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Abstract

The classical no-arbitrage pricing theory allows to price assets through a linear pricing rule, by
assuming a frictionless and competitive market. Moreover, completeness of the market assures
that the pricing rule is defined as a discounted expected value with respect to a unique equivalent
martingale measure. On the other hand, under no-arbitrage assumption, incomplete models,
such as the trinomial model, lead to a set of equivalent martingale measures. This suggests
to work with non-linear pricing rules that can allow frictions in the market. A generalized
pricing rule can be achieved by replacing additive measures with non-additive measures such
as convex capacities and belief functions in Dempster-Shafer theory. The paper recaps results on
non-additive measures and Choquet expectation as non-linear functional to be used in pricing.
In the literature it has been proved that, under suitable conditions, a non-linear pricing rule
can be expressed as a Choquet expectation with respect to a convex capacity. In the trinomial
market model the lower probability is a belief function, but it cannot be used to reach the lower
expectation through the Choquet integral. Nevertheless it can avoid a generalized Dutch book
condition in the framework of partially resolving uncertainty.
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1 Introduction

The classical pricing theory is based on the assumptions that the market is frictionless and com-
petitive. Hence, the existence of a linear pricing rule is equivalent to the fact that the market is
arbitrage-free (the first fundamental theorem of asset pricing). In turn, the existence of a linear pric-
ing rule is equivalent to the existence of an equivalent martingale measure. Moreover, the assumption
of completeness of the market assures that the equivalent martingale measure is unique.

Under market incompleteness, the uniqueness is lost and this leads to a set of equivalent mar-
tingale measures (see, e.g., Amihud and Mendelson, 1986; Chen and Kulperger, 2006; Acciaio et
al., 2016). The literature concerning the theory of sets of probability measures and their envelopes
essentially refers to Walley (1991), Gilboa and Schmeidler (1989), Schmeidler (1989), Cozman
(2000), Ghirardato and Marinacci (2001), Capotorti et al. (2008), Coletti et al. (2016), Erreygers et
al. (2019), Petturiti and Vantaggi (2020), T’Joens et al. (2021), Petturiti and Vantaggi (2022).

In the framework of decision theory, sets of probability measures are related also to the notion
of ambiguity (Etner et al., 2012; Gilboa and Marinacci, 2011).

As is well-known, the simplest example of incomplete market is the trinomial market model.
In the classical approach the market can be completed by adding another risky asset that leads to
choose a specific equivalent martingale measure in the original set. Anyhow the latter procedure
requires a choice criterion and it would lead to lose some information contained in the set. More
generally, incompleteness continues to hold if the risky asset is allowed to have n different possible
future values, for n ≥ 3.

The existence of a set of probability measures suggests to work with a non-linear pricing rule
that can model frictions in the market. Frictions such as bid-ask spreads are largely proved to exist
(Amihud and Mendelson, 1986, 1991) and they are studied in Bensaid et al. (1992), Jouini and Kallal
(1995), Acciaio et al. (2016), Cerraia-Vioglio et al. (2015), Chateauneuf et al. (1996), Chateauneuf
and Cornet (2022).

There are alternative attempts along this line by considering different functionals for pricing:
envelopes of expected values with respect to a class of probability measures, integral forms such as
Choquet expectation with respect to non-additive measures. In general, the two approaches are not
equivalent but in case of a convex capacity (or a belief function) ν the Choquet integral coincides
with the lower expectation induced by its core (see Schmeidler, 1986). In particular, in Cinfrignini et
al. (2021) the study of market frictions has been faced by replacing probability measures with belief
functions in the Dempster-Shafer theory (Dempster, 1967; Shafer, 1976).

The paper is structured as follows. In Section 2 we report the classical no-arbitrage pricing
theory in the one-period setting. We introduce complete and incomplete markets and we show
the one-period trinomial market model as a prototypical example of incomplete market. Section
3 introduces non-additive measures that are required to deal with non-linear pricing rules and the
Choquet integral as non-linear functional. In Section 4 we recall and connect some results given
in Chateauneuf et al. (1996) and Coletti et al. (2020) assuring that a non-linear pricing rule can be
expressed through a Choquet expectation. In particular we will focus on a global lower pricing rule
that can be expressed as a discounted Choquet expectation with respect to a convex capacity or a
belief function. Then we point out that in the trinomial market model the lower probability, proved
to be a belief function in Cinfrignini et al. (2021), gives rise to a Choquet expectation that does not
coincide with the lower expectation induced by the equivalent martingale measures. Nevertheless,
the lower price assessment on the bond and the risky asset satisfies the generalized no-Dutch-book
condition obtained from Coletti et al. (2020). Finally, the last section draws conclusions.
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2 Classical one-period no-arbitrage theory

We refer to a one-period financial market open at times t = 0 and t = 1. An asset (or security)
is a tradable financial instrument that has a positive or negative cash flow of money. The cash flow
is deterministic (i.e. it does not depend on future states of the world) when the asset is riskless;
otherwise the cash flow is a random variable since it depends on what state of world will occur, and
the asset is called risky. The market is based on two fundamental assumptions (Allingham, 1991):

(i) absence of frictions (there are no transaction costs, taxes and others restrictions on trading);

(ii) competitiveness (every quantity can be traded at market’s price).

One period market model consists of a set of K risky assets with price process (S
(k)
0 , S

(k)
1 ),

for k = 1, . . . ,K, and by one riskless asset (bond) with price process (B0, B1) that is identified
with a 0-th asset (S(0)

0 , S
(0)
1 ) to simplify the notation. It is usually assumed that S(k)

0 = s(k) > 0

is a deterministic positive value (called price), while S
(k)
1 is a random variable (called payoff ), for

each k = 1, . . . ,K. The bond process, without loss of generality, is assumed to be S
(0)
0 = 1 and

S
(0)
1 = 1 + r, where r > 0 is the risk-free interest rate of the market.

Price processes are defined on a filtered probability space (Ω, {F0,F1},F , P ) where Ω =
{1, . . . , n}, n ∈ N is a finite state space, {F0,F1} is a filtration such that F0 = {∅,Ω} and
F1 = F = P(Ω) is the power set of Ω, and P is a probability measure on F . The probability
measure is called “natural” or “real-world” probability measure and the classical pricing theory
asks for the positivity of P since it assures that an asset with a non-negative and non-null payoff will
have a positive price at time t = 0. We also denote by RΩ the set of all random variables which
are automatically F-measurable. Moreover, scalar real numbers are identified with constant random
variables. Finally, P(Ω,F) stands for the set of all probability measures on (Ω,F).

Let us denote the set of all random payoff with G = {S(0)
1 , . . . , S

(K)
1 } and with π : G → R a

function such that π
(
S
(k)
1

)
= S

(k)
0 , for k = 0, . . . ,K, which is called price assessment. Our aim

is to look for a global pricing rule π′ : RΩ → R that extends π.
The risk-free bond is usually used as a numéraire (see Pliska, 1997); it means that the riskless

bond allows to discount the risky process and defines a new process denoted as
(
S̃
(k)
0 , S̃

(k)
1

)
with

S̃
(k)
0 = S

(k)
0 and S̃

(k)
1 = (1 + r)−1S

(k)
1 , for k = 1, . . . ,K.

A portfolio (or trading strategy) is a collection of assets that an agent can hold. It is denoted by
a vector λ = (λ0, . . . , λK) ∈ RK+1, whose component λk expresses the number of units purchased
(λk > 0) or sold (λk < 0) of the k-th asset in the time interval [0, 1].

The price at time t = 0 of the portfolio λ is computed as weighted sum of prices:

V λ
0 =

K∑
k=0

λkS
(k)
0 =

K∑
k=0

λkπ
(
S
(k)
1

)
; (1)

while the payoff of the portfolio λ is given by a random variable V λ
1 : Ω → R defined, for every

i ∈ Ω, as the weighted sum of payoffs:

V λ
1 (i) =

K∑
k=0

λkS
(k)
1 (i) . (2)

Given the set of random variables G, λ ∈ RK+1 is a Dutch-book portfolio if the following condition
holds:

max
i∈Ω

K∑
k=0

λk

(
S̃
(k)
1 (i)− π

(
S
(k)
1

))
< 0. (3)
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The condition means that the portfolio λ ∈ RK+1 gives rise to a sure loss for each i ∈ Ω, since the
supremum gain is negative for sure. The portfolio is also called incoherent. Conversely, if inequality
in Equation (3) does not hold, the portfolio is called coherent and it avoids a Dutch-book opportunity,
i.e. it avoids a sure loss (Schervish et al., 2008).

The arbitrage definition is stronger than that of Dutch-book, since the former guarantees a posi-
tive payoff in, at least, one state of the world, with a zero or negative price. A portfolio λ ∈ RK+1

is an arbitrage portfolio if one of the following condition holds (Allingham, 1991):

(1) V λ
0 ≤ 0 and V λ

1 ≥ 0 with a strict inequality for at least one i ∈ Ω;

(2) V λ
0 < 0 and V λ

1 = 0.

Equivalently λ ∈ RK+1 is an arbitrage portfolio if
∑K

k=0 λk

(
S̃
(k)
1 (i)− π

(
S
(k)
1

))
≥ 0, for all

i, with a strict inequality for at least one i ∈ Ω. Note that a Dutch-book opportunity implies the
existence of an arbitrage but the converse does not hold (Schervish et al., 2008).

The assumption that the market has to be arbitrage-free is standard in classical pricing theory
(see, e.g., Pliska, 1997; Dybvig and Ross, 1989) and it has important implications in asset pricing.
The absence of arbitrage opportunities guarantees the existence of a positive linear pricing rule
π′ : RΩ → R such that π′

(
S
(k)
1

)
= π

(
S
(k)
1

)
, for k = 0, . . . ,K (Dybvig and Ross, 1989).

Furthermore, when the market is complete, there is a unique linear pricing rule π′ given by the
discounted expected value computed with respect to a unique risk-neutral probability measure that
has to be equivalent to the natural one.

Under completeness, a derivative X , that is a financial contract defined as a random process
(X0, X1) on the filtered probability space (Ω, {F0,F1},F , P ), adapted to the filtration {F0,F1},
can be perfectly replicated by setting up a replicating strategy λ ∈ RK+1 composed by the risky
assets and the bond, such that they have the same final payoff X1 = V λ

1 .
Then, by the law of one price, they have the same price at time t = 0:

X0 = V λ
0 , (4)

and its value is computed as discounted expected value of its payoff:

X0 = (1 + r)−1EQ(X1), (5)

where Q is the unique equivalent martingale measure. Therefore, we have that π′(·) = (1 +
r)−1EQ(·).

On the other hand, in the case of an incomplete market, the price assessment is consistent with
the no-arbitrage assumption but not each derivative in the market can be replicated by a strategy.
This leads to a set of equivalent martingale measures Q such that each Q ∈ Q defines a different
price.

Given a non-replicable derivative with payoff Y1 ∈ RΩ, its fair price can be computed as an
interval defined through the closest replicable derivative. If X1 is the closest replicable derivative of
Y1, the following quantities can be computed:

V (Y1) = inf
X1≤Y1,

X1 is replicable

(1 + r)−1EQ(X1), V (Y1) = sup
X1≤Y1,

X1 is replicable

(1 + r)−1EQ(X1). (6)

The fair price of the derivative has to be in the interval
(
V (Y1), V (Y1)

)
, otherwise it gives rise to

an arbitrage opportunity (Pliska, 1997). Another approach to select a replicating strategy for a non-
replicable derivative is to choose the best replicating strategy among the imperfect strategies through
approximations/algorithms (see Cerný, 2009; Bertsimas et al., 2001). Although they are not detailed
here, some criteria to choose a replicating strategy can be the following:
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(a) sub(super)-hedging. We look for a strategy λS ∈ RK+1 such that
V λS
1 ≤ (≥)Y1. Hence the sub-hedging V λS

0 and the super-hedging prices V
λS

0 are the no-
arbitrage bounds for the non-replicable payoff Y1;

(b) quadratic risk minimization. We look for a strategy λQR ∈ RK+1 that minimizes the expected
value of the quadratic distance between the payoff of the derivative and the value of the port-
folio. The following optimization problem has to be solved:

min
λQR

E
[(

Y1 − V
λQR

1

)2]
; (7)

(c) shortfall risk minimization. We look for a strategy λSR ∈ RK+1 that minimizes the shortfall
risk. It penalizes only deviations in defect but it is less mathematically tractable. The following
problem has to be solved:

min
λSR

E
[(

Y1 − V λSR
1

)+]
. (8)

Another approach to overcome market’s incompleteness is to complete the market with an ap-
propriate number of extra assets. Let us introduce the matrix notation to go deep into the problem.
Payoffs of riskless and risky assets are defined in the matrix A ∈ Rn×(K+1):

A =


S
(0)
1 (1) S

(1)
1 (1) . . . S

(K)
1 (1)

...
...

...
S
(0)
1 (n) S

(1)
1 (n) . . . S

(K)
1 (n)

 , (9)

and the vector of payoff of the derivative is denoted by X = (X1(1), . . . , X1(n)) ∈ Rn. Hence, an
arbitrage-free market is complete if and only if the following linear problem has a unique solution:

AλT = X, (10)

where λ = (λ0, . . . , λk) ∈ RK+1 is the portfolio such that λ0 is referred to units of risk-free asset
S(0) and λk is referred to units of risky asset S(k), for k = 1, . . . ,K. Problem (10) has a unique
solution, assumed that there are no redundant assets1, if and only if rank(A) = n = K + 1, hence
A has to be a square matrix. Otherwise, the following possibilities can occur (Cerný, 2009):

(I1) rank(A) = n < (K + 1): the market is complete but there are K + 1 − n redundant assets
that lead to K + 1− n free parameters referred to redundant assets;

(I2) rank(A) = (K + 1) < n: the market is incomplete since n− (K + 1) assets are lacking. It
can be completed by adding the missing number of assets;

(I3) rank(A) < n, rank(A) < (K+1): the market is incomplete and there are (K+1)−rank(A)
redundant assets.

However, sometimes the completion is not possible or not desirable as it changes the market
structure. Also other procedures that introduce additional requirements such as agents’ preferences
may be not desirable as they change the framework. A way to define a unique price consistent with
the no-arbitrage principle without changing the market structure is to compute prices with every
Q ∈ Q through Equation (5) and define a set of prices Y . Then we could choose the price Y ∈ Y

1 An asset whose payoff can be written as a linear combination of others assets’ payoffs is called redundant since it does not
add anything new to the market. If there are no redundant assets, the market’s asset are said to be linearly independent.
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that departs as little as possible from the actually observed in the market. For this procedure we can
refer, for example, to Pascucci and Runggaldier (2011).

The simplest example of complete market model is the one-period binomial model (Cox et al.,
1979), while an example of incomplete market model is the trinomial model.

The trinomial model is composed by a bond with price process
(B0 = 1, B1 = (1 + r)B0) and by a risky asset with the following price process:

S0 = s > 0, S1 =

 uS0 with probability p1,
mS0 with probability p2,
dS0 with probability p3,

(11)

where u > m > d > 0 are parameters, pi ∈ (0, 1) for i = 1, 2, 3, and
∑3

i=1 pi = 1. Such model is
free of arbitrage if and only if u > (1 + r) > d as the binomial model but it is not complete since it
occurs condition (I2).

In the trinomial case there is a set of equivalent martingale measures denoted as:

Q = {Q ∈ P(Ω,F) : (1 + r)−1EQ(S1) = S0, Q ∼ P}. (12)

The set Q is a convex set that can be characterized by its extreme points
(Runggaldier, 2006) (in particular it is a segment since there are two extreme points):

Q1 = (q11 , q
1
2 , q

1
3) =


(
0, (1+r)−d

m−d , m−(1+r)
m−d

)
if m ≥ (1 + r),(

(1+r)−m
u−m , u−(1+r)

u−m , 0
)

if m < (1 + r),
(13)

Q2 = (q21 , q
2
2 , q

2
3) =

(
(1 + r)− d

u− d
, 0,

u− (1 + r)

u− d

)
. (14)

We stress that extreme points Q1 and Q2 are not equivalent to P since they are not positive on F ;
hence equivalent martingale measures are given by the strict convex combinations of Q1 and Q2:

Q = {Qα : Qα = αQ1 + (1− α)Q2, α ∈ (0, 1)}, (15)

with Qα ∼ P , for each Qα ∈ Q.
At this point, a suitable criterion to choose one measure in the set is required. In the following ex-

ample we show that each Qα ∈ Q is an equivalent martingale measure consistent with no-arbitrage
assumption but it leads to varied prices for the derivative, through Equation (5).

Example 2.1 Let S0 = 100, u = 2,m = 6
5 , d = 2

5 and, without loss of generality, r = 0. Extreme
points of the set Q, computed with Equations (13) (14), are:

Q1 =

(
0,

3

4
,
1

4

)
, Q2 =

(
3

8
, 0,

5

8

)
.

Then the set of equivalent martingale measures is given by:

Q =

{
Qα : Qα = α

(
0,

3

4
,
1

4

)
+ (1− α)

(
3

8
, 0,

5

8

)
, α ∈ (0, 1)

}
.

For instance, let α = 0.2. The equivalent martingale measure is Q0.2 =
(

6
20 ,

3
20 ,

11
20

)
and we can

verify that Q0.2 ∈ Q by computing the following expected value:

EQ0.2

(
S1

S0

)
= 2 · 6

20
+

6

5
· 3

20
+

2

5
· 11
20

= 1.

6
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Let C be a European call option with payoff C1 = max(S1 −K, 0) and strike price K = 110. The
payoff at time t = 1 is the following:

C1(i) =

 90 if i = 1
10 if i = 2
0 if i = 3

The price of the call option C0 computed through Q0.2 is:

C0 = EQ0.2(C1) = 90 · 6

20
+ 10 · 3

20
=

57

2
= 28.5.

Let be α = 0.9. The equivalent martingale measure is Q0.9 =
(

3
80 ,

27
40 ,

23
80

)
. Also in this case

Q0.9 ∈ Q since EQ0.9

(
S1

S0

)
= 1, and the price of the call option computed trough Q0.9 is:

C0 = EQ0.9(C1) = 90 · 3

80
+ 10 · 27

40
=

81

8
= 10.125.

♦

The trinomial model can be completed by adding another risky asset. We denote risky assets as
S(1) and S(2), each of them with price process as in (11), with parameters ui,mi, di, for i = 1, 2.
The model is complete as K + 1 = 3 = n, with a unique solution for q1, q2, q3 (for details see
Pascucci and Runggaldier, 2011).

We stress that any n-nomial market model composed by K risky asset is incomplete, for n ≥ 3
and K < (n− 1), as explained in Cinfrignini et al. (2021).

Anyhow completing the market is not always possible or desirable. Our approach would deal
with a subset Q′ ⊆ Q, possibly with an equality. Pricing with Q′ would allow to model frictions
in the market in the form of bid-ask spreads. The intuitive way to face the problem of frictions in a
trinomial model is to define the interval of derivative’s price induced by Q′. It means that we look
for the lower and the upper bounds of price, defined as:

X0 = (1 + r)−1 inf
Qα∈Q′

EQα(X1), X0 = (1 + r)−1 sup
Qα∈Q′

EQα(X1). (16)

Thus, we could look for a lower/upper pricing rule which is given by the lower/upper envelope
of a class of expectations with respect to each Qα ∈ Q′ and extends the fixed lower/upper price
assessment.

3 Non-additive measures and non-linear functionals

When uncertainty is not quantifiable in a single probability measure and we have to deal with
a set of them, we are facing a situation called ambiguity. Since working with the whole class of
probabilities is hard, we usually consider the envelopes of the class. For instance, in the trinomial
model just defined, we would consider a lower pricing rule expressed by a functional of an envelope
of the set of equivalent martingale measures. In particular, in what follows, we work with the lower
envelope, but we point out that the upper envelope leads to the same results, since they are conjugate
functions. Generally, envelopes of a set of probability measures are no longer probabilities. Hence,
we have to introduce generalized functions that lose the additive property: for that they are called
non-additive measures. Moreover, in particular settings, there exists a link between the envelopes of
linear functionals defined with respect to a class of probability measures and a non-linear functionals
computed with respect to a non-additive measure, as we show in this section.

Let (Ω,F) be the finite space defined in the previous section, with F = P(Ω).
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Definition 3.1 A function ν : F → R is called a non-additive measure or a capacity if it is:

(i) normalized: ν(∅) = 0 and ν(Ω) = 1;

(ii) monotone: ν(A) ≤ ν(B) for all A,B ∈ F , with A ⊆ B.

Moreover, a capacity ν is called:

(a) 2-monotone or convex capacity if, for every A,B ∈ F :

ν(A ∪B) ≥ ν(A) + ν(B)− ν(A ∩B); (17)

(b) totally monotone capacity or belief function (usually denoted by Bel) if, for every A1, . . . , Ak ∈
F with k ≥ 2, it holds that:

ν

(
k⋃

i=1

Ai

)
≥

∑
∅̸=I⊆{1,...,k}

(−1)|I|+1ν

(⋂
i∈I

Ai

)
; (18)

(c) (coherent) lower probability if there exists a set P of probability measures on F such that, for
every A ∈ F :

ν(A) = inf
P∈P

P (A); (19)

(d) probability measure if ν(A ∪B) = ν(A) + ν(B), for every disjoint A,B ∈ F .

If ν is a belief function, then it is also a 2-monotone capacity and a (coherent) lower probability.
In turn, if ν is a probability measure, then it is also a belief function. Conversely, the property of
being a lower probability does not imply 2-monotonicity and, so, neither total monotonicity.

We denote by V(Ω,F) and B(Ω,F), respectively, the set of all capacities and that of all belief
functions on (Ω,F), and we stress that P(Ω,F) ⊆ B(Ω,F) ⊆ V(Ω,F)2.

For every 2-monotone capacity there exists a set of dominating probability measures called core
(or credal set) (Gilboa and Schmeidler, 1994; Walley, 1991):

core(ν) = {P ∈ P(Ω,F)|P (A) ≥ ν(A), ∀A ∈ F}. (20)

A coherent lower probability P is such that core(P ) ̸= ∅ and P is its lower envelope: P (A) =
min

P∈core(P )
P (A), ∀A ∈ F . In turn, a belief function, as it is a particular lower probability, can be

regarded as the lower envelope of its core:

Bel(A) = min
P∈core(Bel)

P (A). (21)

Every capacity ν can be characterized in terms of another function called Möbius inverse (Chateauneuf
and Jaffray, 1989):

m(A) =
∑
B⊆A

(−1)|A\B|ν(B), ν(A) =
∑
B⊆A

m(B). (22)

Proposition 3.1 (Chateauneuf and Jaffray, 1989). Given a function ν : F → R, let m be its Möbius
inverse. Then:

2 Every capacity ν has a conjugate function called dual capacity. In general it is defined as ν(A) = 1− ν(AC), ∀A ∈ F .
The dual of a lower probability is said upper probability; the dual of a 2-monotone (convex) capacity is said 2-alternating
(concave) capacity; the dual of a belief function is said plausibility function (Pl); the dual of a probability is itself.
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(a) ν is a capacity if and only if:

m(∅) = 0,∑
B∈F m(B) = 1, and∑
{i}∈B⊆A m(B) ≥ 0, for all A ∈ F and for all i ∈ A;

(b) ν is a 2-monotone capacity if and only if condition (a) holds and ∀A ∈ F , and {i, j} ∈ A with
i ̸= j,

∑
{i,j}⊆B⊆A m(B) ≥ 0;

(c) ν is a belief function if and only if condition (a) holds and m is non-negative;

(d) ν is a probability measure if and only if condition (a) holds, m is non-negative and can be
positive only on singletons.

Definition 3.2 (Gilboa and Schmeidler, 1994). Given a capacity ν and a random variable X ∈ RΩ,
the Choquet expectation of X with respect to ν, denoted by Cν(X), is defined through the Choquet
integral:

Cν(X) = C

∫
Ω

X dν =

=

∫ ∞

0

ν({i ∈ Ω|X(i) ≥ x}) dx+

∫ 0

−∞
[ν({i ∈ Ω|X(i) ≥ x})− ν(Ω)] dx.

(23)

We point out that the Choquet expectation coincides with the expected value if ν is additive (i.e.
it is a probability measure P ): Cν(X) = EP (X). Assuming Ω = {1, . . . , n}, the Choquet integral
can be computed in the following way:

Cν(X) =

n∑
i=1

[X(σ(i))−X(σ(i+ 1))] ν(Eσ
i ), (24)

where σ is a permutation of Ω such that X(σ(1)) ≥ . . . ≥ X(σ(n)), Eσ
i = {σ(1), . . . , σ(i)}, for

i = 1, . . . , n, and X(σ(n+ 1)) = 0. Moreover, for every ν ∈ V(Ω,F) with corresponding Möbius
inverse m, and X ∈ RΩ, the Choquet expectation of X with respect to ν can be computed through
the Möbius inverse:

Cν(X) =
∑

B∈F\{∅}

m(B)min
i∈B

X(i). (25)

We summarize some properties of the Choquet integral:

(i) for all A ⊆ Ω we have that Cν(1A) = ν(A), with 1A : Ω → {0, 1} the indicator function of A
such that 1A(i) = 1 if i ∈ A and 1A = 0 otherwise;

(ii) for any capacities ν, φ,∈ V(Ω,F) and α, β ∈ R, it holds that
Cαν+βφ(X) = αCν(X) + βCφ(X);

(iii) (non-negative homogeneity) for any capacity ν and all α ≥ 0, it holds that Cν(αX) =
αCν(X);

(iv) (constant additivity) for any capacity ν and all α ∈ R, it holds that
Cν(α+X) = α+ Cν(X);

(v) (monotonicity) for any capacity ν and for any X,Y ∈ RΩ such that X ≤ Y , it holds that
Cν(X) ≤ Cν(Y );

9
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(vi) if ν is a 2-monotone capacity, for any X,Y ∈ RΩ, the Choquet integral is super-additive:
Cν(X + Y ) ≥ Cν(X) +Cν(Y ), and, for every X ∈ RΩ, the Choquet expectation equals the
lower expectation with respect to the core(ν) (Gilboa and Schmeidler, 1994):

Cν(X) = min
P∈core(ν)

∑
i∈Ω

P ({i})X(i) = min
P∈core(ν)

EP (X); (26)

(vii) if ν reduces to a belief function Bel, for any X1, . . . , Xk ∈ RΩ, the Choquet integral is
completely monotone:

CBel

(
k∨

i=1

Xi

)
≥

∑
∅̸=I⊆{1,...,k}

(−1)|I|+1CBel

(∧
i∈I

Xi

)
. (27)

We stress that property (vi) continues to hold if ν reduces to a belief function and it can be interpreted
as a lower expectation. This shows that Choquet expectation with respect to a 2-monotone capacity
or a belief function leads to a specific functional inside the class of envelopes of expectations.

In the following example we show that, despite the lower envelope of a set P of probability
measures is 2-monotone (or even a belief function), the corresponding Choquet expectation may not
coincide with the lower expectation induced by P if its closed convex hull does not coincide with
core(P ).

Example 3.1 Let Ω = {1, 2, 3} and X be a random variable that assumes the following values:
X(i) = i, for i = 1, 2, 3. Let P be a set of three probability measures: P = {P1, P2, P3} taking
values reported below:

F ∅ 1 2 3 12 13 23 Ω
P1 0 1/2 1/4 1/4 3/4 3/4 1/2 1
P2 0 1/3 1/3 1/3 2/3 2/3 2/3 1
P3 0 2/5 2/5 1/5 4/5 3/5 3/5 1

The lower probability P (A) = min
P∈{P1,P2,P3}

P (A),∀A ∈ F , and its Möbius inverse m are reported

in the following table:

F ∅ 1 2 3 12 13 23 Ω
P1 0 1/2 1/4 1/4 3/4 3/4 1/2 1
P2 0 1/3 1/3 1/3 2/3 2/3 2/3 1
P3 0 2/5 2/5 1/5 4/5 3/5 3/5 1
P 0 1/3 1/4 1/5 2/3 3/5 1/2 1
m 0 1/3 1/4 1/5 1/12 1/15 1/20 1/60

Since m(A) ≥ 0 for every A ∈ F , the lower probability P is a belief function.
The Choquet integral of X with respect to P , generally, is not equal to the lower expectation of

X computed among P ∈ P since the convex hull conv(P), which is closed as P is finite, does not
coincide with core(P ). To show that, we compute the extreme points of core(P ). Extreme points of
core(P ) are computed in the following way: for any permutation of indices σ = (σ(1), . . . , σ(n)),
extreme points are computed as Pσ = (P (σ(1)), . . . , P (σ(n))) with
P (σ(i)) = P ({σ(1), . . . , σ(i)})− P ({σ(1), . . . , σ(i− 1)}).

Hence, for any permutation of {1, 2, 3}, we have the following set of extreme points ext(core(P )):

P (1,2,3) =
(
1
3 ,

1
3 ,

1
3

)
= P2, P (1,3,2) =

(
1
3 ,

2
5 ,

4
15

)
,

P (2,1,3) =
(

5
12 ,

1
4 ,

1
3

)
, P (2,3,1) =

(
1
2 ,

1
4 ,

1
4

)
= P1,

P (3,1,2) =
(
2
5 ,

2
5 ,

1
5

)
= P3, P (3,2,1) =

(
1
2 ,

3
10 ,

1
5

)
.
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This proves that conv(P) ̸= core(P ), hence the lower expectation with respect to P and the
Choquet integral with respect to P , generally, lead to different results:

E(X) = min
P∈{P1,P2,P3}

EP (X) = min {1.75, 2, 1.8} = 1.75,

CP (X) = (3− 2)P (3) + (2− 1)P (23) + (1− 0)P (Ω) = 1.7.

Therefore, we get that CP (X) < E(X), since conv(P) ⊂ core(P ). ♦

At this point the question that arises is if a n-nomial model leads to analogous results. This
problem has been faced in Cinfrignini et al. (2021). It is proved that any n-nomial market model, for
n ≥ 3 is incomplete and the lower envelope of the set of equivalent martingale measures is a belief
function but the closure of the set of equivalent martingale measures does not coincide with the core
of its lower envelope.

4 Non-linear pricing rules

Let us consider a one-period financial market with frictions in the form of bid-ask spreads, that
can be due to the presence of intermediaries, taxes, or to the incompleteness of the market. The
market consists of a risk-free bond B and of a set of K risky assets with payoffs S(1)

1 , . . . , S
(K)
1 .

For k = 1, . . . ,K, each asset’s price is defined through an interval [S(k)
0 , S

(k)

0 ], where S
(k)
0 is

called bid price and S
(k)

0 is called ask price (it is tacit that S(k)
0 ≤ S

(k)

0 where equality holds only if
the k-th asset is frictionless). The bond price process is (B0 = 1, B1 = 1 + r) and it is frictionless,
i.e. B0 = B0 = B0.

The problem is to determine non-linear functionals able to characterize bid and ask prices. In
Acciaio et al. (2016), for instance, lower and upper expectations are used as non-linear functionals.
The question that in literature has been addressed is if non-linear functionals can be defined by
means of the lower/upper expectation with respect to a set of probabilities, or by means of a Choquet
integral with respect to a 2-monotone capacity or a belief function, and if the two approaches give
out to the same outcome.

In what follows we will see that the same question arises in the trinomial model where a gen-
eralization of no-Dutch book condition can be shown to hold. We point out that the framework in
Chateauneuf et al. (1996) and Coletti et al. (2020) is from the upper price point of view, in terms of
concave capacities and plausibility functions. Here, the setting has been reversed in terms of convex
capacities and belief functions. Original results do not change since concave (plausibility) functions
are the conjugate of convex (belief) functions.

We consider a global lower pricing rule π : RΩ → R defined for all X1 ∈ RΩ as:

π (X1) = X0, (28)

which is not assumed to be linear.
In accordance with Chateauneuf et al. (1996)3, we make the following assumptions:

(A1) monotonicity: for X1, Y1 ∈ RΩ, if X1 ≥ Y1 then π (X1) ≥ π (Y1);

(A2) frictionless bond: there is a risk-free bond B0 = 1, B1 = 1+r that is not frictional π(αB1) =
α, for all α ∈ R;

(A3) super-additivity: for X1, Y1 ∈ RΩ, we have that π (X1) + π (Y1) ≤ π (X1 + Y1), with
i, j ∈ {1, . . . ,K}, where equality holds only if X1 and Y1 are comonotone4.

3 In the quoted paper, the authors consider already discounted amounts that, in our setting, is equivalent to take r = 0.
4 Two assets X1, Y1 ∈ RΩ are comonotone if they vary in the same way: ∀ω, ω′ ∈ Ω,

[X1(ω)−X1(ω′)][Y1(ω)− Y1(ω′)] ≥ 0.

11
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Theorem 4.1 (Chateauneuf et al., 1996). Under assumptions (A1)–(A3), for all X1 ∈ RΩ there
exists a unique convex capacity ν such that the global lower pricing rule π can be expressed as a
discounted Choquet expectation of the payoff with respect to ν:

π (X1) = (1 + r)−1 C

∫
Ω

X1 dν = (1 + r)−1Cν (X1) . (29)

We stress that the Choquet integral with respect to a 2-monotone capacity is equivalent to the
lower expectation with respect to the set of probability measures in core(ν), hence the bid price is
equivalently computed as:

X0 = π (X1) = (1 + r)−1 min
P∈core(ν)

EP (X1) . (30)

As we already pointed out, the same model can be set up from the upper point of view with
respect to a concave capacity, replacing assumption (A3) with sub-additivity property (that is the
version in Chateauneuf et al., 1996). Since it is the dual function of a convex capacity, for each
X1 ∈ RΩ, we can compute the ask price X0 as a discounted Choquet integral with respect to the
conjugate concave capacity, which can be expressed in terms of an upper pricing rule:

X0 = π (X1) = −π(−X1). (31)

The approach of Chateauneuf et al. (1996) characterizes a lower pricing rule already defined
on the whole RΩ. If we refer to the K fixed risky assets and identify the payoff of the risk-free
bond B1 with a 0-th asset, and −B1 with a (K + 1)-th asset, we have a finite set of payoffs G =

{S(0)
1 , . . . , S

(K+1)
1 }. In this case, we have a lower price assessment π : G → R such that π

(
S
(k)
1

)
=

S
(k)
0 , for k = 1, . . . ,K, π

(
S
(0)
1

)
= 1 and π

(
S
(K+1)
1

)
= −1. Now, our goal is to find a lower

pricing rule π′ : RΩ → R that extends π and can be expressed as a discounted Choquet expectation.
This problem can be tackled in the framework of belief functions by relying on results given in
Coletti et al. (2020).

If there exists a belief function Bel : F → [0, 1] such that, for k = 0, . . . ,K+1, the lower price
assessment is defined as the discounted Choquet expectation with respect to Bel, that is it satisfies:

π
(
S
(k)
1

)
= CBel

(
S̃
(k)
1

)
, (32)

then the lower price assessment is called CBel-coherent. As usual, S̃(k)
1 denotes the discounted

payoff, for k = 0, . . . ,K + 1.

Theorem 4.2 (Coletti et al., 2020). For a finite G defined as above the following statements are
equivalent:

(i) π is a CBel-coherent price assessment;

(ii) π avoids CBel-Dutch book opportunities: for every λ ∈ RK+2, the following condition holds:

max
B∈F\{∅}

K+1∑
k=0

λk

(
min
i∈B

S̃
(k)
1 (i)− π

(
S
(k)
1

))
≥ 0. (33)

Condition (33) assures that there cannot be a portfolio that leads to a sure loss, defined under
partially resolving uncertainty (Jaffray, 1989), i.e., working over F \ {∅}.

The no-Dutch book condition in the setting of belief functions in Equation (33) is weaker than
the classical no-Dutch book condition in Equation (3) since in the latter case we are working under

12
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completely resolving uncertainty. Completely resolving uncertainty is the common assumption of
the classical Dutch-book condition (Equation (3)) and requires that, once uncertainty is resolved, the
knowledge of the true state i ∈ Ω will be acquired. Conversely, under partially resolving uncertainty
we assume that, when uncertainty is resolved, we may acquire the information that an event B has
occurred but we may not identify the state i ∈ B that turns out to be true. In particular, condition
(33) considers a systematically pessimistic behavior as, for every k = 0, . . . ,K + 1, we take the
minimum payoff given by all i ∈ B, defined as min

i∈B
S̃
(k)
1 (i). We notice that Theorem 4.2 does not

guarantee the uniqueness of Bel and, so, of the lower pricing ruler π′ extending π. Nevertheless,
every such extension satisfies conditions (A1)–(A3) introduced before.

We finally get back to the trinomial market model. In Cinfrignini et al. (2021) it is proved
that the lower probability Q of the set Q of equivalent martingale measures, computed as Q(A) =
min

Q∈cl(Q)
Q(A), ∀A ∈ F , is a belief function. Therefore, this would suggest to define a lower pricing

rule as the discounted Choquet expectation with respect to Q. Unfortunately, a situation analogous
to Example 3.1 occurs since the closure cl(Q) does not coincide with core(Q). Thus the discounted
Choquet expectation does not coincide with the lower expectation computed with respect to Q, and
so the two approaches lead to different results.

We also notice that, still referring to the trinomial model, by considering the set G = {B1, S1,−B1},
with the lower pricing assessment defined as π(B1) = 1, π(S1) = S0, and π(−B1) = −1, we get
that the no-Dutch book condition in (ii) of Theorem 4.2 holds. It is actually possible to show that
π can be extended by a discounted Choquet expectation functional computed with respect to a non-
additive belief function Bel which, however, must be different from Q.

5 Conclusion

In this paper we have presented a survey on classical pricing theory and we focused on markets
with frictions in the form of bid-ask spreads. Frictions are largely proved to exists and are studied in
order to embody them into price models. Then, after having introduced non-additive measures and
the Choquet expectation, we recalled the properties characterizing a global lower pricing rule defined
as the discounted Choquet expectation with respect to a convex capacity (Chateauneuf et al., 1996).
Then, referring to a finite set of payoffs, we showed a condition that guarantees the representation of
lower prices as discounted Choquet expectation with respect to a belief function. The latter condition
is in the form of no-Dutch book under partially resolving uncertainty. We also showed that the lower
envelope of equivalent martingale measures in the trinomial model does not produce sharp lower
prices, with respect to the class of martingale measures, if used to compute discounted Choquet
expectations (see Cinfrignini et al., 2021). Nevertheless, the lower prices of fixed securities satisfy
the generalized no-Dutch book condition given in Coletti et al. (2020).
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