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Abstract

We discuss an acceptance-rejection algorithm for the random number generation from the Kol-
mogorov distribution. Since the cumulative distribution function (CDF) is a functions series and
we need the density distribution function in our algorithm, we prove that the series of the deriva-
tives converges uniformly in order to can derive term by term the functions series; also we provide
a similar proof for showing that the ratio between the target Kolmogorov density and the auxil-
iary density implemented is bounded. Finally, for the application in the algorithm we propose to
approximate the density of Kolmogorov distribution by truncation series where the truncation is
posed as far away as possible according to the precision of the calculator, we asses the accuracy
of this method by a simulation study.
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1 Introduction

The Kolmogorov distribution naturally arises in the so-called Kolmogorov-Smirnov test, Kol-
mogorov (1933), Smirnov (1939). Here we briefly describe the case of the so-called one sample
test. Let

X1, X2, . . . , Xn
i.i.d.∼ F (·) ,

F̂n(x) =
1

n

n∑
i=1

I{Xi≤x}(x) ,

where I{A}(x) is the indicator function of the set A, so F̂n(·) is the empirical CDF associated to the
observed sample with size n. Let F0(·) be an absolutely continuous probability distribution and

Dn =
√
n sup |F̂n(x)− F0(x)| .

Kolmogorov (1933) prove that under the null hypothesis F (·) = F0(·) the following result holds,

Λ(x) = lim
n→+∞

P (Dn ≤ x) =

+∞∑
k=−∞

(−1)k exp(−2k2x2) , x > 0.

Therefore the asymptotic distribution of Dn is called Kolmogorov distribution and if the null
hypothesis is true, it does not depend on F0(·) as long as F0(·) is absolutely continuous. Smirnov
(1939) provided 2 alternative and equivalent representations of the CDF of Kolmogorov distribution
i.e.

Λ1(x) = 1− 2

+∞∑
k=1

(−1)k−1 exp(−2k2x2) , x > 0,

Λ2(x) =

√
2π

x

+∞∑
k=1

exp

(
− (2k − 1)2π2

8x2

)
, x > 0,

where Λ(x) = Λ1(x) is easy to prove by simply algebraic manipulation and Λ1(x) = Λ2(x) follows
from the transformation formula for Theta functions, Feller (1948), Smirnov (1939).

The Kolmogorov distribution also arises in an other completely different framework i.e. in a
representation of logistic distribution as a scale mixtures of Gaussian random variables. Andrews
and Mallows (1974) and Stefanski (1991) proved the following result; if

Y |W ∼N(0, 4W 2) ,

W ∼Λ(·) ,

then
Y ∼ Logis(0, 1) ,

where N(µ, σ2) denotes the normal distribution with mean µ and variance σ2 and Logis(a, b) de-
notes the logistic distribution with density

exp(−x−ab )

b(1 + exp(−x−ab ))2
.
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1.1 Simulation from Kolmogorov distribution
There is a stochastic representation of the Kolmogorov distribution: it is known that if B(t) is a

Brownian bridge and X = sup |B(t)|, then X ∼ Λ(·), Perman and Wellner (2014). This represen-
tation can be useful for the random number generation. However to generate a Brownian bridge and
to get the supremum absolute value is computationally expensive, especially when one needs to gen-
erate several values from the Kolmogorov distribution. Devroye (1984) develops a generalization of
acceptance-rejection algorithm in order to simulate from the Kolmogorov distribution.

In this paper we propose to use an acceptance-rejection algorithm in its base form. Let f(x) be
a target density with support S and g(x) an auxiliary density such that there exists a constant M
which verifies

f(x)

Mg(x)
≤ 1 , x ∈ S , 0 < M < +∞ .

Hence one can use the following procedure

1. sample x from g(x),

2. compute

p =
f(x)

Mg(x)
,

3. sample u from an uniform distribution in (0, 1),

4. if u ≤ p get x as a sample from f(x).

Obviously in our case the target density is the Kolmogorov distribution. We use as auxiliary
densities the Gamma and the inverse Gamma distributions. As we will explain, we obtain acceptance
rates equals to 89.04% and 95.23% respectively.

2 The density function

In the acceptance-rejection method we need to compute the density of Kolmogorov distribution.
Since both representations of the CDF are in terms of series we need to prove that the series of
derivatives converges uniformly in order to differentiate the series term by term. Notice that we say
+∞∑
k=1

hk(x) converges uniformly in A ⊆ R if

lim
n→+∞

sup
x∈A

∣∣∣∣ +∞∑
k=1

hk(x)−
n∑
k=1

hk(x)

∣∣∣∣ = 0 ,

furthermore a sufficient condition for the uniform convergence is provided by Weierstrass criterion
i.e. if

|hk(x)| ≤Mk , x ∈ A , k = 1, 2, . . . and

+∞∑
k=1

Mk <+∞ ,

then
+∞∑
k=1

hk(x) converges uniformly in A.
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First of all we note that

d

dx

(
(−1)k−1 exp(−2k2x2)

)
= (−1)k4k2x exp(−2k2x2) , (1)

d

dx
exp

(
− (2k − 1)2π2

8x2

)
=

(2k − 1)2π2

4x3
exp

(
− (2k − 1)2π2

8x2

)
, (2)

so from (1) we require to prove the following proposition.

Proposition 2.0.1. Let A = {x ∈ R : x ≥ x0} for some x0 > 0 and

hk(x) = (−1)k4k2x exp(−2k2x2) ,

then
+∞∑
k=1

hk(x) converges uniformly in A .

Proof: Let
ak(x) = 4k2x exp(−2k2x2) ,

hence hk(x) = (−1)kak(x). We fix x, with x ≥ x0 > 0, so {hk(x)}+∞k=1 is an alternating sequence
with ak(x) > 0; it is easy to show that

ak(x) < ak+1(x) if k > 1/(x
√

2)

and
lim

k→+∞
ak(x) = 0 .

Therefore the series
+∞∑
k=1

hk(x) converges point-wise by Leibniz criterion and we know

∣∣∣∣ +∞∑
k=1

hk(x)−
n∑
k=1

hk(x)

∣∣∣∣ ≤ an+1(x) ,

which implies

sup
x≥x0

∣∣∣∣ +∞∑
k=1

hk(x)−
n∑
k=1

hk(x)

∣∣∣∣ ≤ sup
x≥x0

an+1(x) . (3)

Hence it is easy to compute

a′n+1(x) = 4(n+ 1)2 exp
(
−2(n+ 1)2x2

) (
1− 4x2(n+ 1)2

)
,

so a global maximum exists for x =
(
2(n+ 1)

)−1
, but we have restricted the support to x ≥ x0.

Thus

arg max
x≥x0

an+1(x) =

{(
2(n+ 1)

)−1
if

(
2(n+ 1)

)−1
> x0

x0 if
(
2(n+ 1)

)−1 ≤ x0 ,

so we have

max
x≥x0

an+1(x) =

2(n+ 1) exp

(
−1

2

)
if

(
2(n+ 1)

)−1
> x0

4(n+ 1)2x0 exp
(
−2(n+ 1)2x20

)
if

(
2(n+ 1)

)−1 ≤ x0 .
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It is straightforward to see that

lim
n→+∞

arg max
x≥x0

an+1(x) = x0 ,

so, by taking the limit of (3) we obtain

lim
n→+∞

sup
x≥x0

∣∣∣∣ +∞∑
k=1

hk(x)−
n∑
k=1

hk(x)

∣∣∣∣ ≤ lim
n→+∞

4(n+ 1)2x0 exp
(
−2(n+ 1)2x20

)
= 0 .

Notice that if we extend the domain set A of Proposition 2.0.1 from x ≥ x0 to x ≥ 0, then we
have

arg max
x≥0

an+1(x) =
1

2(n+ 1)
,

max
x≥0

an+1(x) = 2(n+ 1) exp

(
−1

2

)
.

However in this case the limit for n → +∞ is not 0. Therefore if we set the lower bound of A
equal to 0, the sufficient condition provided by Leibniz criterion fails.

Now we need to prove the following proposition.

Proposition 2.0.2. Let A = {x ∈ R : 0 < x ≤ x0} for some x0 > 0 and

hk(x) =
(2k − 1)2π2

4x3
exp

(
− (2k − 1)2π2

8x2

)
,

then
+∞∑
k=1

hk(x) converges uniformly in A .

Proof: We use the sufficient condition provided by Weierstrass criterion, so we set

Mk = max
0<x≤x0

|hk(x)| = max
0<x≤x0

hk(x) ,

since hk(x) is always positive for x > 0. It is easy to show that

h′k(x) =
(2k − 1)2π2

4x4

(
(2k − 1)2π2

4x2
− 3

)
exp

(
− (2k − 1)2π2

8x2

)
,

hence a global maximum exists for x = (2k − 1)π/
√

12, but we have restricted the space to 0 <
x ≤ x0 thus

arg max
0<x≤x0

hk(x) =

{
(2k − 1)π/

√
12 if (2k − 1)π/

√
12 < x0

x0 if (2k − 1)π/
√

12 ≥ x0
,

so we have

max
0<x≤x0

hk(x) = Mk =


2
√

27

(2k − 1)π
exp

(
−3

2

)
if (2k − 1)π/

√
12 < x0

(2k − 1)2π2

4x3
exp

(
− (2k − 1)2π2

8x2

)
if (2k − 1)π/

√
12 ≥ x0

,

and it is easy to prove that
+∞∑
k=1

Mk is finite.
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Notice that if we extend the domain set A of Proposition 2.0.2 from 0 < x ≤ x0 to 0 < x <
+∞ then we have

arg max
0<x<+∞

hk(x) =
(2k − 1)π√

12
,

max
0<x<+∞

hk(x) = Mk =
2
√

27

(2k − 1)π
exp

(
−3

2

)
.

However in this case the series
+∞∑
k=1

Mk is divergent. Therefore, if the definition set is unbounded

above, the sufficient condition provided by Weierstrass criterion fails.
Finally, we obtain the density by deriving the series term by term. Let Λ′1(x) = λ1(x) and

Λ′2(x) = λ2(x); we get for some x0 > 0,

λ1(x) = 8x

+∞∑
k=1

(−1)k−1k2 exp
(
−2k2x2

)
, x ≥ x0 ,

λ2(x) =

√
2π

x2

+∞∑
k=1

(
(2k − 1)2π2

4x2
− 1

)
exp

(
− (2k − 1)2π2

8x2

)
, 0 < x ≤ x0 .

3 The proposal density

As the proposal density we explore the use of the Gamma and the inverse Gamma distributions,
so we need to verify if the ratios between Kolmogorov density and the proposals are bounded. Notice
that the target density is always finite for 0 < x < +∞; hence we only need to verify that the limit
ratios are bounded as x→ 0+ and x→ +∞ that is

lim
x→+∞

λ1(x)

g(x)
< +∞ , lim

x→0+

λ2(x)

g(x)
< +∞ , (4)

where g(x) is the proposal density. Notice that we cannot use

lim
x→+∞

λ2(x)

g(x)
< +∞ or lim

x→0+

λ1(x)

g(x)
< +∞

because in section 2 we fail to prove that λ1(x) and λ2(x) are valid representations of Kolmogorov
density as x→ 0+ and x→ +∞ respectively.

3.1 Inverse Gamma proposal
Let

g(x) =
βα

Γ(α)
x−α−1 exp

(
−β
x

)
, x > 0 ,

hence by (4) we must prove that

lim
x→+∞

8Γ(α)

βα

+∞∑
k=1

(−1)k−1k2xα+2 exp

(
−2k2x2 +

β

x

)
< +∞ , (5)

lim
x→0+

√
2πΓ(α)

βα

+∞∑
k=1

(
(2k − 1)2π2

4x2
− 1

)
xα−1 exp

(
− (2k − 1)2π2

8x2
+
β

x

)
< +∞ . (6)

In order to change the order between the limits and sums we need to prove that the series con-
verges uniformly.
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Proposition 3.1.1. Let A = {x ∈ R : x ≥ x0} for some x0 > 0 and

hk(x) = (−1)k−1k2xα+2 exp

(
−2k2x2 +

β

x

)
,

then
+∞∑
k=1

hk(x) converges uniformly in A .

Proof: Let

ak(x) = k2xα+2 exp

(
−2k2x2 +

β

x

)
,

hence hk(x) = (−1)k−1ak(x). We fix x, with x ≥ x0 > 0, so {hk(x)}+∞k=1 is an alternating
sequence with ak(x) > 0; it is easy to see that

ak(x) < ak+1(x) if k > 1/(x
√

2)

and
lim

k→+∞
ak(x) = 0 .

Therefore the series
+∞∑
k=1

hk(x) converges point-wise by Leibniz criterion and we know

∣∣∣∣ +∞∑
k=1

hk(x)−
n∑
k=1

hk(x)

∣∣∣∣ ≤ an+1(x) ,

which implies

sup
x≥x0

∣∣∣∣ +∞∑
k=1

hk(x)−
n∑
k=1

hk(x)

∣∣∣∣ ≤ sup
x≥x0

an+1(x) . (7)

We consider

an+1(x) = (n+ 1)2xα+2 exp

(
−2(n+ 1)2x2 +

β

x

)
,

bn+1(x) = (n+ 1)2xα+2 exp

(
−2(n+ 1)2x2 +

β

x0

)
,

so an+1(x) ≤ bn+1(x) since x ≥ x0. Furthermore

d log bn+1(x)

dx
=
α+ 2

x
− 4(n+ 1)2x

and
d log bn+1(x)

dx
≥ 0 ⇐⇒ x2 ≤ α+ 2

4(n+ 1)2
,

hence we obtain

arg max
x≥x0

bn+1(x) =


√
α+ 2

2(n+ 1)
if x0 <

√
α+ 2

2(n+ 1)

x0 if x0 ≥
√
α+ 2

2(n+ 1)

,
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It is straightforward

lim
n→+∞

arg max
x≥x0

bn+1(x) = x0 ,

lim
n→+∞

max
x≥x0

bn+1(x) = lim
n→+∞

(n+ 1)2xα+2
0 exp

(
−2(n+ 1)2x20 +

β

x0

)
= 0 ,

so by taking the limit of (7) we obtain

lim
n→+∞

sup
x≥x0

∣∣∣∣ +∞∑
k=1

hk(x)−
n∑
k=1

hk(x)

∣∣∣∣ ≤ lim
n→+∞

sup
x≥x0

an+1(x) ≤ lim
n→+∞

sup
x≥x0

bn+1(x) = 0 .

Notice that by Proposition 3.1.1, we can easily compute (5) simply by switching the order
between limit and summation:

8Γ(α)

βα

+∞∑
k=1

lim
x→+∞

(−1)k−1k2xα+2 exp

(
−2k2x2 +

β

x

)
= 0 .

Proposition 3.1.2. Let A = {x ∈ R : 0 < x ≤ x0} for some x0 > 0 and

hk(x) =

+∞∑
k=1

(
(2k − 1)2π2

4x2
− 1

)
xα−1 exp

(
− (2k − 1)2π2

8x2
+
β

x

)
,

then
+∞∑
k=1

hk(x) converges uniformly in A .

Proof: Let

ak(x) =
(2k − 1)2π2

4
xα−3 exp

(
− (2k − 1)2π2

8x2
+
β

x

)
,

thus hk(x) ≤ ak(x) since 0 < x ≤ x0, we consider the exponential term of ak(x), i.e.

exp

(
− (2k − 1)2π2

8x2
+
β

x

)
= exp

(
1

x

(
β − (2k − 1)2π2

8x

))
,

then we have

β − (2k − 1)2π2

8x
> 0 ⇐⇒ x >

(2k − 1)2π2

8β
.

We have 2 different cases; if x0 > (2k − 1)2π2/(8β) then

exp

(
1

x

(
β − (2k − 1)2π2

8x

))
≤ exp

(
8β

(2k − 1)2π2

(
β − (2k − 1)2π2

8x

))
,

if x0 ≤ (2k − 1)2π2/(8β) then

exp

(
1

x

(
β − (2k − 1)2π2

8x

))
≤ exp

(
1

x0

(
β − (2k − 1)2π2

8x

))
,

therefore, let

bk(x) =


(2k − 1)2π2

4
xα−3 exp

(
β

x0
− (2k − 1)2π2

8x0x

)
if x0 ≤

(2k − 1)2π2

8β

(2k − 1)2π2

4
xα−3 exp

(
8β2

(2k − 1)2π2
− β

x

)
if x0 >

(2k − 1)2π2

8β

,
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thus hk(x) ≤ ak(x) ≤ bk(x). We use the sufficient condition provided by Weierstrass criterion, so
we set

Mk = max
0<x≤x0

bk(x) ≤ max
0<x≤x0

hk(x) ,

it is easy to obtain

d log bk(x)

dx
=


α− 3

x
+

(2k − 1)2π2

8x0x2
if x0 ≤

(2k − 1)2π2

8β

α− 3

x
+

β

x2
if x0 >

(2k − 1)2π2

8β

,

we have 3 different cases; if α ≥ 3 then

arg max
0<x≤x0

bk(x) = x0 , k = 1, 2, . . . ,

max
0<x≤x0

bk(x) =


(2k − 1)2π2

4
xα−30 exp

(
β

x0
− (2k − 1)2π2

8x20

)
if x0 ≤

(2k − 1)2π2

8β

(2k − 1)2π2

4
xα−30 exp

(
8β2

(2k − 1)2π2
− β

x0

)
if x0 >

(2k − 1)2π2

8β

,

if α < 3 and β ≤ (3− α)x0 then

arg max
0<x≤x0

bk(x) =



x0 if x0 ≤
(2k − 1)π

2
√

2(3− α)

(2k − 1)2π2

(3− α)8x0
if

(2k − 1)π

2
√

2(3− α)
< x0 ≤

(2k − 1)2π2

8β

β

3− α
if x0 >

(2k − 1)2π2

8β

,

max
0<x≤x0

bk(x) =



(2k − 1)2π2

4
xα−30 exp

(
β

x0
− (2k − 1)2π2

8x20

)
if x0 ≤

(2k − 1)π

2
√

2(3− α)

(2k − 1)2α−4 π2α−4

(3− α)α−3 23α−7 xα−30

exp

(
β

x0
+ α− 3

)
if

(2k − 1)π

2
√

2(3− α)
< x0 ≤

(2k − 1)2π2

8β

(2k − 1)2π2

4

(
β

3− α

)α−3
exp

(
8β2

(2k − 1)2π2
+ α− 3

)
if x0 >

(2k − 1)2π2

8β

,

and if α < 3 and β > (3− α)x0 then

arg max
0<x≤x0

bk(x) =


x0 if x0 ≤

(2k − 1)2π2

8β

β

3− α
if x0 >

(2k − 1)2π2

8β

,

max
0<x≤x0

bk(x) =


(2k − 1)2π2

4
xα−30 exp

(
β

x0
− (2k − 1)2π2

8x20

)
if x0 ≤

(2k − 1)2π2

8β

(2k − 1)2π2

4

(
β

3− α

)α−3
exp

(
8β2

(2k − 1)2π2
+ α− 3

)
if x0 >

(2k − 1)2π2

8β

.

9



Paolo Onorati Annali Memotef 2023

It is straightforward to see that, for all 3 cases, there exists k̃ such that for k ≥ k̃ one has

arg max
0<x≤x0

bk(x) = x0 ,

max
0<x≤x0

bk(x) =
(2k − 1)2π2

4
xα−30 exp

(
β

x0
− (2k − 1)2π2

8x20

)
,

so it is easy to show
+∞∑
k=1

Mk =

k̃−1∑
k=1

Mk +

+∞∑
k=k̃

Mk < +∞ .

Notice that from Proposition 3.1.2 we can easily compute (6) simply by switching the order
between limit and summation:

√
2πΓ(α)

βα

+∞∑
k=1

lim
x→0+

(
(2k − 1)2π2

4x2
− 1

)
xα−1 exp

(
− (2k − 1)2π2

8x2
+
β

x

)
= 0 .

Therefore the inverse Gamma distribution is an admissible proposal density for all values of α, β
and x0.

3.2 Gamma proposal

Let

g(x) =
βα

Γ(α)
xα−1 exp (−βx) , x > 0 ,

hence by (4) we must prove

lim
x→+∞

8Γ(α)

βα

+∞∑
k=1

(−1)k−1k2x2−α exp
(
−2k2x2 + βx

)
< +∞ , (8)

lim
x→0+

√
2πΓ(α)

βα

+∞∑
k=1

(
(2k − 1)2π2

4x2
− 1

)
x−α−1 exp

(
− (2k − 1)2π2

8x2
+ βx

)
< +∞ . (9)

As for the inverse Gamma, in order to change the order between the limits and sums we need to
prove that the series converge uniformly.

Proposition 3.2.1. Let A = {x ∈ R : x ≥ x0} for some x0 > 0 and

hk(x) = (−1)k−1k2x2−α exp
(
−2k2x2 + βx

)
,

then
+∞∑
k=1

hk(x) converges uniformly in A .

Proof: See Appendix.
From Proposition 3.2.1 we can easily compute (8) simply by switching the order between limit

and summation:

8Γ(α)

βα

+∞∑
k=1

lim
x→+∞

(−1)k−1k2x2−α exp
(
−2k2x2 + βx

)
= 0 .

10
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Proposition 3.2.2. Let A = {x ∈ R : 0 < x ≤ x0} for some x0 > 0 and

hk(x) =

(
(2k − 1)2π2

4x2
− 1

)
x−α−1 exp

(
− (2k − 1)2π2

8x2
+ βx

)
,

then
+∞∑
k=1

hk(x) converges uniformly in A .

Proof: See Appendix.
Hence by Proposition 3.2.2 we can easily compute (9) simply by switching the order between

limit and summation:
√

2πΓ(α)

βα

+∞∑
k=1

lim
x→0+

(
(2k − 1)2π2

4x2
− 1

)
x−α−1 exp

(
− (2k − 1)2π2

8x2
+ βx

)
= 0 .

Therefore the Gamma distribution is an admissible proposal density for all values of α, β and
x0.

4 Numerical Optimization

Once obtained a representation for the Kolmogorov distribution density and admissible proposals
for acceptance-rejection algorithm, we need to tune some parameters of the proposal densities for
applications. In particular we need a value k∗ in order to truncate the series of λ1(·) and λ2(·), a
value x0 and values for the parameters α and β of the proposals.

According to the accuracy of the computing machine, there exists a value for x̄ such that exp(−x)
is set equal to 0 for all x greater than x̄. Therefore we define

k̄1(x) = sup{k ∈ N0 : 2k2x2 ≤ x̄} =

⌊√
2x̄

2x

⌋
,

k̄2(x) = sup{k ∈ N0 : (2k − 1)2π2/(8x2) ≤ x̄} =

⌊
x
√

2x̄

π
+

1

2

⌋
,

where b·c is the floor function. The values k̄1(x) and k̄2(x) depend on x; for computational reasons
we avoid to calculate them for all values of x; since the far is decreasing in x with x ≥ x0 and the
latter is increasing in x with 0 < x ≤ x0, we use their maximum value by assuming x = x0 i.e. we
set

k∗(x0) = max
(
k̄1(x0) k̄2(x0)

)
. (10)

Hence expression (10) provides the value of k∗ as a function of x0, so we choose

x∗0 = inf

{
arg min

x0>0
k∗(x0)

}
,

k∗ = k∗(x∗0) .

Finally we obtain a numerical approximation f∗(·) of the Kolmogorov density by

f∗(x) =



√
2π

x2

k∗∑
k=1

(
(2k − 1)2π2

4x2
− 1

)
exp

(
− (2k − 1)2π2

8x2

)
if 0 <x < x∗0

8x

k∗∑
k=1

(−1)k−1k2 exp
(
−2k2x2

)
if x ≥x∗0

.

11
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In our machine the value of x̄ is 745.13 with an approximation of 2 digits, so we obtain

x∗0 = 1.207 , k∗ = 15 .

Notice that in this way f∗(·) systematically underestimate the true density function of Kol-
mogorov distribution; however the difference is less than the precision of our machine i.e. less than
2.23× 10−308.

As for as the parameters of the proposal we proceed in the following way: let g(·;α, β) be the
proposal density depending, we set

M = h(α, β) = sup
x>0

f∗(x)

g(x;α, β)
,

so we obtain
(α∗, β∗) = arg min

α>0,β>0
h(α, β) ,

where the minimization is computed via numerical approximation. For the inverse Gamma proposal
we have α∗ = 10.29, β∗ = 8.33 and M = 1.05; for the Gamma proposal we obtain α∗ = 9.21,
β∗ = 10.96 and M = 1.123. The values of M lead to a theoretical acceptance rate 1/M equals to
95.23% and 89.04% for inverse Gamma and Gamma respectively.

Finally we perform a simulation study in order to evaluate the accuracy and efficiency of our
procedure with the inverse Gamma proposal. We generate 100 times 106 draws; for each iteration
the mean elapsed time was 1.3623 sec; furthermore we set the seed to 1 and with a single iteration
of 106 draws we obtain an empirical mean and empirical variance equal to

µ̂ = 8.687866× 10−1 , σ̂2 = 6.76608× 10−2 ,

while, as reported in Marsaglia et al. (2003), the true values are:

µ =
√
π/2 log 2 ≈ 8.687311× 10−1 , σ2 = π2/12− µ2 ≈ 6.777320× 10−2 .

5 Conclusion

In this paper we have derived the density function of the Kolmogorov distribution by deriving
the series term by term; surprisingly the standard sufficient condition for the uniformly convergence
fails to hold for both bounds of the domain set, so we have used 2 different representations which
uniformly converge in 1 bound at time. Furthermore they are also useful to speed up the convergence
of the series. We have provided an approximation of the obtained density function via truncation
series based on the machine precision.

In the same way we have shown that Gamma and inverse Gamma distributions are admissible
proposals for Kolmogorov distribution in acceptance-rejection algorithm and both of them provide
very fine theoretical acceptance rate after numerical optimization of the parameters. A simulation
study have shown the accuracy and efficiency of our method.
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Appendix

Here we provide the proof of Proposition 3.2.1 and Proposition 3.2.2 .

Proposition 3.2.1. Let A = {x ∈ R : x ≥ x0} for some x0 > 0 and

hk(x) = (−1)k−1k2x2−α exp
(
−2k2x2 + βx

)
,

then
+∞∑
k=1

hk(x) converges uniformly in A .

Proof: Let
ak(x) = k2x2−α exp(−2k2x2 + βx) ,

hence hk(x) = (−1)k−1ak(x). We fix x, with x ≥ x0 > 0, so {hk(x)}+∞k=1 is an alternating
sequence with ak(x) > 0, it is easy to show that

ak(x) < ak+1(x) if k > 1/(x
√

2)

and
lim

k→+∞
ak(x) = 0 .

Therefore the series
+∞∑
k=1

hk(x) converges point-wise by Leibniz criterion and we know

∣∣∣∣ +∞∑
k=1

hk(x)−
n∑
k=1

hk(x)

∣∣∣∣ ≤ an+1(x) ,

which implies

sup
x≥x0

∣∣∣∣ +∞∑
k=1

hk(x)−
n∑
k=1

hk(x)

∣∣∣∣ ≤ sup
x≥x0

an+1(x) . (11)

We define

bn+1(x) =

{
x2−α0 (n+ 1)2 exp

(
−2(n+ 1)2x2 + βx

)
if α ≥ 2

an+1(x) if α < 2
,

so an+1(x) ≤ bn+1(x) since x ≥ x0, furthermore

d log bn+1(x)

dx
=

− 4(n+ 1)2x+ β if α ≥ 2

2− α
x
− 4(n+ 1)2x+ β if α < 2

.

13
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Therefore, we have 2 different cases, if α ≥ 2 then

arg max
x≥x0

bn+1 =


β

4(n+ 1)2
if

β

4(n+ 1)2
≥ x0

x0 if
β

4(n+ 1)2
< x0

,

if α < 2 then

arg max
x≥x0

bn+1 =


β +

√
β2 + 16(n+ 1)2(2− α)

8(n+ 1)2
if

β +
√
β2 + 16(n+ 1)2(2− α)

8(n+ 1)2
≥ x0

x0 if
β +

√
β2 + 16(n+ 1)2(2− α)

8(n+ 1)2
< x0

,

In both cases it is straightforward

lim
n→+∞

arg max
x≥x0

bn+1(x) = x0 ,

lim
n→+∞

max
x≥x0

bn+1(x) = lim
n→+∞

(n+ 1)2x2−α0 exp
(
−2(n+ 1)2x20 + βx0

)
= 0 ,

so by taking the limit of (11) we obtain

lim
n→+∞

sup
x≥x0

∣∣∣∣ +∞∑
k=1

hk(x)−
n∑
k=1

hk(x)

∣∣∣∣ ≤ lim
n→+∞

sup
x≥x0

an+1(x) ≤ lim
n→+∞

sup
x≥x0

bn+1(x) = 0 .

Proposition 3.2.2. Let A = {x ∈ R : 0 < x ≤ x0} for some x0 > 0 and

hk(x) =

(
(2k − 1)2π2

4x2
− 1

)
x−α−1 exp

(
− (2k − 1)2π2

8x2
+ βx

)
,

then
+∞∑
k=1

hk(x) converges uniformly in A .

Proof: Let

ak(x) =
(2k − 1)2π2

4
x−α−3 exp

(
− (2k − 1)2π2

8x2
+ βx0

)
,

thus
hk(x) ≤ ak(x) .

Hence
d log ak(x)

dx
= −α+ 3

x
+

(2k − 1)2π2

4x3
,

therefore

arg max
0<x≤x0

ak(x) =


(2k − 1)π

2
√
α+ 3

if
(2k − 1)π

2
√
α+ 3

< x0

x0 if
(2k − 1)π

2
√
α+ 3

≥ x0
,

max
0<x≤x0

ak(x) =


(2k − 1)−α−1π−α−1

2−α−1(α+ 3)−
α+3
2

exp

(
−α+ 3

2
+ βx0

)
if

(2k − 1)π

2
√
α+ 3

< x0

(2k − 1)2π2

4
x−α−30 exp

(
− (2k − 1)2π2

8x20
+ βx0

)
if

(2k − 1)π

2
√
α+ 3

≥ x0
.
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So, let

k̃ = inf

{
k ∈ N0 :

(2k − 1)π

2
√
α+ 3

≥ x0
}
,

Mk = max
0<x≤x0

ak(x) ≤ ak(x) ≤ hk(x) ,

we use the sufficient condition provided by Weierstrass criterion and it is easy to show

+∞∑
k=1

Mk =

k̃−1∑
k=1

Mk +

+∞∑
k=k̃

Mk < +∞ .
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