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Abstract

Causal questions are central for most biomedical and social science studies. The main
frameworks that allow the analysis of causal relations are Potential Outcomes and
Causal Graphs. The approaches have often been compared, contrasting their relative
strengths. This paper evaluates the implications of merging the two methodologies in
an integrated approach. In particular, we assess how the limits of one can be compen-
sated by the solutions provided by the other. The outlined approach employs causal
graphs to discover and formalize a causal model that is then used as a guide to imple-
menting potential outcomes identification strategies. The integrated approach could be
beneficial to both frameworks. The assumptions of potential outcome methods can be
assessed directly from a causal graph even in high dimensional contexts, thus making
the obtained causal estimates more reliable. On the other hand, causal graphs can ben-
efit from the several ad hoc identification strategies that have been developed in the
potential outcomes literature.
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1 Introduction

The study of cause and effect relations motivates most research in social, demographic
and health sciences. Investigating causality usually means assessing if and how a certain in-
tervention, often called treatment, affects an outcome of interest. The early work of Neyman
and Iwaszkiewicz (1935), Fisher (1949) and Cox (1958) in the field of randomized experi-
ments constituted a first step towards a rigorous analysis of causality. Based on these studies
Rubin (1974) formalizes one of the most relevant approaches to causality: the Potential Out-
comes (PO) framework. The framework has then been enriched with many contributions
that proposed new methods and applications (Imbens and Rubin, 2015; Rosenbaum, 2018).
PO have a strong connection with economics since its early stages as its concepts are rooted
in the work of Tinbergen (1930) and Haavelmo (1943). PO methods are now widely applied
in statistics and economics and many econometric textbooks solely rely on this approach
(Angrist and Pischke, 2008; Imbens and Rubin, 2015).

The other main approach to deal with causality is the Causal Graph framework. Note
that causal graphs, also called Causal Bayesian Networks or Causal Diagrams, can be seen
as part of a wider model called structural causal model (SCM) (Pearl, 2000). In a SCM the
causal graph is also associated to a set of equations that describe causal relations between
the nodes of the graph. Here we will however only focus on the causal graph component,
that is sufficient for answering causal queries concerning the effect of interventions. Causal
graphs are described in Pearl (2000) and share some elements with the previous work on
path diagrams in Wright (1921). The framework has been subsequently developed and en-
riched with several contributions that extended its applicability and strengthened its results
(Pearl, 2000; Tian and Pearl, 2002; Bareinboim and Pearl, 2016; Huang and Valtorta, 2006).
Causal graphs are now frequently used in epidemiology, computer science and some social
sciences, though they are still uncommon in economics.

The relative advantages of the two frameworks have been recently reviewed and com-
pared in Imbens (2020) and Hünermund and Bareinboim (2019). Both papers show some
specific causal problems where one approach is more appropriate than the other and vice-
versa, thus revealing that, at least in part, the two are complementary and could benefit
from each other. The idea of an integrated approach also starts to appear in some causal in-
ference textbooks, such as Morgan and Winship (2015) and Cunningham (2021), however
integrated applications are still very rare in practice.

In this paper, we assess how PO and Causal Graphs can be combined and the implica-
tions of carrying out such an approach. The basic ideas of the frameworks will be described
focusing on when the limits of one way of proceeding are compensated by the other. Partic-
ular attention will be put on causal discovery techniques, a resource that is often overlooked
when comparing PO and causal graphs. Throughout the paper, we provide some basic ex-
amples in which the combination of the frameworks can improve the results’ quality and
reliability.

Section 2 will outline the PO framework, its main assumptions, results and limits. Sec-
tion 3 is instead devoted to Causal Graphs. The basic terminology is presented and the
principal features are described with the help of some examples. Then we show how causal
effect estimation can be performed from causal graphs and how the process can be inte-
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grated with PO methods. Finally, in section 4 we introduce the concept of causal discovery;
we explain how structural learning algorithms work and why they can be valuable for causal
effect estimation.

2 Potential Outcomes

The Potential Outcomes framework originates from the work of Splawa-Neyman et al.
(1990) and Rubin (1974) on randomized controlled trials (RCT). The name of the frame-
work comes from its peculiar notation Yi(t) that denotes the potential outcome for unit i
when receiving the treatment level T = t. In the case of a binary treatment, T takes value
1 if unit i is treated and 0 otherwise. Accordingly, Yi(1) represents the potential outcome
we would observe for unit i if it was treated and Yi(0) the potential outcome if unit i was
a control. The causal effect of T on Y can therefore be computed by comparing summary
statistics of the potential outcomes distribution. The resulting causal estimate is usually
called the average treatment effect (ATE) and can be expressed in different ways, such as:

ATE = E[Yi(1)− Yi(0)] or ATE =
E[Yi(1)]

E[Yi(0)]
.

However, the ATE cannot be estimated directly from data since only one of the po-
tential outcomes is observed for each unit i. Units receive only one level of treatment,
creating a missing data problem. This is sometimes referred to as the fundamental problem
of causal inference (Holland, 1986). PO literature contributed to answering this problem in
the context of randomized experiments. In this setting, treatment is assigned randomly to
the units of the sample, thus rendering T independent of the potential outcomes (by symbol
Ti |= (Yi(0), Yi(1))).

This scenario, together with the assumption that there is no interference between units
(SUTVA)(Imbens and Rubin, 2015), ensure that an unbiased estimate of the ATE can be
obtained by computing the difference:

Ȳt − Ȳc, with Ȳt =
1

Nt

∑
i:Ti=1

Yi and Ȳc =
1

Nc

∑
i:Ti=0

Yi.

The indexes i : Ti = t indicate to sum over the units that received a certain treatment
level; Nt and Nc denote respectively the number of treated and control units.

The PO framework also provides several solutions to deal with non-experimental or
observational data. What usually prevents observational data from being treated as exper-
imental data is the presence of confounders. Confounders are variables that affect both
the treatment and the outcome and can lead to biased causal estimates if not adequately ac-
counted for. The concern worsens when confounders are unobserved since, in this situation,
treatment effects could be impossible to identify.

PO methods that deal with observational data aim at emulating an experimental con-
text under specific assumptions. One of these, that tackles directly the problem of con-
founders, is called unconfoundedness or ignorability and can be defined by symbols as
Ti |= (Yi(0), Yi(1))|Xi, where Xi is a set of pre-treatment covariates. Unconfoundedness
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states that the treatment Ti is independent of the potential outcomes, given a set of pre-
treatment variables Xi. The condition allows estimating the ATE as:

ATE = E[Yi(1)− Yi(0)] = E[E[Yi|Ti = 1, Xi]− E[Yi|Ti = 0, Xi]]. (1)

The formula in Equation 1 is also called adjusting for X and as long as unconfound-
edness holds, it ensures an unbiased estimation of the ATE in the presence of confounders.
Adjustment can be performed through various methods, including regression, matching and
inverse probability weighting.

Another PO method to derive causal estimates from observational data is the instrumen-
tal variable (IV) strategy (Angrist, 1990). In this context, there is an unobserved variable
U , which violates the unconfoundedness assumption for the effect of T on Y . Since U is
unobserved, it is impossible to adjust for it in order to obtain unbiased estimates. However,
if the treatment T is affected by another variable Z, it is still possible to estimate a causal
effect, under an assumption called exclusion restriction. The assumption can be expressed
as:

Yi(z, t) = Yi(z
′, t) for all z, z′,

imposing that potential outcomes do not vary with Z. PO literature refers to variables that
satisfy the exclusion restriction as instrumental variables. However, exclusion restriction
and unconfoundedness cannot be tested, and they are usually motivated by background
theory concerning the causal relations between variables. This implies that justifying them
becomes difficult if a priori knowledge is missing. Moreover, as the number of variables in
the model increases, assessing the two assumptions’ validity turns out to be a challenging
task.

The PO framework includes many more identification strategies, such as difference-
in-differences, regression discontinuity and synthetic control. For a review of the newest
techniques, see Athey and Imbens (2017). These methods provide solutions to very specific
causal problems and usually impose additional functional-forms restrictions on probability
distributions, such as linearity, monotonicity or additivity.

3 Causal Graphs

In this section, the Causal Graph framework will be described. First, we will introduce
the basic terminology of graphs and the main elements of causal graph theory. Next, we
will show how interventions are represented in the framework and how causal effects can
be estimated employing graphs.

3.1 Terminology and basic concepts

A graph G = (V,E) is a collection of vertices or nodes V and edges E. The edges
can be directed or indirected. An edge that goes from a vertex Vi to another vertex Vj is
a directed edge. Conversely, an edge without such orientation is an undirected edge. A
graph that only contains directed edges is called a directed graph. When two nodes are
connected by an edge, they are called adjacent nodes. If each pair of nodes belonging to V
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is connected by an edge, the graph is called a complete graph. Conversely, if none of the
pairs is adjacent, the graph is an empty graph.

A sequence of connected edges that starts from a node Vi and ends with node Vj , re-
gardless of the directions of the edges, is called a path. In a directed path all the edges are
oriented in the same direction along the path. A directed path, starting from Vj and ending
in Vi, with Vj = Vi is a cycle. A directed graph that contains no cycles is also called a
directed acyclic graph (DAG) (Pearl, 2000). In the context of causal graphs, DAGs are em-
ployed to represent causal structures. The vertices of the DAG represent random variables,
and its edges describe the causal relations between them. We will refer to variables and
vertices in a DAG interchangeably from now on.

Consider the graph G in Figure 1. All the edges in the graph are directed, and they
form no cycles; the graph is, therefore, a DAG. G describes the multivariate causal relations
between a set of four random variables X. The terminology of kinship is often used to
indicate relationships between nodes according to the graph’s structure. Since the DAG

Figure 1. A simple DAG
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contains a directed edge going from X1 to X2, X1 is called a parent of X2 and the latter
is a child of X1. The path p along the ordered sequence of nodes (X1, X2, X3, X4) is a
directed path since all the edges are oriented in the same direction along the path. X1 is
called an ancestor of each node belonging to {X2, X3, X4} since it precedes them in p and
the vertices in {X2, X3, X4} are descendants of X1. Given that the edges are carriers of
causal information, we can also say that X1 is a direct cause of X2 and X4. The same is
true for every ordered pair of random variables (Xi, Xj) connected by a directed edge that
goes from Xi to Xj in the DAG.

Every causal graph also consists of a joint probability distribution P (X) over the vari-
ables described by the DAG. This distribution can be factorized according to the structure
of the DAG as:

P (x1, . . . , xn) =
∏
i

P (xi|pai), (2)

where pai indicate the parent set of variable Xi. The factorization implies that given a DAG
G with node set X, for each variable Xi ∈ X, its parent set PAi selected according to the
structure of G, is sufficient for determining the probability of Xi. If a probability function
P admits the factorization of Equation 2 relative to a DAG G, then G is said to satisfy the
causal Markov condition and P is said to be Markov relative to G.
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The edges of a DAG can assume specific configurations that provide additional informa-
tion regarding the independence relations among variables of the model. Given the ordered
triplet of nodes (Xi, Xj , Xk), if two directed edges goes from Xi and Xk to Xj but Xi

and Xk are not adjacent, then Xj is called a collider (or unshielded collider) in the ordered
triplet. Colliders are also referred to as non-emitting nodes. Conversely, given a path p,
vertices belonging to p with at least an outgoing edge directed towards other adjacent nodes
in p are called emitting nodes. An example of a configuration that only contains emitting
nodes is when a directed edge goes from node Xi to node Xj , and another directed edge
goes from Xj to a third node Xk. This configuration is called chain.

A DAG encodes information concerning conditional independence among the variables
it represents through a criterion called d-separation. Consider a DAG G with node set X,
a pair of nodes {Xi, Xj} belonging to X with Xi 6= Xj and a set of nodes S ⊂ X not
containing Xi and Xj . A path p between Xi and Xj is said to be blocked by a set S in G,
if either:

1. p contains at least one arrow-emitting node that belongs to S;

2. p contains at least a collision node that does not belong to S and has no descendent in
S.

Two nodes Xi and Xj are said to be d-separated given a set S if all the paths between
the nodes are blocked by S. When two nodes Xi and Xj are d-separated by a set S, then
Xi is independent of Xj conditional on S. Note that two nodes can also be d-separated
conditioning on an empty set if all the paths between them contain at least a collider or its
descendants. In this case, the variables represented by the nodes are said to be marginally
independent.

3.2 Causal graph analysis at interventional level

Causal graphs allow estimating the effect of interventions, or in other words, the effect
of forcing a variable to take a certain value by an external action. Pearl (2000) introduces the
do-operator do(X = x), a notation to indicate that a variable X is forced by intervention
to take value x. In order to be coherent with the terminology defined in Section 2 for the
PO framework, we will refer to the effect of a treatment variable T on an outcome variable
Y . The do-operator allows writing P (Y |do(T = t)) to denote the distribution of Y given
an intervention that sets T = t. This is different from P (Y |T = t) that instead represents
the observational distribution of Y given T = t. The causal effect of T on Y can thus be
obtained by comparing the quantity P (Y |do(T = t)) for different values of t, similarly to
what is done in the PO framework where instead Y (t) was the quantity of interest. However,
when dealing with non-experimental data, causal effects cannot be estimated directly from
data since the interventional distribution of Y is not an observed quantity.

One of the critical contributions of causal graphs is that their structure can serve as a
guide to express interventional distributions in terms of observational quantities, thus mak-
ing it possible to estimate causal effects. This is a crucial result since conditional distribu-
tions, such as P (Y |T = t), can be directly computed in a non-experimental context through
the joint probability distribution associated with the DAG.
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A graphical condition called back-door criterion can be applied to a given causal graph
to test if a subset of its nodes S is sufficient for identifying P (Y |do(T = t)) from observa-
tional data. A set of variables S ⊆ X satisfies the back-door criterion relative to a graph G
with node set X, a treatment variable T ∈ X and an outcome variable Y ∈ X if:

1. no node in S is a descendant of T ;

and

2. S blocks all the paths between T and Y that contain a directed edge pointing towards
T .

If the back-door criterion is satisfied by a set S, then interventional quantities can be
expressed through observational ones as follows:

P (y|do(T = t)) =
∑

S

P (y|t, s)P (s). (3)

The formula used to compute the interventional probability distribution of the outcome
in Equation 3 is also known as adjusting for S. Summary statistics of the interventional
distributions can then be compared to compute the ATE. Obtaining an adjustment set S
through the back-door criterion also ensures that S satisfies the unconfoundedness condition
for estimating the effect of T on Y . Therefore, performing a matching procedure (Imbens
and Rubin, 2015) by balancing the variable set S, would ensure obtaining unbiased estimates
of the ATE. This is an example of how Causal graphs can be used as guides for assessing
and justifying the assumptions some PO methods require.

Suppose we are interested in estimating P (y|do(T = t)) given a causal model repre-
sented by the DAG in Figure 2 (Pearl, 2000), with node set {X, T, Y } and a joint probability
distribution P (X, T, Y ). The knowledge of the DAG allows the application of the back-door
criterion to select an adjustment set for causal effect estimation. The procedure reveals that
adjusting for the set {X3, X4} or {X4, X5} ensures unbiased estimates of P (y|do(T = t)).
Conversely, performing the adjustment procedure on a set S = {X4} would produce biased
estimates, since the set does not block all the back-door paths between X and Y .

Let us now consider the graph in Figure 3. The DAG shows the presence of two unob-
served or latent variables U1 and U2. The two nodes are denoted by a circle rather than a
solid dot to indicate the variables are not observed. Even in the presence of latent variables,
we can resort to the back-door criterion to assess if an adjustment set to estimate the effect
of T on Y exists. In this scenario, we are particularly interested in checking if some of
the sets that satisfy the back-door criterion are composed only by observed variables. In
this situation, adjusting for {X1} would open the back-door path along the ordered tuple
(T,U1, X1, U2, Y ), thus producing a biased estimate of the effect of T on Y . Conditioning
on the empty set provides instead unbiased estimates of the causal effect, since the colliding
path over the ordered triplet (U1, X1, U2) is blocked as long as we do not condition on X1.

The bias introduced by conditioning on X1 is also called M − bias, and it constitutes
a solid motivating argument for employing causal graphs. Generally, the PO literature sug-
gests to condition on all the observed pre-treatment variables in order to improve the quality
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Figure 2. A DAG describing causal relations among a set of variables X, a treatment T and an
outcome Y
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of causal estimates (Imbens and Rubin, 2015). However, in this scenario and similar ones,
conditioning on the observed variables leads instead to worse causal estimates, and causal
graphs provide a rule, namely the back-door criterion, to avoid this sort of bias. For a re-
view on how conditioning can affect causal estimates, given different contexts represented
by causal graphs, see Cinelli et al. (2020).

Figure 3. A DAG with unobserved confounders
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The back-door criterion is not the only strategy that can be employed to estimate causal
effects from a causal graph. Pearl (2000) describes a specific graphical configuration that
allows causal effect identification, even when back-door adjustment is not feasible. The
condition is called front-door criterion and states that given a DAG G with node set X, a set
S ⊂ X satisfies the front-door criterion for the effect of T on Y , both belonging to X, if:

1. S intercepts all directed paths from T to Y ;

2. all the back-door paths from T to S are blocked;
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3. all the back-door paths from S to Y are blocked by T .

If a set S that satisfies the front-door criterion for the effect of T on Y exists and
P (t, s) > 0, then the causal effect of T on Y can be computed with the formula

P (y|do(T = t)) =
∑
s

P (s|t)
∑
t′

P (y|t′, s)P (t′). (4)

Combined and iterative use of back-door and front-door criterion constitute the build-
ing block to identify causal effects on complex DAGs. Pearl (2000) describes a set of rules
based on the two criteria, also called do-calculus, that allows expressing interventional dis-
tributions in terms of observational distributions only, in an automated way. The procedure
has been proved to be sound and complete, meaning that an algorithmic iteration of the
rules of do-calculus always returns a solution for the identification of causal effects, if such
solution exists (Pearl, 2000; Tian and Pearl, 2002; Huang and Valtorta, 2006).

4 Causal discovery

Causal graphs are powerful models to describe the causal structure of a set of random
variables. Moreover, they constitute a guide for selecting an identification strategy to es-
timate causal effects. However, the setting considered here always assumed a complete
knowledge of the causal diagram.

Suppose we want to investigate the causal effect of a treatment variable T on an outcome
variable Y from a dataset D(X, T, Y ) where X is a set of other covariates. We also assume
the existence of an unknown underlying causal model described by a DAG G(V,E) and
a joint probability distribution P (V ), from which D(X, T, Y ) has been sampled. In order
to obtain an unbiased estimate of P (Y |do(T = t)) we therefore study if it is possible to
learn a causal graph from D(X, T, Y ). In order to estimate the structure of the causal DAG,
structural learning algorithms have been developed. These algorithms take a dataset as an
input and, under a set of assumptions, recover a DAG and the associated joint probability
distribution. This process is known as causal discovery (Spirtes et al., 2000). Structural
learning algorithms can be divided in three families: constraint-based algorithms, score-
based algorithms and hybrid algorithms.

Constraint-based algorithms learn the graph’s structure via conditional independence
statements emerging from data. They usually start with a complete graph, and then if two
variables turn out to be marginally or conditionally independent, the edge connecting them
is deleted. This procedure is repeated iteratively until a stopping criterion is satisfied.

Score-based algorithms rely on a given score function that measures how well a certain
DAG describes a dataset. These algorithms usually begin by computing the score of an
initial graph. The diagram is then modified by introducing, deleting or reversing edges, and
its score is computed again for each modification. The graph recording the best score at the
end of the procedure is retained as the algorithm’s output.

Hybrid algorithms aim to exploit the advantages of score-based and constraint-based al-
gorithms by merging them in a single procedure. Generally, they begin with a restrict phase
where the parents of each node are selected through tests of conditional independence, sim-
ilarly to what happens in constraint-based algorithms. The second phase is called maximize
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and consists in selecting a DAG in the restricted DAG family outlined by phase one by
optimizing a given score function. Hybrid algorithms include the Max-Min Hill Climbing
(Tsamardinos et al., 2006) and H2PC (Gasse et al., 2014).

Once the graph is learnt, a joint probability distribution over the nodes of the graph can
be obtained through maximum likelihood estimation. This phase usually involves comput-
ing maximum likelihood estimates subject to the independence constraints encoded in the
graph. Estimates can be retrieved in the case of discrete variables or when dealing with
continuous variables under the assumption of linearity (Spirtes et al., 2000).

The section will continue with a description of the assumptions that structural algo-
rithms usually require. We will then explain how different algorithms work and show the
functioning of two representative procedures.

4.1 Common assumptions and background knowledge

The assumptions of causal discovery algorithms usually focus on the relation between
the causal graph and the distribution employed to learn it. A usually required assumption is
faithfulness. A graph G faithfully represents a dataset D, if and only if all and only the list
of d-separations emerging from D are true in G. This ensures an exact correspondence be-
tween conditional independence relations of the distribution from which the graph is learnt
and those entailed by the causal Markov condition applied to G. Another key assumption
for learning algorithms is causal sufficiency. The assumption states that a given set of vari-
ables X is causally sufficient for a population if and only if in the population every common
cause of any two or more variables belonging to X is in X or has the same value for all
units in the population. Implementing a constraint-based algorithm also requires making
statistical decisions concerning how to assess conditional independence. Several tests can
be employed to check if conditional independence holds, and violations of the assumptions
required by the tests can generate unreliable independence statements. For a review of the
implications of choosing a given independence test and what happens when the required
assumptions do not hold, see Spirtes et al. (2000).

Structural learning algorithms are usually employed when information concerning the
causal graph is not available. However, in practice it is common to deal with scenarios
where the knowledge of the causal graph is partial. This incomplete knowledge can be
introduced in structural learning procedures by imposing constraints on the structure of
the obtained network. For example, if is known that a variable Xi cannot cause a second
variable Xj , the directed edge that goes from Xi to Xj is forced to be absent. Note that this
constraint does not imply the presence or absence of a directed edge going from Xj to Xi.
Conversely, if background knowledge suggests that Xi affects Xj , a directed edge from Xi

to Xj can be imposed.

A consequence of including previous knowledge in the learning phase is that the graph
is not entirely obtained through the information contained in the data. The constraints on
the structure of the graph restrict the search space of the algorithms and often reduce both
uncertainty and computational time.
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4.2 Constraint-based algorithms

Constraint-based algorithms learn causal graphs from conditional independence rela-
tions contained in the data. They can usually take both discrete and linear continuous data
as input: in the first case, the algorithm performs conditional independence tests on cell
counts; in the latter, covariance matrices are used to test vanishing partial correlations. The
obtained conditional independence statements, if possible, are then translated into graph-
ical form according to the rules of d-separation. Constraint-based algorithm include the
PC algorithm(Glymour et al., 1991), the IG algorithm (Verma and Pearl, 1990) and the
most recent Grow-Shrink algorithm (Margaritis, 2003). All the algorithms share the idea of
learning a graph from the independence structure of the data but employ different heuristics.
Constraint-based algorithms generally assume causal sufficiency, namely observing all the
common causes of two or more variables in the model. This is a strong assumption, difficult
to achieve in observational contexts. Some constraint-based algorithms have been proposed
to deal with models where causal sufficiency does not hold. One of the most used is the fast
causal inference (FCI) algorithm (Spirtes et al., 2000). The algorithm is a variation of the
PC algorithm and retrieves asymptotically correct causal structures in the presence of latent
common causes, provided the observed distribution and the graph satisfy the faithfulness
condition.

One of the most used algorithms in the constraint-based family is the PC algorithm.
The procedure begins with a complete undirected graph, in which edges are progressively
deleted when they describe relations between variables that are found to be conditionally
independent. Faithfulness and causal sufficiency are assumed. A pseudocode of a recent
variation of the algorithm, called PC-stable (Colombo and Maathuis, 2014) is displayed
in Algorithm 1. In the original PC algorithm the obtained graph could be affected by the
ordering of the variables in the dataset used to learn the graph. In the new version, instead,
the ordering does not affect the results, thus the name PC-stable. The procedure begins
by learning a graph containing only undirected edges from conditional independence state-
ments retrieved from the dataset. Then the orientation of the edges is determined according
to a set of graphical rules. In the pseudocode we will denote directed and undirected edges
between to nodes Xi and Xj , respectively with the notation Xi → Xj and Xi−Xj . More-
over we will use adj(Xi) to denote the set composed by the nodes adjacent to Xi and
X\{Xi} to indicate the variable set X excluding variable Xi.

Given a dataset D = (X) describing a set of random variables X = {X1, ..., XN}, the
PC-stable algorithm begins by forming a complete undirected graph G over X. Then, step 5
stores the adjacency sets adj(G,Xi) for each node Xi according to the current structure of
G. Given an index l which start from 0 and increase at each iteration, the procedure checks
if a set S of size l, that d-separates two nodes Xi and Xj , exists. Note that S must be formed
by nodes belonging to adj(G,Xi) obtained in step 5 and that the size of adj(G,Xi)\Xj

must be greater or equal than l. If the procedure finds a set S of size l that makes Xi and Xj

conditionally independent, the edge between them is deleted from G and S is retained. The
procedure is repeated for every node pair (Xi, Xj) and for every possible size l S associated
to it, until an S that ensures d-separation is found or every S of size l has been explored.
The algorithm then increases l by a unit and repeats the procedure from step 5, until every
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Algorithm 1: PC-stable

Input: A sample D = (X) from a set of random variables X = {X1, ..., XN} and a chosen statistical test of
conditional independence

Output: A family of Markov-equivalent DAGs
1 Form a complete undirected graph G with vertex set {X1, ..., XN};
2 Set l = −1;
3 repeat
4 l = l + 1;
5 forall vertices Xi in G do
6 Set a(Xi) = adj(G,Xi)
7 end
8 repeat
9 select a (new) adjacent pair of nodes (Xi, Xj), i 6= j in G such that |a(Xi)\Xj | ≥ l;

10 repeat
11 Choose a (new) set S ⊆ a(Xi)\{Xj} of size l;
12 if the statistical test reveals that Xi is conditionally independent from Xj given S then
13 delete the edge connecting the pair (Xi, Xj) from G;
14 set SXiXj

= S, denoting the set that separates Xi and Xj

15 end
16 until Xi and Xj are no longer adjacent in G or all possible subsets S of size l have been considered;
17 until all pairs of adjacent nodes (Xi, Xj), i 6= j in G such that |a(Xi)\{Xj}| ≥ l have been considered;
18 until all pairs of adjacent nodes (Xi, Xj) in G satisfy |a(Xi)\{Xj}| ≤ l;
19 foreach triplet {Xi, Xk, Xj} such that Xi is adjacent to Xk , the latter is adjacent to Xj , but the pair
{Xi, Xj} is not adjacent to Xj , if Xk /∈ SXi,Xj

do
20 orient Xi −Xk −Xj with the colliding configuration Xi → Xk ← Xj .
21 end
22 Set more arc directions by repeated application the following rules:
23 if Xi is adjacent to Xj and there is a directed edge from Xi to Xj then
24 replace Xi - Xj with Xi → Xj

25 end
26 if there are two paths Xi −Xk → Xj and Xi −Xl → Xj and Xk is not adjacent to Xl and there is a directed

edge from Xi to Xj then
27 replace Xj - Xk with Xj → Xk

28 end
29 if Xi and Xk are not adjacent but Xi → Xj and Xj - Xk then
30 replace Xj −Xk with Xj → Xk

31 end

pair of adjacent nodes (Xi, Xj) in G satisfies |a(Xi)\{Xj}| ≤ l. In other words, at each
iteration, the structure of G is updated by removing edges between conditional independent
variables. Once the undirected graph is obtained, steps 19-31 orient the edges according
to specific edge configurations. The rules dictated by the algorithm ensure that cycles are
not generated and avoid the creation of a new colliding configuration that would modify the
conditional independence relations.

The output of the PC-stable algorithm is a completed partially DAG (CPDAG), a DAG
where some of the edges are undirected. This kind of graph is used to represent a family
of independence-equivalent DAGs. Regardless of how the undirected edges of the graph
are oriented, the colliding configurations remain the same, thus ensuring that all the DAGs
associated to a CPDAG encode the same conditional independencies. The output of the
PC-stable algorithm is therefore coherent with the objective of translating the conditional
independencies contained in the data into graphical form. Moreover, it has been proven
that, if the assumptions hold, the results provided by the algorithm are sound and complete
(Colombo and Maathuis, 2014).
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4.3 Score-based algorithms

Score-based algorithms aim at recovering the graph structure from data by optimizing
a score function. Generally, this kind of algorithm explores several graph structures and
assigns a score to each of them; at the end of the procedure, the graph with the maximal
score is retained. Score-based algorithms usually assume faithfulness as well as causal
sufficiency. Algorithms belonging to this family include the greedy search, the simulated
annealing and genetic algorithms (Russel and Norvig, 2009).

The greedy search is one of the most used score-based algorithms, and its steps are
shown in the pseudocode of Algorithm 2. The procedure iteratively modifies the edges of
an initial DAG, computes the score of each graph and retains the best-scoring structure.
When the score does not increase with an iteration, the obtained graph is provided as the
algorithm’s output.

Algorithm 2: Greedy Search

Input: A sample D = (X) from a set of random variables X = {X1, ..., XN} a score function F(G,D)
Output: A DAG

1 Form an empty graph G with vertex set {X1, ..., XN};
2 Calculate the score of G given D, SG = F(G,D) ;
3 Set Smax = SG ;
4 Set Gmax = G ;
5 repeat
6 foreach possible edge addition, removal or inversion in Gmax that produces a modified DAG G? do
7 compute SG? = F(G?, D);
8 if SG? > Smax and SG? > SG then
9 set G = G? and SG = SG?

10 end
11 end
12 if SG > Smax then
13 set Smax = SG and Gmax = G
14 end
15 until Smax of current iteration is smaller then Smax of previous iteration;

Given a dataset D = (X) and a score function F(G,D), the algorithm first two steps
consist in computing the score of an initial, usually empty, graph G with vertex set X.
Next, the score of the graph is set as the maximal score Smax and the initial graph G is set
as the best-scoring DAG Gmax. In step 6, the best-scoring DAG is modified by deleting,
adding or inverting an edge, thus generating a new DAG G?. The score of G? is computed
and, if it is greater than the best score of the iteration SG and greater than the absolute
best score Smax, then G? becomes the new best score of the iteration SG. All the possible
modifications to Gmax are explored this way and, if the best-obtained score of the iteration
is greater than the best absolute score, then the latter is set to the current SG and Gmax is set
equal to the current G. The procedure is then repeated from step 6 for the new Gmax. The
algorithm stops when applying all the possible modifications to the DAG Gmax, obtained in
the previous iteration, does not generate an increased Smax. In this case, Gmax constitutes
the output of the algorithm.
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4.4 Causal discovery and Potential Outcomes methods

We have already shown how PO methods can benefit from specifying a causal graph
to outline causal relations between variables. If the causal knowledge is available, drawing
a causal graph can help assess unconfoundedness in a high dimensional context, using the
graphical condition called the back-door criterion. Causal discovery methods constitute an
additional resource if we are interested in estimating causal effects with PO methods, but
the knowledge of the causal graph is partial or absent. Suppose we want to estimate the
effect of treatment T on an outcome Y given a dataset D(X, T, Y ), where X are additional
random variables, that could directly or indirectly affect T and Y . In addition, let us assume
that the available subject matter knowledge concerning the variable causal structure is very
limited and thus does not allow drawing a causal graph. In order to estimate causal effects
with a PO method such as matching, we have first to assess if unconfoundedness holds.
However, since the causal graph over {X, T, Y } is unknown, we cannot directly select an
adjustment set S that satisfies the back-door criterion.

Causal discovery provides a solution to this scenario. If we cannot exclude the absence
of unobserved common causes, we can learn the graph from D(X, T, Y ) employing an
algorithm that only requires the faithfulness assumption, such as the FCI algorithm. The
algorithm’s output can be then used to assess which PO identification strategy is adequate
to estimate the causal effect of T on Y . If, instead, it is reasonable to assume both causal
sufficiency and faithfulness, we can opt for an algorithm such as the greedy search or PC-
stable. In both cases, we know that, if the assumptions hold, the obtained causal structures
are asymptotically correct, and a sufficient adjustment set can be selected by applying the
back-door criterion. The adjustment set can then be used to derive the interventional dis-
tribution through the adjustment formula, or directly estimate the ATE with a method of
choice, such as regression, matching or inverse probability weighting.

Alternatively, learning the graph from data could reveal or confirm if a specific PO
identification strategy is feasible. Assume that applying a structural learning algorithm on
a given dataset generates the DAG in Figure 4.

Figure 4. Instrumental variable DAG
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If we are interested in the effect of T on Y , we cannot directly estimate causal effects
because of the presence of the unobserved confounder U , and no observed adjustment set
that satisfies the back-door criterion. However, the graph configuration reveals that variable
Z satisfies the exclusion restriction assumption of instrumental variables described in Sec-
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tion 2. This means that we can employ an IV strategy to achieve causal effect identification.
Also in this case, the assumptions required by PO methods are made transparent by causal
graph implementation. In this particular example, those assumptions are also strengthened
by the structural learning procedure that allows exclusion restrictions to be derived directly
from the data.

5 Discussion

Estimating causal effects is a central subject for biomedical and social sciences. How-
ever, investigating causal claims is an ambitious objective, especially when dealing with
observational data. The most affirmed causality frameworks are Potential Outcomes and
Causal Graphs. The two approaches are often contrasted to evaluate which one is most ef-
fective. PO methods offer efficient ad hoc solutions to specific causal problems. However,
their assumptions are considered difficult to assess, especially as the number of variables
increases. On the other hand, causal graphs allow the formalization of complex causal prob-
lems in a generalized way. Nevertheless, their high generality can sometimes be perceived
as a distance from real empirical problems and incapacity of including context-specific re-
strictions in the model.

This paper described how the two frameworks could be implemented together in an in-
tegrated approach. Causal graphs can be used as a guide to evaluating which PO method can
be implemented and if its assumptions hold. The graph can be outlined directly if the causal
structure is entirely known or learned from data if the causal knowledge is partial or absent.
This versatility guarantees coverage of most empirical problems. The results of PO methods
are thus strengthened by causal graphs, since assumptions such as unconfoundedness and
exclusion restrictions can be directly assessed from the structure of the DAG. At the same
time causal graphs can benefit from all the context-specific identification strategies provided
by the literature of Potential Outcomes. Combining the two methodologies thus results in
an effective synergic approach that enhances both frameworks’ peculiar characteristics.
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