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Abstract

The MapReduce framework, originally proposed by Google [8], and its
open source implementation, Hadoop [27], are nowadays considered the stan-
dard frameworks, both in industry and academia, to deal with petabyte scale
datasets. In this paper we describe a two-rounds MapReduce approach to
biconnectivity in undirected graphs, that is the computation of the set of ar-
ticulation points, the set of bridges and the set of biconnected components of
a graph G. We recall that an articulation point (resp. a bridge) is a vertex
(resp. an edge) whose removal increases the number of connected compo-
nents. A biconnected component is a maximal biconnected subgraph, i.e., it
does not include neither articulation points nor bridges.

In order to minimize the communication cost, the algorithm is based on
a summary of the input data set, that is a compact data structure from which
queries on biconnectivity properties can be answered. This summary, called
navigational sketch [3], was originally designed in the data streams frame-
work [20] and was implicitly proved to be incrementally maintainable. Here
we define it in a different framework in order to prove that it is mergeable [1].
Mergeability is the key property of summaries in distributed or parallel com-
putation: in particular, it provides a way to split the computation of the sum-
mary across separate subsets of the original data set, and thus to exploit the
parallelism of the MapReduce framework.

We finally discuss a scenario in which it is assumed that the machines
have limited memory, showing tradeoffs between the memory available and
the number of rounds of the algorithm. We conclude the paper with an ex-
perimental analysis that, on the basis of different executions of an Hadoop
implementation of the algorithm against large-scale real world graphs, con-
firms the effectiveness of our approach.
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1 Introduction

In recent years, we have witnessed an incredible growth of the available data to be
processed, and in this scenario the MapReduce framework proposed by Google [8],
together with its open source implementation, Hadoop [27], emerged as the de
facto standard framework, both in industry and academia, to deal with petabyte
scale datasets [17]. As an example, according to recent estimates, Facebook and
Yahoo! process daily, respectively, 80 terabytes [21] and 120 terabytes [15] in their
Hadoop clusters, whilst Google reaches the astonishing rate of 20 petabytes per
day in its MapReduce clusters [9]. Just few month ago Google reported that they
succeded in sorting 10 petabytes of data in 33 minutes, using 8000 machines [7].

The diffusion of this framework naturally has led to the development of algo-
rithmic tools able to efficiently solve problems in this new MapReduce paradigm
of computation, that, roughly speaking, alternates a (massively) parallel phase
(the mappers) with a sequential one (the reducers); in order to properly evaluate
these new algorithms, distinct theoretical models have been presented in the liter-
ature [16, 11, 13]. However, so far in the (MapReduce) literature relatively few
works appeared dealing with graph problems, despite the fact that also the size of
available graph data increased consistently in recent years. Indeed, samples of the
Webgraph, i.e. the graph whose nodes are webpages and whose (directed) edges
are the links between them, nowadays can easily have billions of nodes, and there
are several other graph data types available including call graphs, citation graphs,
and social networks: for example, only few month ago the media gave a huge
coverage to the four degrees of separation in Facebook observed by Backstrom et
al. [4]. The authors analyzed the entire Facebook network, consisting in approxi-
mately 721 millions users and 69 billions links.

In this work we add to this list of graph algorithms in MapReduce a very basic
tool for the structural analysis of a graph: the computation of all the biconnectivity
properties of a graph, i.e. biconnected components, bridges, and articulation points.

1.1 Contributions

In this paper we present a two-rounds MapReduce algorithm, based on the naviga-
tional sketch of a graph G, i.e. ns(G), originally introduced in [3]. In Section 3,
we prove that the navigational sketch is a fully mergeable [1] summary, and this
will be the key property in the design of our algorithm. Furthermore, we extend the
notion of full mergeability, defining a property, called shuffleable mergeability, that
allows the summary to be easily computed in a multi-rounds MapReduce schema.
Roughly speaking, as the name suggest, in a MapReduce context, the shuffleable
mergeability allows the summary, computed in a single machine, to be broken in
smaller pieces, in such a way that the pieces can more easily arranged to fit in the
available memory. This theoretical results build up on the cactus representation of
a navigational sketch, defined in Section 2.

In Section 4 we describe a two-rounds MapReduce algorithm, analyzed in the
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formal model proposed by Karloff et al. [16], and in case of limited memory sce-
nario, we propose a multi-rounds algorithm. We conclude with a brief experimental
evaluation, that confirms the effectiveness of our approach.

1.2 Related Work

If we consider the traditional model of computation it is possible to compute artic-
ulation points, bridges, and biconnected components of an undirected graph with
a simple Depth First Search (DFS) based algorithm, as shown, for example, in the
classical textbook by Cormen et al. [6]. Tarjan and Vishkin [24] addressed the
biconnected components computation in the CRCW PRAM model. In an online
setting the problem has been studied by Westbrook and Tarjan [26], while more
recently Ausiello et al. proposed an algorithm in the (semi-)streaming model of
computation [3].

The MapReduce framework has been presented in the work of Dean and Ghe-
mawat [8]. So far, few graph problems have been addressed in this framework:
Lin and Schatz [19] showed how to implement message passing style algorithms
in MapReduce, thus obtaining algorithms that run in O(d) rounds, where d is the
diameter of the graph. Suri and Vassilvitskii [23] designed an algorithm to count
triangles in massive graphs; Karloff et al. [16] show how to compute the minimum
spanning tree (MST) and undirected s − t connectivity; Lattanzi et al. [17] pro-
posed a general technique for graph problems, called filtering, and showed how to
use this technique to compute the MST, maximal matchings, approximate weighted
matchings, approximate vertex and edge covers and minimum cuts.

As previously mentioned, so far three models of computation for MapReduce
have been presented, respectively, by Feldman et al. [11], Karloff et al. [16], and
Goodrich [13]; in these works the authors show, in different ways, that a large
class of PRAM algorithms can be efficiently simulated via MapReduce. Even if
the relationship between NC class and the class of problems efficiently solvable
in MapReduce is still a partially open problems, those results provide significative
upper bounds on the number of rounds for a large set of problems in the MapRe-
duce framework: Circuit Padding, Triangle Counting, Minimum Spanning Tree of
an undirected graph, and Connected Components, just to name a few. Moreover,
some of them have been studied in MapReduce, achieving better performances
than the PRAMs simulation under certain assumptions: as an example the simu-
lations provide a Ω(log n) upperbound for the Minimum Spanning Tree problem
(and thus Connected Components), that has been improved for dense graphs with
constant-rounds algorithms [16, 17], while for sparse graphs the problem is still
open, as pointed our recently by Vassilvitskii [25].

An overview of MapReduce. We briefly recall the feature of the MapReduce
computing paradigm (see [8, 9] for details). The computation proceeds in rounds;
in each round there are three distinct phases: map, shuffle, and reduce. The shuffle
phase is operated by the MapReduce system, and therefore, in order to write a
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MapReduce program, a programmer needs only to define a mapper and a reduce
function [16]:

(1) Mapper: A mapper is a function that takes as input an ordered 〈key; value〉
pair of binary strings. As output the mapper produces a finite multiset of new
〈key; value〉 pairs.

(2) Reducer: A reducer is a function that takes as input a binary string k which
is the key, and a sequence of values v1, v2, . . . which are also binary strings.
As output, the reducer produces a multiset of pairs of binary strings 〈k; vk,1〉,
〈k; vk,2〉 . . . having the same key k.

Therefore, a MapReduce algorithm is defined as follows. FOR r = 1, 2, ..., R DO:

1. EXECUTE MAP. Feed each pair 〈k; v〉 in Ur to mapper µr. The mapper
will generate a sequence of tuples 〈k1; vk,1〉, 〈k2; vk,2〉 . . . . Let U ′r be the
multiset of 〈key; value〉 pairs output by µr.

2. SHUFFLE. For each k, let Vk,r be the multiset of values vi associated to the
same key k in U ′r. The underlying MapReduce implementation constructs
the multisets Vk,r.

3. EXECUTE REDUCE. For each k, feed k and some arbitrary permutation
of Vk,r to a separate instance of reducer ρr, and run it. The reducer will
generate a sequence of tuples 〈k; v1〉, 〈k; v2〉 . . . . Let Ur be the multiset of
〈key; value〉 pair output by all instances of ρr

2 Cactus representation

The navigational sketch of a graph has been introduced, in a streaming context, in
the work of Ausiello et al. [3]. We define it formally in the next section, where
we show that it is a fully mergeable summary [1]. Roughly speaking, looking
also at Figure 1, we can derive a navigational sketch of a connected graph in the
following way: given the graph G, for each biconnected components bcc in G,
replace all the edges between vertices in bcc with a tree made of uniquely colored
edges: one (any) vertex in bcc is the root of the tree, and all the other vertices are
the leaves. Therefore, we represent each biconnected components with a uniquely
colored tree, as shown in Figure 1. All the bridges ofG are replaced by solid edges,
i.e. edges with no color.

We recall that a cactus graph is a connected graph in which any two simple
cycles have at most one vertex in common. Let us now introduce the cactus rep-
resentation of a navigational sketch, also shown in Figure 1, that is defined as
follows.

Definition 2.1 (Cactus Representation) The cactus representation of a naviga-
tional sketchN = (V,E), denoted as cactus(N ), is a cactus graphC = (V,E′),
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Figure 1: An example of a graph G, its navigational sketch N = ns(G), and the
corresponding cactus representation C = cactus(N ). In the navigational sketch,
we represent the solid edges with the line style , and the colored edges with
line styles and .

where there is a simple cycle containing all and only the vertices connected by
edges of the same color, for each color of the edges, and there is an edge for each
solid edge of N .

A relevant property of any cactus graph is a linear bound on the number of
edges with respect to the number of vertices, as stated in the following theorem.

Theorem 2.2 Given a cactus graphG with n vertices andm edges,m ≤ γ(n−1),
with γ = 3

2 .

Proof. Let G be the cactus graph. Now, let us remove each edge e = (v1, v2) that
does not belong to any cycle by contracting v1 and v2 into a single vertex. Let us
denote by h the number of edges removed, and by G′ the obtained graph; it holds
that m′ = m− h and n′ = n− h.

Now consider the graph H , whose vertices are the biconnected components
of G′, and there is an edge between two vertices if the corresponding biconnected
components share a vertex. Note that, by construction,H is a chordal graph. Let us
consider a simplicial vertex v in H; we recall that Dirac proved that every chordal
graph has a simplicial vertex [10]. InG′ there is a simple cycleC, corresponding to
v, that has only one vertex in common with edges outside C. Let us contract all the
vertices in C into a single one, let G′′ be the resulting graph, and note that it holds
m′′ = m′−|C| and n′′ = n′−|C|+1, and there is a chordal graphH ′ = H\v that
corresponds to G′′. We can repeat the process until there is only one cycle1; in this
last step we remove |C| vertices and |C| edges. Let us denote with k the number
of simple cycles in the original graph, and by C the average number of vertices in
each cycle, i.e. C =

∑k
1 Ci/k. It holdsm = h+k ·C, and n = h+k ·C−(k−1).

1Stated in other words, we follow a perfect elimination order [12] to remove the vertices from
the chordal graph H .
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Let us note that, for any cycle C, it holds |C| ≥ 3, thus implying C ≥ 3. It is easy
to see that, with h ≥ 0 and C ≥ 3, it holds that m ≤ 3/2(n− 1). ut

3 Navigational Sketch

In this section we describe the navigational sketch data structure, that represents
the biconnectivity properties of an undirected graph, with space sub-linear in the
size of the graph, i.e., the number of edges. We require, without loss of generality,
that G is connected, and we define the navigational sketch as follows.

Definition 3.1 Given a connected graph G = (V,E), its navigational sketch is a
tree N = (VN , EN ), where the set of nodes is the same of G, i.e., VN = V , and
the set of edges EN is distinguished in two types: solid and colored edges. The
following properties hold:

1. BR. the bridges of G are the solid edges of N ;

2. BCC. the biconnected components of G are represented with a subtree, in-
side a tree inN , with one father and b−1 children (where b is the cardinality
of the biconnected component); all the edges in the subtree are of the same
color, and this color is unique inside N .

All navigational sketches N1, . . . , Nh of a graph G = (V,E), with |V | = n, have
also these properties:

1. SIZE. The size of each navigational sketch Ni is O(n), since Ni is a tree.

2. AP. Two edges 〈u1, v〉, 〈u2, v〉 in Ni have different colors or at least one of
them is solid, if and only if v is an articulation point of G.

3. UNIQUENESS OF CACTUS REPRESENTATION. Any pair of navigational
sketchesN1, N2 ofG has the same cactus representationC, i.e., cactus(N1)
= cactus(N2).

4. REFLEXIVITY. Any navigational sketch Ni of G is a navigational sketch of
its cactus representation C.

Furthermore, the definition of navigational sketch can be also generalized to graphs
containing h connected component G = {G1, G2, . . . , Gh}, with h ≥ 2, and it is
a forest containing h navigational sketches, each of them representing a connected
component of G, and all the above properties still hold. In particular SIZE is veri-
fied since the size of the navigational sketch, in this case, is O(n− h) = O(n).
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Computation of a navigational sketch. The function ns(G), that finds a navi-
gational sketch of a graph G, can be computed using the streaming [20] algorithm
described in [3]. The algorithm finds a navigational sketch N using O(n) memory,
if implemented by a RAM with O(log n)-length words, and O(mα(m,n)) pro-
cessing time if m ≥ n log n, where α is the the functional inverse of Ackermann’s
function. Westbrook and Tarjan proved in [26] that a O(mα(m,n)) processing
time algorithm is optimal in the online model of computation, therefore this also
holds in the streaming model of computation.

As claimed in [1], a streaming algorithm with small space, as the proposed one
for the computation of ns(G), implies an incrementally maintainable summary. A
summary σ on a data set S is any compact data structure from which certain queries
on S can be answered accurately, while requiring much lower resources with re-
spect to answering the same queries directly on S. When S is accessible in its
entirety, the summary σ can be constructed off-line; more generally, the summary
is supposed to be maintained in the presence of updates to S, especially when S is
observed as a stream. As known so far from the work in [3], the navigational sketch
is a summary for biconnectivity properties of a graph, and indeed represents an in-
crementally maintainable summary, but as discussed in [1], there could be need for
stronger requirements on summaries where there is a process of repeatedly merging
together two summaries of (separate) data sets to obtain a summary of their union.
In the following we prove the mergeability of the navigational sketch and discuss
how to speed-up the computation of ns(G) switching to a parallel framework.

Speed-up: parallel computation of a navigational sketch. The streaming ap-
proach proposed in [3] takes indeed, as any streaming algorithm over a stream S
of s items, Ω(s) time, that is, for a graph algorithm, linear time in the number of
the edges of the graph G. We prove in the following, that the function ns(G) can
be parallelized and that it is possible to compute a navigational sketch of a graph
G = (V,E), with |V | = n and |E| = m, in o(m) time without increasing the
memory requirement. In [1] the authors define two variants of mergeability, full
and one-way mergeabiliy, the first of which is reported below. We denote as σ(S, ε)
a summary on a data set S with approximation error ε.

Definition 3.2 A summary σ(S, ε) is fully mergeable if the size σ(S, ε) ≤ k(1ε , |S|)
is bounded by an absolute function k(), and there exists an algorithm A that pro-
duces the summary on σ(S1 ] S2, ε)2 from any two input summaries σ(S1, ε) and
σ(S2, ε).

Theorem 3.3 The navigational sketch is a fully mergeable summary σ(S, ε), where
S is the set of edges of an undirected input graphG and ε = 0. The size is sublinear
in |S|, if |S| = n1+d, where n is the number of vertices of G. The algorithmA that
executes the merge step, can be any algorithm that, given two input navigational
sketches N1 and N2, computes ns(cactus(N1) ∪ cactus(N2)).

2] denotes multiset addition
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Proof. We assume without loss of generality, that the algorithm that computes the
function ns(G) incrementally maintains the navigational sketch, as the streaming
algorithm in [3], and we denote with ns(N,G′) the navigational sketch N updated
incrementally with G′. We denote with u ↔G v that the vertices u, v lie in the
same biconnected component of the graph G, and with N → u, v the fact that a
navigational sketch N answers positively to a query “are u, v in the same bicon-
nected component?”.

Given a graphG = G1∪G2 and two input navigational sketchesN1 = ns(G1)
andN2 = ns(G2), by Def 2.1 and property BCC, cactus(N2) contains a cycle for
all and only the biconnected components of G2, therefore, for any pair of vertices
u, v ∈ G, it holds that N1 → u, v iff u ↔G1 v and u ↔cactus(N2) v iff u ↔G2 v.
Furthermore, if neither u ↔G1 v or u ↔G2 v are verified, it holds that if u ↔G v
therefore ns(N1, cactus(N2)) → u, v since N1 is incrementally maintainable.
Therefore, if N = ns(N1, cactus(N2)), N is a navigational sketch of G.

By property SIZE, k(1ε , |S|) = n, where n is the number of vertices of the input
graph, and since the approximation error ε = 0, the thesis follows. ut

By Theorem 3.3 the navigational sketch can be merged in an arbitrary fashion for
an indefinite number of steps, i.e., with any arbitrary computation trees [16, 11],
and the size does not depend linearly on number of merges.

The mergeability is used, ad discussed in the following, as a basic block to
speed-up the computation of a navigational sketch, but is not sufficient anymore in
the limited memory MapReduce scenario described in Sec. 4. We will use a more
general property, that we call shuffleable mergeability, that can be proved for the
navigational sketch.

Lemma 3.4 By Theorem 3.3, for any partition of the edges of a graph G =
{G1, . . . , Gh}, where

⋃
iGi = G and Gi ∩ Gj = ∅ for any i 6= j, the function

ns(G) = ns(Ch), where Ch =
⋃
i∈[h] cactus(ns(Gi))3.

Computing ns(Ch) is never more time consuming than computing ns(G),
since Ch is smaller than G (by The. 2.2, cactus(ns(Gi)) is smaller than Gi up
to a factor γ = 3

2 ) as formalized in the lemma below.

Lemma 3.5 For any edge partition of an undirected graph G = {G1, . . . , Gh}
with n vertices, where

⋃
iGi = G and Gi ∩ Gj = ∅ for any i 6= j, the size

of
⋃
i∈[h] cactus(ns(Gi)) is O(hn), that is O(n) for a constant value of h.

Lemmas 3.4 and 3.5 describe an algorithm (see Alg. 1) to compute ns(G) effi-
ciently exploiting parallelism on a partition ofG: ns(G1), . . . , ns(Gh) can be com-
puted in parallel and ns(Ch) still requires O(n) memory, while only O(n log n)
processing time. If Alg. 1 is analyzed in the CRCW PRAM model, the for all
section is executed in O(m′α(m′, n)) time, where m′ = maxi∈[h] |Ei|. If it holds
m′ = m1−ε ≥ n log n, for any ε > 0, Alg. 1 takes sub-linear processing time in
the number of the edges of the graph G, i.e., o(m).

3[h] denotes the set of integers ≥ 1 and ≤ h
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Alg. 1 A CRCW PRAM algorithm to compute ns(G).

function streaming ns(G)
(see [3])

1: NS ← ∅
2: for 〈u, v〉 ∈ G do
3: if u, v /∈ the same tree T ⊆ NS

then
4: NS ← 〈u, v〉 and `(〈u, v〉) n.d.
5: else
6: Pu,v ← shortest u− v path in NS
7: if ∀〈w, z〉 ∈ Pu,v, `(〈u, v〉) = l

then
8: break
9: else

10: modify T as in Alg.2 of [3]
11: end if

12: end if
13: end for
14: return NS

function ns(G)
1: given a partition G = {G1, . . . , Gh}
2: Ch ← ∅
3: for all i ∈ [h] do
4: Ch ← Ch ∪

∪ cactus(streaming ns(Gi))
5: end for
6: NS ← streaming ns(Ch)
7: return NS

4 Biconnectivity in the MapReduce framework

In this section we describe a two-rounds MapReduce algorithm to compute a nav-
igational sketch of an undirected graph G, we analyze it in theMRC model [16],
discuss a limited memory scenario, and conclude with a brief experimental evalua-
tion using Hadoop [27]. As introduced in Sec. 1.2, it is possible to compute bicon-
nected components in MapReduce by simulating the PRAM algorithms, however,
this leads to an algorithm that runs in O(log n) rounds, as we show below.

PRAM Simulation via MapReduce. Tarjan and Vishkin [24] designed a paral-
lel algorithm on CRCW PRAM for computing biconnected components in a con-
nected undirected graph, and runs in O(log n) time, using O(n + m) space and
O(n + m) processors. Theorem 5.1 in [13] provides a simulation via memory-
bound MapReduce framework, that runs in O(log n logB(n + m)) rounds with a
constant space B and O(log n(n + m) logB(n + m)) message complexity. The
simulation leads to a O(log n) rounds upperbound for the biconnectivity problem
in MapReduce.

4.1 A two-rounds MapReduce Algorithm

In this section we describe a two-rounds MapReduce algorithm. This algorithm,
described in Alg. 2, is an implementation of Alg. 1 in the MapReduce framework:
given a positive integer h and an undirected graph G with n vertices and m edges,
represented by a sequence of pairs 〈i, edgei〉 where i = 1 . . .m, the first round of
Alg. 2 computes Ch =

⋃
i∈[h] cactus(ns(Gi)) using h reducer instances, respec-

tively computing cactus(ns(Gi)) with any implementation of the ns function,
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while the map stage of the second round maps each edge of Ch to a single reducer
instance that can therefore compute ns(Ch) = ns(G).

Alg. 2 A MapReduce algorithm to compute ns(G). G is represented by a sequence
of pairs 〈i, edgei〉.
ROUND 1: Find Ch =
=

⋃
i∈[h] cactus(ns(Gi))

function MAP 〈i, 〈u, v〉〉
1: j ← hash(i) (given hash : [m]→ [h])
2: return 〈j, 〈u, v〉〉

function REDUCE 〈i, Gi〉
1: G′

i ← cactus(ns(Gi))
2: return 〈i, G′

i〉

ROUND 2: Compute ns(Ch) = ns(G)

function MAP 〈i, 〈u, v〉〉
1: $ is a special symbol
2: return 〈$, 〈u, v〉〉

function REDUCE 〈$, G$〉
1: NS ← ns(G$)
2: return 〈$, NS〉

In a recent work [17] Lattanzi et al. describe a general algorithmic design tech-
nique in the MapReduce framework called filtering. While the main idea behind
the algorithm described in Alg. 2 can be thought of as a filtering approach, we re-
mark that the navigational sketch (and its cactus representation) is a summary of
the input graph and while its size is smaller as in the filtering approach, the edge
set is not a subset of the input graph.

4.2 Theoretical Analysis

We now analyze the algorithm in theMRC model of computation of MapReduce,
summarized in Def. 4.1.

Definition 4.1 ([16]) Given a finite sequence of pairs 〈ki; vi〉 where ki and vi are
binary strings and

∑
i |ki| + |vi| = s, fix ε > 0. An algorithm inMRCi consists

of a sequence of map and reduce operations which outputs the correct answer with
probability at least 3

4 where:

1. Each map or reduce operation is implemented by a RAM with O(log s)-
length words, that uses O(s1−ε) memory and time polynomial in s.

2. The total space used by the 〈key; value〉 pairs output by each map stage is
O(s2−2ε).

3. The number of rounds is O(logi s)

There exists Las Vegas and deterministic variants ofMRC, the latter of which are
called DMRC.

Given ε > 0 and a graph G = (V,E) where |V | = n and |E| = m represented
by a sequence of pairs 〈i, edgei〉 where

∑
i |i|+ |edgei| = s, in order to prove that

the algorithm described in Alg. 2 is in MRC0, we set h = mε and we observe
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that (i) by Lemma 3.5, the total space used by the 〈key; value〉 pairs output by
each map stage is O(mεn) = O(s2−2ε); (ii) the number of rounds is O(1). Since
for each map or reduce operation, implemented by a RAM, the processing time is
O(poly(m)) = O(poly(s)), the following fact implies that Alg. 2 lies inMRC0.

Lemma 4.2 Let h = mε, with high probability the size of every Gi = O(m1−ε),
therefore each map or reduce operation requires O(s1−ε) memory.

Proof. If hash : [m]→ [h] is a uniformly random function, in expectation the size
of Gi, i.e., the number of edges mapped to a key i, is m

h . Since h = mε, the size of
every Gi is O(m1−ε) with high probability. Since m ≤ s, the thesis follows. ut

The classic sequential algorithm for computing biconnected components in a
connected undirected graph due to Hopcroft and Tarjan [14] runs in linear time
in the number of edges of the input graph, and is based on depth-first search. In
Sec. 3 we showed that Alg. 1 leads to an effective speed-up with respect to the
streaming and the classic approaches; here, in order to compare Alg. 2 with the
classic approach, we use the definition of total work in Sec. 2.2 of [17].

We now prove that, if O(m + mεn) = O(m), for ε > 0, theMRC algorithm
in Alg. 2 is work efficient, that is, its total work matches the running time of the
best known sequential algorithm.

Lemma 4.3 Using the classic sequential algorithm as a basic block of the imple-
mentation of the navigational sketch function, the total work needed by theMRC0
algorithm is O(m+mεn).

Proof. During the first round, partitioning the input graph G into {G1, . . . , Gh}
requires a linear scan over the edges which is O(m) work. Computing the cactus
representation of the navigational sketch of each part of the partition using the
classic sequential algorithm as a basic block takes O(m) work. Computing the
navigational sketch on one machine using the same algorithm requires O(mεn)
work. ut

4.3 Limited memory scenario.

Given an input graph G = (V,E), where |V | = n and |E| = m, we now discuss
the scenario in which the machines have some limited memory k > n, and that the
number of available machines is m

k ≥ mε in order to admit a solution inMRC.
If the available memory is O(m1−ε), we have seen in previous section an easy
way to design a two-rounds MapReduce algorithm (Theorem 3.3). We now define
a property, shuffleable mergeability, that provides a way to design a multi-rounds
MapReduce algorithm working with memory smaller than k.

Definition 4.4 A summary σ(S, ε) is f-shuffleble if the size σ(S, ε) ≤ k(1ε , |S|) is
bounded by an absolute function k(), and there exists an algorithmA that produces
data set S′ such that σ(S, ε) = σ(S′, f(ε)) and the size |S′| is bounded by k().
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If f(ε) = ε, the summary is also fully mergeable: the algorithm that produces
the summary on σ(S1 ] S2, ε) from any two input summaries σ1 = σ(S1, ε) and
σ2 = σ(S2, ε), is given by σ(A(σ1) ] A(σ2), ε).

Theorem 4.5 The navigational sketch is a ε-shuffleable summary σ(S, ε), where S
is the set of edges of an undirected input graph G and ε = 0. The size is sublinear
in |S|, if |S| = n1+d, where n is the number of vertices of G. The algorithmA can
be any algorithm that, given a navigational sketch N , computes cactus(N ).

Proof. The proof holds by the properties REFLEXIVITY of a navigational sketch.
To verify the bound on the size of the data set produced by the cactus representation
operator, see Lemma 2.2 and property SIZE of a navigational sketch. ut

We now describe a multi-rounds MapReduce algorithm to compute a navi-
gational sketch of an undirected graph G. The algorithm, described in Alg. 3,
is a variation of Alg. 2. Let G = G0 be the input graph and Gr = (V,Er),
where |Er| = mr, be the input of r-th round of Alg. 3: the r-th round computes
Gr =

⋃
i∈[mr

k
] cactus(ns(Gi)) (where Gi is the i-th subgraph of the partition of

Gr−1 = {G1 . . . Gh}) using any implementation of the navigational sketch func-
tion, and when the size of Gr−1 is smaller than k, that is each edge of Gr−1 has
been mapped to a single reducer instance, computes ns(Gr−1) = ns(G).

Alg. 3 A multi-rounds version of Alg. 2 that works in a limited memory scenario.

ROUND i: Compute ns(Ch) = ns(G)
Ch =

⋃
i∈[h] cactus(ns(Gi))

Given hash : [m]→ [dmk e]
and hash(i) = d ik e

function MAP 〈i, 〈u, v〉〉
1: j ← hash(i)
2: return 〈j, 〈u, v〉〉

function REDUCE 〈i, Gi〉
1: if dmk e = 1 then
2: NS ← ns(Gi)
3: return 〈i,NS〉

(and end the computation)
4: else
5: G′

i ← cactus(ns(Gi))
6: return 〈i, G′

i〉
(and start another round)

7: end if

The function hash : [mr] → [dmrk e] executed in the map stage, partitions the
graph Gr in h = dmrk e subgraphs, not uniformly random. In order to prove the
bound on the numbers of rounds of the Alg. 2, this particular approach guarantees
that each reduce instance will use exactly k memory, except for a single one that is
uses instead mr mod k memory when mr mod k > 0 (otherwise this instance
does not exist).

Lemma 4.6 Given a graph G = (V,E) where |V | = n and |E| = m, with high
probability the number of rounds is O(log k

nγ
m).
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Figure 2: In this plot, the running time (in seconds) of the algorithm versus the
number of machines (i.e. the reducers used in the first round).

Proof. Because of the above partition schema (i) no machine gets assigned more
than k edges; (ii) at each round any reduce operation returns a cactus representation
that is strictly smaller than k unless k = n (but we know that k > n), i.e., mr <
mr−1 < k, in particular mr <

mr−1

k γn where γ is the constant value defined in
Sec. 2. Therefore, the size of the input graph decreases, each round, up to a factor
n
kγ with respect to the number of vertices n of G, and after O(log k

nγ
m) iterations

the input graph Gr is small enough to fit onto a single machine, and the overall
algorithm terminates. ut

Lemma 4.7 Given a graph G = (V,E) where |V | = n and |E| = n1+d, if
k = n1+d

′
, with d′ ≤ d, with high probability the number of rounds is O( dd′ ).

4.4 Experimental Validation in Hadoop

In the following we briefly describe a preliminary experimental validation of
the algorithm. A detailed experimental analysis goes behind the scope (and the
size) of this paper; our goal here is to confirm the effectiveness of our approach.

Experimental settings. We used two graphs available online4: i) dblp-2011 (with
n = 986k, m = 6.7M ): a co-citation graph, with data from the DBLP Computer
Science Bibliography [18]; ii) eu-2005 (with n = 862k, m = 19.2M ): a 2005
crawl of the .eu domain [5]. We implemented our algorithms adapting the Java
code provided with the textbook written by Sedgewick [22]. We rented (up to) 18
identical machines from the Amazon Elastic Computing Cloud (EC2) [2], Large
Standard Instance type: 7.5 GB of memory, 4 EC2 Compute Units (2 virtual cores
with 2 EC2 Compute Units each), 850 GB of local instance storage, 64-bit plat-
form. Hadoop version is 0.20.203.0.

4The datasets are available at the url http://law.dsi.unimi.it/.
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Overall processing time. In Figure 2 we can see how the overall processing time
is affected by the number of reducers in the first round, i.e. the overall number of
machine. It is clear from the plots that there is an optimal number of machines,
i.e. both the plots have a minimum. This is interesting: after a certain threshold,
adding more machines slows down the overall computation. This result can be
easily explained: assume we have h machines; since the algorithm to compute the
navigational sketches is linear in the input, we know that, in the first round each
of the reducers has to process roughly m/h edges, producing a sketch whose size
is ≈ n. In the second round, the single reducer has to process ≈ h · n edges;
the overall processing time for a graph G is therefore T (G) ≈ m/h + h · n. We
can derive the equation with respect to h, in order to compute the value h∗ that
minimizes T (G), obtaining dT/dh = n−m/h2, and solving for h, it holds h∗ =√
m/n. Therefore, the (theoretical) optimal number of machines is approximately

the square root of the average degree of the graph. Our experiments confirmed
this behavior but, in practice, we needed more machines than expected: the values
computed analytically are, indeed, h∗ = 3 for the dblp-2011 graph, and h∗ = 5 for
the eu-2005.
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