taking into account the analysis
of a only as the pivot ρ, for sake of simplicity, the evolution of Na

throughout the algorithm is reported on the following Table IV, as
Wa and �Wa evolve like on Table V.

d) On the computeKBBackwards procedure: This algorithm
is called twice, one reading strings onwards (computeKBOnwards),
i.e. from left to the right (according to the Western Latin standard),
one backwards (computeKBBackwards). Despite this, here we
reported the pseudo-algorithm of the former only, since the latter
is almost identical. The only differences are in that computeKB-

Backwards:

• it does not update either the γ function, nor the g
i nor the g

l

(namely, it does not contribute to give an interpretation to the
MINERful ownplay, being this done by computeKBOnwards

already);
• it does not update the δ function for 0 values (since computeK-

BOnwards already detected characters never appeared in the
string, if any);

• it reverses the sign of i, the counter of the current index in
the string (namely, it is initialized with −1 and proceeds being
decremented by 1 at each step);

• it updates the δ function for −∞ values, instead of +∞,
whenever the same conditions of lines 40 and 43 in Algorithm 2
are verified.

e) Discussion on the complexity: In the following, we discuss
the complexity of Algorithm 2.
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�Na, δa,·�\
σ∈t a a b b a c

�Na,b, δa,b� �1,−� �2,−� �0,−� �0,−� �1,−� �1,−� �0,+1�
�Na,c, δa,c� �1,−� �2,−� �3,−� �4,−� �5,−� �0,−� �0,+0�

TABLE IV
THE EVOLUTION OF NA AND δA,B , δA,C , OVER THE READING OF A STRING t

���Wa,Wa�, b→a,·�
\σ∈t a a b b a c

���Wa,b, Wa,b�, b→a,b� ���, 0�,−� ���, 1�,−� ��⊥, 0�,+1� ��⊥, 0�,−� ���, 0�,−� ���, 0�,−�
���Wa,c, Wa,c�, b→a,c� ���, 0�,−� ���, 1�,−� ���, 1�,−� ���, 1�,−� ���, 2�,−� ��⊥, 0�,+2�

TABLE V
THE EVOLUTION OF �WA , WA , AND b→

A
OVER THE READING OF A STRING t

Lemma 1: The procedure for building the knowledge base of the
MINERful is (i) linear time w.r.t. the number of strings in the
testbed, (ii) quardratic time w.r.t. the size of strings in the testbed,
(iii) quadratic time w.r.t. the size of the alphabet; therefore, the
complexity is O(|T | · |tmax|2 · |ΣT |2).

Proof: The outermost cycle (line 3) is repeated exactly |T |
times, the following inner (line 10), |t| times for each t ∈ T . In the
worst case, i.e., assuming that each string is as long as the longest,
it loops |tmax| time, where tmax = max t ∈ T |t|. Actually, such
couple of loops make the instructions be repeated exactly

�
t∈T |t|

times, i.e., the relevant size of the input. At line 14, we have a cycle
whose number of repetitions grows as new characters are found in
the analyzed string. The number of loops depends on the size of the
string |t| and the size of the alphabet ΣT at the same time. In fact,
we might assume that each character read was not found before in
the string. So, as soon as a new character is read, you have one loop
more. You might say that, hence, the instructions in the block are
executed 1+2+3+ · · ·+ |t| times as the cursor in the string moves
on. If it was so, loops starting at line 10 and line 14) had run at most

|t|× (|t|+ 1)

2

times, as in the formula for counting the sum of the first |t| natural
numbers. Although, the maximum amount of “new” characters is
bounded by the characters you can really have. Therefore, assuming
the worst case, i.e., all of the characters of ΣT in every string, it
runs at most 1+2+3+ · · ·+ |ΣT | times. Then, we have to subtract
the number of loops that are not executed due to the limitation of
the alphabet size (if the alphabet size is smaller than the size of the
strings, which is likely). Let:

∆t,ΣT = |t|− |ΣT |

Thus, the number of loops is equal to:

|t|× (|t|+ 1)

2
−

∆ΣT ,t × (∆ΣT ,t + 1)

2
·Θ(∆t,ΣT − 1)

where Θ(x) is the Heaviside step function (equal to 0, and thus
deleting the second term in the subtraction if ∆t,ΣT , i.e., if |t| <
|ΣT |, otherwise equal to 1). If we suppose that |t| < |ΣT |, then we
can simplify terms of the moltiplications and subtractions, up to

2|ΣT ||t|− |ΣT |2 + |ΣT |
2

=
2∆t,ΣT |ΣT |+ |ΣT |

2
� |ΣT ||t|

Depending on the condition at line 15, the algorithm enters one of
the two innermost loops, one starting at line 16, the other at line 25.

The first is executed exactly |ΣT | − 1 times, no matter the outer
cycles. The second, instead, is such that the more repetitions of the
same character in the string we had, the more it loops. If we had

strings composed by concatenations of the same character (the worst
case for such cycle) following a prefix with all of the alphabet (the
worst case for the outer cycle), this loop asymptotically causes on
the long run as many loops as |t|.

The instructions in the bodies of the loops are readings and writings
in memory1 so they do not add any relevant degree of complexity to
the algorithm.

Summing up this computation analysis, we have that the procedure
algorithm is

O



 |T |
����

loop at 3

|tmax||ΣT |� �� �
loops at 10 and 14



 |ΣT |����
loop at 16

+ |tmax|� �� �
loop at 25









B. Discovery of Constraints

Artful processes are represented by means of a set of constraints,
imposing the rules that each process instance must follow, whatever
the execution trace is. The set of mined constraints are those described
in Tables I and II, that are an extended version of those explained
in [18]. Here, we express such constraints like predicates over the
MINERfulKB, that are easily transposed into instructions for a
verification algorithm.

f) Existence constraints:

Participation(r) ≡ Existence(1, r)

≡
�

min
�o,p�∈γr|p>0

o > 0

�
(VI.1)

Each string had at least 1 occurrences of r in.

Unique(r) ≡ Absence(2, r)

≡
�

max
�o,p�∈γr|p>0

o � 2

�
(VI.2)

There was no string with more than 1 occurrence of r in.

Init(r) ≡
�
|T | � g

i
r

�
(VI.3)

Every string starts with r.

End(r) ≡
�
|T | � g

f
r

�
(VI.4)

Every string finishes with r.

1The reader might ask the opportunity to analyze the complexity of
searching the datum to overwrite in the temporary data structures, such as
N . Although, considering that (i) we can exploit the alphanumeric ordering
function for ordering the couples of characters, and (ii) the alphabet of
characters is known a priori, we can easily make use of a hashing function,
so that reaching the datum and overwriting it is O(1).
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Rather than giving the exact number of times a task can be done
(in a range from the lower to the upper), so to specify that all of
the Existence(N, r) constraints hold, for N ranging from 0 to
min�o,p�∈γr|p>0 (and dually consider Absence(N + 1, r) valid for
each N from max�o,p�∈γr|p>0 o onwards), we preferred to introduce
a looser couple of constraints, stating whether a task r must be
executed (Participates(r)) or not, and whether it must be done no
more than once (Unique(r)). We believe that providing the minimum
and the maximum for ranges would have been for artful processes
too overfitting, when mined, or too restrictive, when enacted. Finally,
we want to remark the introduction of the End(r) constraint: if it
holds, it means that each process instance must terminate with an
execution of r2.

g) Relation constraints:

RespondedExistence(r, s) ≡ ¬(δr,s(0) > 0)) (VI.5)

There was no string such that s was not read if r was.

Response(r, s) ≡RespondedExistence(r, s)

∧ ¬(δr,s(+∞) > 0)) (VI.6)

There was no string such that s did not succeed r.

AlternateResponse(r, s) ≡Response(r, s)

∧ b
→
r,s = 0 (VI.7)

There was no string such that r appeared again before the succed-
ing.

ChainResponse(r, s) ≡AlternateResponse(r, s)

∧ δr,s(1) �
�

�o,p�∈γr

o · p (VI.8)

Each time you have an occurrence of r, the total amount of which
is computed as

�
�o,p�∈γr

o · p, there is always a new s immediately
following (i.e., at a distance equal to 1).

Dually, we have the following Precedence-based constraints.

Precedence(r, s) ≡Response(r, s)

∧ ¬(δr,s(−∞) > 0)) (VI.9)

There was no string such that s did not precede r.

AlternatePrecedence(r, s) ≡Precedence(r, s)

∧ b
←
r,s = 0 (VI.10)

There was no string such that r appeared again before the preceding
s.

ChainPrecedence(r, s) ≡AlternateResponse(r, s)

∧ δr,s(−1) �
�

�o,p�∈Gr

o · p

(VI.11)

Each time you have an occurrence of r, the total amount of which
is computed as

�
�o,p�∈γr

o · p, there is always a new s immediately
preceding (i.e., at a distance equal to −1).

You derive the following.

CoExistence(r, s) ≡RespondedExistence(r, s)

∧RespondedExistence(b, a) (VI.12)

2End(r) does not necessarily imply that as r is enacted, the process
instance must get to an end, but only that the final character in the string
is r.

Constraint Symbol
Existence constraints

Participation(a) �1+
ρ

Unique(a) �1−
ρ

Init(a) �i
ρ

End(a) �l
ρ

Relation constraints
RespondedExistence(a, b) �ρ,σ

Response(a, b) �→
ρ,σ

AlternateResponse(a, b) �⇒
ρ,σ

ChainResponse(a, b) ��
ρ,σ

Precedence(a, b) �←
ρ,σ

AlternatePrecedence(a, b) �⇐
ρ,σ

ChainPrecedence(a, b) ��
ρ,σ

CoExistence(a, b) �ρ
σ

Succession(a, b) �↔
ρ,σ

AlternateSuccession(a, b) �⇔
ρ,σ

ChainSuccession(a, b) ���
ρ,σ

Negative relation constraints
NotCoExistence(a, b) ⊥ρ

σ
NotSuccession(a, b) ��

ρ,σ

NotChainSuccession(a, b) ���/
ρ,σ

TABLE VI
SYMBOLS EXPRESSING THE VALIDITY OF CONSTRAINTS

Succession(r, s) ≡Response(r, s)

∧ Precedence(r, s) (VI.13)

AlternateSuccession(r, s) ≡ AlternateResponse(r, s)

∧AlternatePrecedence(r, s)
(VI.14)

ChainSuccession(r, s) ≡ChainResponse(r, s)

∧ ChainPrecedence(r, s)
(VI.15)

h) Negative relation constraints:

NotChainSuccession(r, s) ≡¬(δr,s(1) > 0)) (VI.16)

It never happens that, after r, s follows unless you have at least
another character in the middle (i.e., s never appears at distance 1
from r).

NotSuccession(r, s) ≡NotChainSuccession(r, s)

∧
�

�o,p�∈Gr

o · p � δr,s(+∞) (VI.17)

It never happens that, after r, s follows.

NotCoExistence(r, s) ≡NotSuccession(r, s)

∧
�

�o,p�∈Gr

o · p � Dr,s(0) (VI.18)

It never happens that, if r is in a string, s appears in the same,
neither before nor aftwerwards.

i) The algorithm: In the pseudo-code of the algorithm for guess-
ing the relation constraints (Algorithms 3, 4, 5), we assume the afore-
mentioned predicates as the body of homonim functions. Actually,
a hierarchy between constraints exists: the conjunctions inside, e.g.,
ChainPrecedence(r, s), involving AlternatePrecedence(r, s), is
explicity put there in purpose. This way, the reader can have an im-
mediate evidence of the fact that, e.g., once ChainPrecedence(r, s)
is known to hold, AlternatePrecedence(r, s), and recursively
Precedence(r, s) as well, hold too.
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With a slight conceptual modification w.r.t. computeKBOnwards,
then, we suppose the algorithm to fill a bag of predifined constants
(each symbol corresponding to the validity of a constraint for the
given set of traces T ), rather than giving an interpretation to each
predicate (see Table VI for a reference). As the reader can see
in Algorithms 3, 4, 5 and the further discussion, such constants
will be added to the bag avoiding redundancies. The user who
wants to understand the discovered artful process is not interested
to read about trivial deductions: for instance, it is enough to say that
ChainPrecedence(r, s) holds, rather than explicitly return as valid
constraints ChainPrecedence(r, s), AlternatePrecedence(r, s)
and Precedence(r, s) (where the latter couple is directly implied
by the first). Reporting the validity of all three would add no bit of
information and make the result far less readable – which is definitely
to avoid, in our case, being knowledge workers the target of our
approach, i.e., people with a little amount of time to dedicate to
the process analysis. For the same reason, characters never appeared
in the testbed are not involved neither in existence constraints nor
in relation constraints related to them as implying (see line 2 in
Algorithm 3).

This is the rationale underlying the nested if structure of the
Algorithms.

j) Discussion on the complexity: In the following we discuss
the complexity of the concurrent execution of Algorithms 3, 4 and
5.

Lemma 2: The procedure for discovering the constraints of pro-
cesses out of the MINERful knowledge base is (i) quadratic time
w.r.t. the size of the alphabet, (ii) linear in the number of constraint
templates, which is fixed and equal to 18 (thus constant); therefore,
the complexity is O(|ΣT |2).

Proof: We have two nested cycles, both for ρ ranging over the
characters of the alphabet Σ (see lines 1 and 1 in Algorithm 3), thus
both looping for |ΣT |, at most, due to the presence of the check
at line 2 in Algorithm 3), so to analyze every possible couple. The
nested if statements checks whether a constraint holds or not. At
most, it means that, for each couple of characters ρ and σ, you have
up to 14 checks (for the innermost loop). The outermost loop calls
up to 4 procedures for checking existence constraints.

VII. THE COMPLEXITY OF THE MINERFUL ALGORITHM

Theorem 1: The MINERful is (i) linear time w.r.t. the number of
strings in the testbed, (ii) quardratic time w.r.t. the size of strings
in the the testbed, (iii) quadratic time w.r.t. the size of the alphabet;
therefore, the complexity is O(|T | · |tmax|2 · |ΣT |2).

Proof: Directly follows from Lemmata 1 and 2.

VIII. VALIDATION AND EXPERIMENTS

A validation of the technique has been performed by using the
example outlined in Section III-A as the starting point. Its aim is to
show the efficiency of the mining technique, being the underlying
algorithm polynomial wrt. the dimension of the input.

We tested the algorithm by varying the input in terms of alphabet
size (different characters appearing in the strings), number of con-
straints valid over the strings, range of the number of characters per
string. Starting with two tasks, n and p, and the related constraints,
we made various experiments making the alphabet grow up to the
original, thus including also r and c, plus an unconstrained task, e.
The constraints ranged from the minimal set of four (Unique(n),
Participation(n), End(n), Succession(p, n)) to the maximal set
of seven (including Response(r, p), RespondedExistence(c, p),
AlternatePrecedence(r, c)). The lengths of the strings ranged
through intervals of {[2 . . . 8], [3 . . . 12], [4 . . . 16], [5 . . . 20]}. The
number of strings ranged as the power of 10, from 100 up to 1000000
with an exponential step. For each of the preceding combination,

Algorithm 3 The discoverConstraints function pseudo-code al-
gorithm: non-negative relation constraints and calls to the other
procedures.

1: for all ρ ∈ ΣT do

2: if
�
max�o,p�∈γr|p>0 o � 0

�
then

3: discoverExistenceConstraints(ρ, K)
4: for all σ ∈ ΣT do

5: if RespondedExistence(ρ,σ,K) then

6: if Response(ρ,σ,K) then

7: if AlternateResponse(ρ,σ,K) then

8: if ChainResponse(ρ,σ,K) then

9: if ChainPrecedence(ρ,σ,K) then

10: B ← B ∪ {���
ρ,σ}

11: else

12: B ← B ∪ {��
ρ,σ}

13: end if

14: else

15: if AlternatePrecedence(ρ,σ,K) then

16: B ← B ∪ {�⇔
ρ,σ}

17: else

18: B ← B ∪ {�⇒
ρ,σ}

19: end if

20: end if

21: else

22: if Precedence(ρ,σ,K) then

23: B ← B ∪ {�↔
ρ,σ}

24: else

25: B ← B ∪ {�→
ρ,σ}

26: end if

27: end if

28: end if

29: if Precedence(ρ,σ,K) then

30: if AlternatePrecedence(ρ,σ,K) then

31: if ChainPrecedence(ρ,σ,K) ∧
¬ChainResponse(ρ,σ,K then

32: B ← B ∪ {��
ρ,σ}

33: else

34: if ¬AlternateResponse(ρ,σ,K) then

35: B ← B ∪ {�⇐
ρ,σ}

36: end if

37: end if

38: else

39: if ¬Response(ρ,σ,K) then

40: B ← B ∪ {�←
ρ,σ}

41: end if

42: end if

43: end if

44: if ¬ (Response(ρ,σ,K) ∨ Precedence(ρ,σ,K))
then

45: B ← B ∪ {�ρ,σ}
46: end if

47: end if

48: if �ρ,σ ∈ B ∧ �σ,ρ ∈ B then

49: B ← B \ {�ρ,σ,�σ,ρ} ∪ {�ρ
σ}

50: end if

51: guessNegativeConstraints(ρ, σ, K)
52: end for

53: end if

54: end for
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Fig. 2. Experimental results

Algorithm 4 The discoverNegativeConstraints procedure pseudo-
code algorithm

1: if NotCoExistence(ρ,σ,K) then

2: B ← B ∪ {⊥ρ
σ}

3: else

4: if NotSuccession(ρ,σ,K) then

5: B ← B ∪ {��
ρ,σ}}

6: else

7: if NotChainSuccession(ρ,σ,K) then

8: B ← B ∪ {���/
ρ,σ}

9: end if

10: end if

11: end if

Algorithm 5 The discoverExistenceConstraints procedure pseudo-
code algorithm

1: if Participation(ρ) then

2: B ← B ∪ {�1+
ρ }

3: end if

4: if Unique(ρ) then

5: B ← B ∪ {�1−
ρ }

6: end if

7: if Init(ρ) then

8: B ← B ∪ {�i
ρ}

9: end if

10: if End(ρ) then

11: B ← B ∪ {�l
ρ}

12: end if

10 runs were performed, for a total amount of 4480 executions.
The random strings were created by Xeger3, a Java open-source
library for generating random text from regular expressions. All of
the parameters, and not only constraints, were expressed in terms of
regular expressions indeed, and their conjunction passed to the Xeger
engine.

The machine was a Sony VAIO VGN-FE11H (an Intel Core Duo
T2300 1.66 GHz (2 MB L2 cache) with 2 GB of DDR2 RAM at
667 Mhz), having Ubuntu Linux 10.04 as the operating system and
Java JRE v1.6.

As the reader can see in Figure 2(a), the number of constraints
does not affect the time taken by the algorithm to run – indeed, you
are not able to distinguish between the curve designed by a group of
points and another, where each group is related to a given number
of constraints.

Figure 2(b) shows the fitting curves of the time taken by the
algorithm to run, in comparison with the total amount of characters in
input. It is a section of a parabola, confirming that the the algorithm
is quadratic w.r.t. the size of the strings.

The algorithm is linear in the size of the collection of traces. In
order to test this, we made a slightly different set-up: we fixed the
number of constraints(7), the number of characters per string (10),
and the alphabet length (5), whereas the number of strings ranged
from 1000 to 12000 with a step of 1000. The result is depicted in
Figure 2(c).

Furthermore, we report here by evidence that the time to build
the MINERfulKB is the hardest task of the algorithm, with respect
to the mining of constraints: in the worst case (1000000 strings, 7
constraints, 5 characters, length ranging from 5 to 20) the MINER-
fulKB was computed in 125.78 seconds whereas constraints were
discovered in less than half a second (47 msec).

These results confirm Theorem 1 by experiment. There, you can

3http://code.google.com/p/xeger/
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also see how the major impact on performances is given by the
total amount of characters read, in practice. The graph showing
the time needed by the algorithm to terminate, with respect to the
number of characters in the testbed, fits a quadratic curve, although
the shape of such parabola is very flatten, due to the nature of
its non-linearity: looking back to the algorithm, it is caused by a
loop cycling more as characters are repeated (for defining the δρ,σ

function), nested in a loop cycling more as different characters are
encountered (i.e., executing the former loop for each unread ρ) –
both start to grow together in terms of cycles only if strings tend to
be far longer than the size of the alphabet. Finally, it is remarkable
that the time needed by the discoverConstraints procedure is far
shorter than what computeKBOnwards and computeKBOnwards

take. Nonetheless, the latter couple is able to process a huge amount
of characters in an acceptably small amount of time, as it was required
to be.

Indeed, discovered constraints lead to an interesting update
to the example. Succession(p, n) was not reported, whereas
AlternatePrecedence(p, n) and Response(p, n) were returned as
valid. This was not a mistake of MINERful: on the contrary, as sug-
gested by the output of the algorithm, being n the last activity, with
Unique(n) holding, n could not ever be repeated before p, hence not
Succession(p, n) but the couple of AlternatePrecedence(p, n)
and Response(p, n) constraints explained better the structure of the
process.

IX. CONCLUSIONS

As a concluding remark, we would like to highlight how the
technique presented in this paper is only the last step of a complex
approach, aimed at inferring artful processes from e-mail messages;
once that other techniques, out of the scope of this paper, allow us to
consider e-mail messages as strings over an alphabet of characters,
the MINERful technique presented in this paper is able to infer which
constraints are valid over such strings, thus inferring the process
(described in a declarative way) that may lay behind them.

Further research activities are needed in order to refine and solve
all the techniques of MAILOFMINE, and an extensive validation of
the overall approach. In this paper, we have shown that MINERful
is a very efficient algorithm for mining constraints over strings,
but only through a validation over real sets of e-mail messages
we can really assess how much underfitting or overfitting is the
technique. Indeed, we aim at validating it on a corpus of about
10 Gigabyte of e-mail messages, derived from the activity of one
of the authors in about 10 years of works in research projects,
in order to infer common processes that partners adopted during
software/deliverables’ production. Then we will apply to the field
of collaborative activities of Open Source software development,
reported by publicly available mailing lists.
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