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Abstract

A portfolio insurance strategy is a dynamic hedging process aiming to limit downside risk during
a market downturn and allow investors to obtain equity market participation in the upside market.
The biggest potential risk of implementing a portfolio insurance strategy is the so-called cash-in
risk, i.e., the risk that the underlying asset registers huge drops before the portfolio can be rebal-
anced. In such cases, the value of the insured portfolio would fall below the floor (the insured
capital), and the consequence is that the portfolio is fully monetized, not allowing the investor to
recover the capital initially invested. First, this paper reviews the main properties of the most used
allocation algorithm, the so-called Constant Proportion Portfolio Insurance (CPPI), and how the
cash-in risk affecting this kind of allocation strategy can be modelled and hedged. Secondly, it
describes the main extensions of CPPI proposed in the literature to improve its capability to re-
duce cash-in risk.
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1 Introduction

Portfolio insurance strategies were first introduced by Rubinstein and Leland (1976) after the
collapse of stock markets (the New York Stock Exchange’s Dow Jones Industrial Average and the
London Stock Exchange’s FT 30) which implied the pension funds withdrawal. In particular, the au-
thors noted ex-post that the presence of an insurance could have convinced the investors not to leave
the market, guarantying them the opportunity to take advantage of the rise of the same, an event that
happened just a couple of years later. Perold and Sharpe (1988) state that portfolio insurance strate-
gies can be classified into three categories: option-based strategies, option-duplicating strategies
and derivative-independent strategies. The primary approach related to the first class of strategies
is the so-called option-Based Portfolio Insurance (OBPI), which consists of buying a zero-coupon
bond with maturity equal to the investment time horizon plus an option written on a risky asset.
An option-duplicating strategy is an approach where the option is replicated with a self-financing
strategy in order to overcome the lack of liquid options for long maturities. However, the low-
interest rate levels which have characterized the markets in recent years are reducing the available
risk budgets significantly. Such a market environment forces practitioners to rethink how to build
their portfolios to simultaneously offer sustainable equity market participation and capital protection
for the initial investment. In this direction, one choice is to consider dynamic risk management tools
to protect portions of the initial investment by dynamically allocating wealth into risky and riskless
assets. In this framework the Constant Portfolio Portfolio Insurance (CPPI) is one of the most used
approaches. The CPPI method is obtained by rebalancing an initial portfolio at each observation
time, evaluating the present value of the capital to be protected and then investing the available risk
budget into risky assets while investing the remaining part of the portfolio in risk-free assets. De-
spite a significant simplicity and a remarkable ease of implementation, the CPPI strategy suffers a
fundamental drawback represented by the risk that, after a severe market draw-down, the risk budget
erases. This event is the so-called cash-in risk and it has mainly two consequences. Since after the
cash-in event, the remaining portfolio is entirely invested into the riskless asset, the CPPI strategy
might not guarantee (i) the capital initially invested at maturity and, (i) an equity market participation
in case of subsequent rises of financial market. The paper is structured as follows: in Section 2, we
recall the main concepts related to OBPI strategy; in Section 3, we provide an in-depth analysis of
CPPI strategy by reviewing how cash-in risk can be modeled and hedged; in Section 4, we describe
the main extensions of the CPPI strategy, i.e. the Time Invariant Portfolio Protection (TIPP) and the
Variable Proportion Portfolio Insurance (VPPI), whose aim is to reduce the probability of cash-in
event; in Section 5 we focus on an alternative way, more recently introduced, to hedge cash-in risk,
based on the use of a particular kind of options; Section 6 concludes.

2 Option based Porfolio Insurance strategies

Option-based portfolio insurance (OBPI) is a methodology characterized by ensuring a minimal
terminal portfolio value. Along the lines of Bertrand and Prigent (2005), it is possible to define the
OBPI portfolio process V OBPI =

{
V OBPI
t

}
t∈[0,T ]

, with initial value V OBPI
0 , as follows:

V OBPI
t = qBt + pC(t, St,K), (1)

where q ≥ 0 represents the number of the riskless asset purchased by the investor to protect the
capital initially invested, C(t, St,K) is the price of the call option, written on the risky asset St,
having strike price K and maturity T and p ≥ 0 is the number of call option that can be acquired
at time t = 0, given the risk budget. The strategy is relatively simple to implement since it is static,
i.e. no trading occurs in [0, T ]. From eq. (1) it is straightforward to show that K represents the
wealth the investor wishes to recover at maturity T . However, it may happen that European options,
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whose strike price is equal to the amount of wealth to be immunized, are not traded on the market.
This implies that the investor must synthetically replicate the payoff at maturity of the option using
a hedging strategy. Perfect hedging can be achieved only by assuming that the market is complete.
However, it is well known that various sources of market incompleteness exist in terms of stochastic
volatility and trading restrictions, making the contingent claim payoff unattainable. This implies
that the standard OBPI approach is not always viable. This issue explains why dynamic Portfolio
Insurance strategies such as CPPI, which will be examined in 3, have become prominent among
practitioners.

3 The Constant Proportion Portfolio Insurance

The objective of the Constant Proportion Portfolio Insurance (CPPI) investors is twofold: partic-
ipating in the upside potential of the risky reference portfolio, e.g. a market index, and at the same
time, ensuring that the value of the portfolio at maturity V CPPI

T is higher or equal to a guaranteed
amount G (V T

CPPI ≥ G). The guarantee G is a proportion PL ∈ (0, 1] of the initially invested
amount V CPPI

0 . These two goals are realized by dynamically allocating the initial wealth V CPPI
0

between a risk-free asset and a market index. In order to define the CPPI portfolio process, we begin
by specifying the so-called floor Ft, representing the lowest acceptable value for the portfolio for
each instant of time t ∈ [0, t]. The floor Ft is given by

Ft = FT e
−r(T−t), (2)

where FT = G = PL · V CPPI
0 and r is the risk-free interest rate. The next step is to compute the

cushion Ct, which is the difference between the portfolio value Vt and the floor Ft. The exposure
to the risky asset Et is given by the product between the cushion Ct and the multiplier m ∈ R+.
The latter parameter amplifies the risk budget and is exogenously set by the investor at t = 0. Since
the strategy is self-financing, the remaining part of the portfolio, i.e. V CPPI

t − Et, is invested into
the risk-free asset. Then, the proportion of wealth invested to the risky asset for each instant of time
t ∈ [0, T ] can be written as:

αCPPI
t = min

{
m(V CPPI

t − Ft)
+

V CPPI
t

, LEV

}
, (3)

βCPPI
t = 1− αCPPI

t . (4)

where LEV ∈ (0, 2] is the maximum leverage factor: to avoid excessive equity exposure, Et is
bounded to be at most LEV · V CPPI

t . We start by considering the case in which the CPPI portfolio
is continuously rebalanced, meaning that the Exposure Et and the investment in the riskless asset
Bt are continuously adjusted. The main properties and the structure of the continuous-time CPPI
allocation strategy, summarized 3.1, have been extensively studied in Black and Perold (1992).

3.1 CPPI with continuous rebalancing
In order to define the continuous-time CPPI portfolio process, we begin by specifing the so-called

floor process F = {Ft}t∈[0,T ] whose dynamic is given by

dFt = rFtdt, (5)

with initial value F0 = V CPPI
0 ·PL ·e−rT . Then we define the process V CPPI =

{
V CPPI
t

}
t∈[0,T ]

with initial value V CPPI
0 , representing the portfolio value associated to CPPI strategy, namely:

V CPPI
t = αCPPI

t St + βCPPI
t Bt, (6)
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where αCPPI
t (resp. βCPPI

t ) is depicted in eq. (3) (resp. eq. (4)). Furthermore, since the CPPI
strategy is self-financing, the dynamics of V CPPI

t is given by

dV CPPI
t = αCPPI

t dSt + βCPPI
t dBt. (7)

Moreover, if we assume that the risky asset St follows a geometric Brownian motion, i.e.:

dSt = µStdt+ σStdW
P
t , (8)

where W = {Wt}t∈[0,T ] is a standard Brownian motion with respect to the real world measure P,
µ ∈ R s.t. µ > r ≥ 0 and σ ∈ R+, Black and Perold (1992) explicitly derived the SDE satisfied by
the cushion process given by C = {Ct}t∈[0,T ], given by

dCt

Ct
=

(
r +m(µ− r)

)
dt+mσdW P

t . (9)

From eq. (9), it is straightforward to show that the CPPI portfolio value is:

V CPPI
t = (V0 −G · e−rT )e[r−m(r−σ2

2 )−m2σ2

2 ]t

(
St

S0

)m

+G · e−rT , t ∈ [0, T ]. (10)

Eq. (10) illustrates that within this framework, CPPI portfolio is equivalent to taking a long position
in a zero-coupon bond with nominal value G in order to guarantee the capital at maturity, and
investing the remaining part into a risky asset which has m times the excess return of S and is
perfectly correlated with S. Moreover, it shows that the portfolio protection is efficient almost
surely: the terminal value of the CPPI strategy is higher than the guarantee with probability one,
regardeless of multiplier value. Indeed, the expected value of a CPPI-insured portfolio at maturity is
equal to:

E[VT ] = G+ (V0 −G · e−rT )e[r+m(µ−r)]T . (11)

which is always greater or equal with respect to the amount of capital that the investor wishes to
recover at the end of the investment time horizon.

As highlighted in Balder et al. (2009); Cont and Tankov (2009), CPPI managers widely rec-
ognize the possibility of reaching the floor: there is a non-zero probability that, during a sudden
downside movement of the underlying asset, the fund manager will not have time to readjust the
portfolio, which crashes through the floor. This implies that the remaining portfolio value will be
shifted entirely to the risk-free asset. Hence, it is no longer ensured that the strategy outperforms the
prescribed floor. As mentioned in Section 1, this risk is known as cash-in risk.

Measuring the risk that the CPPI strategy is less than the floor is of practical importance for at
least two reasons. Firstly, a CPPI strategy is combined with a guarantee for the investor: even if
the floor has been broken, the CPPI issuer must pay the guaranteed amount FT . Since the CPPI
has fallen below the floor during the investment period, i.e. VT < FT , the issuer has to pay out
more than the CPPI is worth. For this reason, an additional option can be added. Such an option is
exercised if the value of the CPPI is below the floor. Secondly, CPPI strategies can be used to protect
return guarantees embedded in unit-linked life insurance contracts. In the above case, maturity can
be interpreted as retirement age, and guarantee as the amount which is at least needed by the insured.

The formal proof that there exist only two sources of cash-in risk is given in Schied (2013). The
first source, extensively studied in Balder et al. (2009), is represented by discrete rebalancing of the
CPPI portfolio. The second source of cash-in risk, modeled for the first time by Cont and Tankov
(2009), is given from the fact that the price of the underlying risky asset may experience downward
jumps.
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3.2 CPPI with discrete time rebalancing
Let τ denote a sequence of equally spaced instants of time belonging to the interval [0, T ], i.e.:

τ = {t0 = 0 < t1 < · · · < tn−1 = T} , (12)

where tk+1 − tk = T
n for k = 0, . . . , n − 1. We impose the rescrition that trading is only possible

immediately after tk ∈ τ . This implies that the number of shares held in the risky asset is constant
over the interval (tk, tk+1] for k = 0, . . . , n − 1. However, the portion of CPPI portfolio invested
in risky asset changes as risky asset price fluctuates. Thus, it is necessary to consider the number of
shares held in the risky asset ϕ(S) and the number of risk-free bond ϕ(B). Along the lines of Balder
et al. (2009), we indicate by ϕτ = (ϕ(S),τ , ϕ(B),τ ) a discrete time CPPI if, for t ∈ (tk, tk+1] and

k = 0, . . . , n− 1, ϕ(S),τ
t := max

{
mCτ

tk

Stk
, 0
}

, where the cushion is given by

Cτ
tk+1

= Cτ
t0

min{ν,k+1}∏
i=1

(
m

Sti

Sti−1

− (m− 1)

)
, (13)

with
ν := min

{
tk ∈ τ |V τ

tk
−G ≤ 0

}
, (14)

and ν = ∞ if the minimum is not attained. Within this framework, the authors quantify the cash-in
risk by computing the following quantities:

1. the local shortfall probability,

PLSF := P(V τ
tk+1

≤ Ftk+1
|V τ

tk
> Ftk) = N (−d2),

where d2 =
ln m

m−1+(µ−r)T
n −σ2

2
T
n

σ
√

T
n

,

2. the shortfall probability,
PSF := 1− (1− PLSF )n,

3. the expected shortfall,

ES := E[G− V τ
T |V τ

T ≤ G] = G+ (V0 − F0)

[
En

1 + e−r T
n E2

erT − En
1

1− E1e−r T
n

]
,

where

E1 := meµ
T
n N (d1)− er

T
n (m− 1)N (d2),

E2 := er
T
n [1 +m(e(µ−r)T

n − 1)]− E1.

with d1 := d2 + σ
√

T
n .

Within this framework, two solutions have been proposed to ensure the effectiveness of the CPPI
strategy. The first one is the following: given an estimate for µ and σ, it is possible to determine the
value of the multiplier m and the number of rebalances n of ϕ(S),τ and ϕ(B),τ over [0, T ] such that
the probability of falling below the guarantee G is bounded above a confidence level γ. The second
one has been proposed by Bertrand and Prigent (2016). It is based on large deviation methods that
the authors use to estimate the possible losses between two consecutive trading dates.
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3.3 CPPI in presence of jumps in asset prices
As mentioned in Section 3.1, the second alternative to model cash-in risk is to allow for jumps in

the risky asset dynamics without relaxing the continuous trading assumptions. CPPI strategies with
the presence of jumps in stock prices were considered for the first time by Prigent and Tahar (2005)
in a jump-diffusion model with finite intensity activity. However, the approach by Prigent and Tahar
(2005) is to consider as a slight modification of the CPPI strategy, which incorporates an additional
guarantee whenever the portfolio falls below the floor.

The first study devoted to quantifying cash-in risk within CPPI strategy by considering a more
general framework including infinite activity jumps and stochastic volatility, is given by Cont and
Tankov (2009). The reason behind introducing the above models is to highlight that cash-in risk
cannot be attributed exclusively to trading restriction. This could give the wrong impression that this
risk can be eliminated by more frequent rebalancing. Indeed, Cont and Tankov (2009) argues that
by considering jumps in the risky asset price dynamic, there is a non-negligible residual cash-in risk
for CPPI, even in continuous trading.

As in Section 3.1, assume a continuous time market model. Hence, we have to consider a filtered
probability space (Ω,F ,F = {Ft}0≤t≤T ,P) with two F-adapted processes describing the evolution
for the riskless asset Bt, and the risky asset St. As in the previous Sections, we assume that r is
constant over the investment time horizon [0, T ]. Then, Bt has the following deterministic evolution:

dBt = rBtdt, t ∈ [0, T ], (15)

with B0 = b. In this case we assume that the price process for the risky asset St is

dSt = St−dZt, (16)

where Zt is a possible discontinous driving process, modeled as semimartingale. Moreover, in order
to ensure the positivity of the price process, we assume that ∆Zt > −1. In a continuous-time setting
the stopping time defined in eq. (14) becomes

ν = inf {t ≥ 0, Vt ≤ Ft} . (17)

If t < ν, the CPPI strategy portfolio value satisfies

dVt = m(Vt− − Ft)
dSt

St−
+

(
Vt− −m(Vt− − Ft)

)
dBt

Bt
, (18)

which implies the following dynamic for the cushion

dCt

Ct−
= mdZt + (1−m)rdt. (19)

Introducing the discounted cushion C∗
t = Ct

Bt
and applying Itô formula, we find

dC∗
t

C∗
t−

= m(dZt − rdt). (20)

Defining Lt = L0 +
∫ t

0
dZs − rt, eq. (20) can be rewritten as dC∗

t

C∗
t−

= mdLt or, equivalently,

C∗
t = C0E(mL)t where E denotes the stochastic (Doléans-Dade) exponential defined by

dE(mL)t
E(mL)t−

= mdLt. (21)
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If ν ≥ t, according to the definition of CPPI strategy, the value of the portfolio is entirely invested
into the risk-free asset, in order to prevent further losses. This means that, when ν ≥ t, the value of
C∗

t remains constant. Then, for any t ∈ [0, T ] we introduce a new process C̃t defined as the stopped
process of C∗ such that C̃t = C∗

t∧ν , where t ∧ ν := min {t, ν} and it can be explicitly written as:

C̃t = C∗
0E(mL)t∧ν . (22)

Hence, the CPPI portfolio may fall below the floor, even if the exposure and riskless asset in-
vestment are adjusted continuously. This is due to the fact that the stochastic exponential in eq. (22)
can become negative in the presence of negative jumps of sufficient size of stock price.Within this
framework, Cont and Tankov (2009) quantify in a meaningful way the cash-in risk by establishing a
direct relationship between the value of the multiplier m and the risk of the insured portfolio. This
allows choosing the multiplier based on the risk tolerance of the investor. In particular, the authors
provide a Fourier transform method to compute the losses distribution and various risk measures
(e.g., Value-at-Risk, expected loss, or the probability of loss) over a given time horizon. Moreover,
they extend the framework described in this Section by adding stochastic volatility.

4 Some extensions of CPPI allocation strategy

In order to mitigate the cash-in risk which affects the CPPI strategy, several solutions have been
proposed. In particular, the financial literature derived mainly two extensions of the CPPI allocation
algorithm. The first modification, proposed by Estep and Kritzman (1988), is the so-called Time-
Invariant Portfolio Protection (TIPP). It is based on the same rules as the CPPI allocation algorithm
except for the floor computation. In fact, in this case, it is no longer linked to the risk-free interest
rate r but to the portfolio’s value. The second modification, proposed by Lee et al. (2008), is the
so-called Variable Proportion Portfolio Insurance (VPPI), which concerns how the multiplier is set.
In the standard CPPI, the multiplier m is fixed at t = 0, based on the investor’s risk aversion,
and remains constant throughout the investment time horizon [0, T ]. Instead, the VPPI allows the
multiplier to vary over time according to specific factors, such as the volatility of the risky asset
underlying the strategy. In what follows, we will discuss how these new strategies affect the amount
invested into risky assets over time and, consequently, their ability to guarantee at least G at maturity
and equity market participation in the event of bull markets.

4.1 Time Invariant Portfolio Protection (TIPP)
Standard results about CPPI strategies are based on the assumption that the floor Ft evolves like

the riskless asset Bt. However, this assumption is quite stringent since it makes the CPPI perfor-
mances highly path dependent; any gains at a particular time t ∈ [0, T ] can be lost if the underlying
asset price registers a considerable fall. To address this issue, Estep and Kritzman (1988) proposed
the Time-Invariant Portfolio Protection (TIPP), i.e. a modified version of CPPI with a ratchet mech-
anism, able to lock in a proportion of the upside performance. In particular, this mechanism consists
of a stochastic time-varying definition of the floor. The TIPP floor Ft is defined as the maximum
between the usual CPPI floor and a percentage of the historical maximum portfolio value. The new
floor F̃t satisfies

F̃t = max

{
Ft, PL · sup

s≤t
Vs

}
, ∀t ∈ [0, T ], (23)

where PL is the protection level. In this way, the floor jumps up with the portfolio value to reduce
risky asset allocation when the market peaks. This new floor adjustment has some consequences on
the allocation of the risky asset over time, especially in market scenarios where the risk-free interest
rates are very low and sudden rises and falls of the risky asset might occur. Such a background sheds
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light on one of the main issues related to using CPPI: when the value of the risky asset increases,
the CPPI portfolio value increases accordingly. If the level of the risk-free interest rate is low, then
the growth rate of the CPPI portfolio will be higher than the corresponding growth rate of the floor.
This implies that there is no longer significant portfolio protection after a very short period. Such a
drawback is overcome by the TIPP allocation strategy, thanks to dynamics in eq. (23). Indeed, the
growth rate of the TIPP floor is comparable to the portfolio for every t ∈ [0, T ], even if the market
growth is sustained. Consequently, the TIPP exposure to the risky asset will generally be lower than
the CPPI one. It will change more smoothly over time, furnishing better downside protection to the
investor. However, in case of favourable market conditions, the TIPP strategy’s overall return will
be generally lower w.r.t. the standard CPPI one. This is in line with the empirical analysis carried
out by Dichtl et al. (2017), in which the authors conclude that TIPP cannot be seen as an improved
CPPI. Indeed, the former exhibits a significantly inferior performance for all applied performance
measures, even if it can furnish better protection against cash-in risk.

4.2 Variable Proportion Portfolio Insurance (VPPI)

Instead of continuously rebalancing the floor, it is reasonable to make the multiplier dynamic.
This change makes the CPPI a Variable Proportion Portfolio Insurance, the so-called VPPI. One of
the main reasons to consider such an extension is to allow the investor to better adapt his portfolio
strategy to market fluctuations. For example, suppose that for the first year of a five-year global
management period, the forecast for the stock index’s performance is that significant sudden drops
can occur. In this case, at t = 0, the investor has to choose a relatively low multiplier. However,
suppose substantial rises will occur in the future. In that case, the exposure corresponding to a small
value of the multiplier initially chosen will not provide the opportunity to benefit from a bullish
market. On the contrary, if the initial value of the multiplier is relatively high, sudden significant
drops will imply that the portfolio may break the floor. This will imply that, at maturity, the investor
might only recover G. The possibility of reducing the multiple during the investment period can
prevent such an unfavourable event. This extension of the classical CPPI allocation strategy was
introduced by Lee et al. (2008). In order to keep the simplicity of the model, the authors proposed a
particular kind of VPPI strategy, the Exponential Proportion Portfolio Insurance (EPPI), where the
multiplier changes according to the following criteria. In t = 0, the investor has to fix a reference
price for the risky asset underlying the strategy. Such a reference price is the value of the risky asset
before the portfolio rebalance, S(0). If the value of the risky asset after the portfolio rebalancing,
S(1) is different from S(0), the multiplier changes according to the following rule:

mt = η + exp

{
a ln

(
S(1)

S(0)

)}
, t ∈ [0, T ], (24)

where η > 1 is an arbitrary constant, and e
a ln S(1)

S(0) is the so called dynamic multiple adjustment
factor (DMAF), with a > 1. The parameter a acts as the magnifier of the DMAF. More precisely,
it is set greater than 1 for the enlargement effect on the number of holding shares when the stock
price goes up, and the shrinkage effect on the number of holding shares when the stock price goes
down w.r.t. the reference stock price S(0). Thus, including a DMAF into the multiplier could create
a higher convex nature of the strategy, i.e. when the stock price goes up, the mechanism of the EPPI
strategy creates more holding shares to perform an upside capture. In contrast, when the stock price
goes down, the strategy creates fewer holding shares to provide a downside protection.

However, the EPPI strategy is not the only extension of the CPPI, which allows for a dynamic
multiplier. Indeed, a wide range of models has been proposed directly linked to a risk management
approach. In particular, the baseline assumption of these kinds of models is to fix the multiplier at
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each rebalancing date by considering a local quantile guarantee condition posed by

Ptk(Ctk+1
> 0|Ctk > 0) ≥ 1− ε, (25)

where Ptk(·) denotes the conditional probability with respect to Ftk and the parameter ε denotes an
exogenously specified upper bound on the local shortfall probability. We further observe that

Ptk(Ctk+1
> 0|Ctk > 0) = Ptk

(
mtk

Stk+1

Stk

− (mtk − 1) > 0

)
. (26)

Eq.(26) implies an upper bound m̄tk on the admissible multiplier, i.e. a gap control affords to limit
the multiplier at tk by m̄tk . Denoting by F̃tk the marginal distribution function of the standardized
simple return

Stk+1

Stk
− 1, the upper bound is given by

m̄tk =

∣∣∣∣∣Etk

[
Stk+1

Stk

]
− 1 +

√√√√V artk

[
Stk+1

Stk

]
F̃−1
tk

(ε)

∣∣∣∣∣
−1

. (27)

The condition in eq. (27) is used in Hamidi et al. (2009), who estimate the conditional upper
multiplier by means of the Value at Risk (VaR). In particular, they resort to eight different methods
of VaR calculations: one non-parametric method using the historical simulation approach; three
parametric methods based on distributional assumptions: namely, the normal VaR, the RiskMetrics
VaR based on the normal distribution, and the GARCH VaR based on the Student-t distribution;
four semi-parametric methods using quantile regression to estimate the conditional autoregressive
VaR (CAViaR): namely, the symmetric Absolute Value CAViaR, the Asymmetric Slope CAViaR,
the IGARCH(1,1) CAViaR, and the Adaptive CAViaR. Afterwards, Hamidi et al. (2014) proposed
a generalization of this class of models in which the conditional multiplier is based on a coherent
risk measure, the expected shortfall. In this case, they estimate the conditional upper bound for the
multiplier m̄tk using a Dynamic AutoRegressive Expectile (DARE) model.

5 Hedging cash-in risk through options

Another way to hedge cash-in risk within portfolio insurance strategies is to use options. Let
us consider the Vanilla options written on the CPPI portfolio as an example. For instance, taking a
long position on an at-the-money put option on the CPPI portfolio with a strike price at least equal
to the minimum value that the investor requires at maturity is a natural way to hedge cash-in risk.
Similarly, taking a long position on an at-the-money call option on the CPPI portfolio is a natural
way to invest in a CPPI portfolio, preserving the capability to not pursue forward the investment in
the case of closed out. The first option pricing model for the CPPI strategy was proposed by Escobar
et al. (2011) and generalized by Wang and Tsoi (2013).

5.1 Pricing option on CPPI
As described in Section 3.2, a possible way to model cash-in risk is to allow trading of the CPPI

portfolio only on specific dates. For this reason, Escobar et al. (2011), to develop a pricing formula
for European options written on CPPI, decided to model the risky asset underlying the strategy
using a geometric Brownian motion, restricting trading to discrete-time. The discrete-time process
describing the evolution of the risky asset under the risk-neutral probability measure Q is:

Stk

Stk−1

= exp

{(
r − σ

2

)
∆t+ σWtk

}
, (28)
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where Wtk ∼ N(0,∆t) and τ , as in eq. (12), is a sequence of equally spaced instants of time of the
interval [0, T ], i.e τ = {t0 = 0 < t1 < · · · < tN−1 < TN = T} and ∆t = T

n for k = 1, . . . , N − 1.
Within this framework the value V τ

tk+1
of the CPPI portfolio is:

V τ
tk+1

= er(tk+1−min{ν,k+1})

(
(V0 − F0)

min{ν,k+1}∏
i=1

(
m

Sti

Sti−1

− (m− 1)er∆t

)
+ Ftmin{ν,k+1}

)
,

(29)
where ν given in eq. (14) is the first time the portfolio value breaks through the floor. In order to
compute the price of the European option, the authors first derived the price of discrete time CPPI
by making the following assumption. Since the CPPI strategy is by definition self-financing, then
under the risk-neutral probability measure the expected terminal portfolio value is EQ[VT ] = erTV0.
However, for the investor, the value of the CPPI strategy is not equal to V0. As pointed out in Section
3.1, the CPPI is combined with a guarantee for the investor; this means that the issuer of the CPPI
should guarantee a payoff equal to or greater than the floor and therefore has to carry the cash-in
risk. Consequently, the payoff at maturity of the discrete CPPI is:

CPPIT = max {VT , FT } . (30)

Then, the expected value at maturity T , under the risk-neutral probability measure Q can be written
as:

EQ[CPPI] = EQ[CPPIT |C1] + EQ[CPPIT |C2], (31)

where EQ[CPPIT |C1] (resp. EQ[CPPIT |C2]) is the expected value of the portfolio at maturity
when the portfolio does not fall below the floor (resp. the expected value of the portfolio when the
CPPI has fallen below the floor) over [0, T ]. When the underlying risky asset follows the process
depicted in eq. (28), both of them can be evaluated in closed form. Indeed, the authors proved that:

EQ[CPPIT |C1] = F0N (s2)
N + (V0 − F0)[mN (s1)− (m− 1)N (s2)]

N , (32)
EQ[CPPIT |C2] = F0(1−N (s2)

N ), (33)

where s1 =
lnm−ln(m−1)+σ2

2 ∆t

σ
√
∆t

and s2 = s1 − σ∆t. In order to compute the price of the European
option on discrete CPPI, the authors distinguish two cases. The first case is when the strike price, K,
is equal to the value of the guarantee at maturity FT . In this case, the option on CPPI ends up in the
money at maturity T if the strategy has not defaulted until maturity, i.e. Cτ

tk+1
> 0, k = 1, . . . , N−1.

Then, a portfolio composed by the option on a CPPI with K = FT and a zero coupon bond with
nominal value K, is exactly equal to a CPPI with floor F . For this reason when K = FT , the price
of the call option on CPPI with discrete rebalancing is exacty equal to the difference between the
expected value of discrete CPPI in t = 0 given by eq. (32) and F0:

Ct = (V0 − F0)[mN (s1)− (m− 1)N (s2)]
N . (34)

The second case is when the strike price is greater than the guarantee amount at maturity (K ≥
FT ). In this more general case the option ends up in the money at maturity T if the CPPI has not
fallen below the floor in tk, k = 1, . . . , N − 1, and if the value VT is greater than the strike price K.
For this reason the option pricing formula defined in eq. (34) becomes:

Ct = e−rTEQ

[(
FT −K+(V0−F0)

N∏
i=1

(me(r−
σ2

2 )∆t+σWti −(m−1)er∆t)

)+ N−1∏
i=1

1{Vtl
>Ftl}

]
.

(35)
In this more general case, the option price on discrete CPPI and very useful sensitivities like

Delta, Gamma, Vega, Rho and Theta can be obtained using Monte Carlo simulations in eq. (35).
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As explained in Section 3, the second source of cash-in risk for the CPPI strategy can be modelled
by adding jumps into the dynamic of the underlying risky asset. Because of this, an alternative way
to price the European option on CPPI is to consider a continuous time setting and a jump-diffusion
model for the dynamics of the underlying risky asset. Wang and Tsoi (2013) provided the first work
in this direction. In particular, they developed a semi-closed formula to price European options
written on the CPPI strategy when the underlying risky asset evolves according to the model of
Merton (1976). Moreover, since the market is not complete in a jump-diffusion setting, the payoff
of these particular contingent claims is no longer attainable. For this reason, the authors developed
a particular hedging strategy for this model, the so-called mean-variance hedging.

5.2 Structured product written on a modified version of the CPPI strategy
Using options linked to portfolio insurance strategies can be considered a suitable way to ob-

tain downside protection when the underlying risky asset has experienced heavy losses during the
investment time horizon. However, this method cannot offer equity market participation if the risky
asset recovers nicely after a severe market draw-down. Di Persio et al. (2021) introduced a modified
version of the standard CPPI by defining a minimum threshold always invested in the risky asset to
overcome the latter scenario. They called this new kind of strategy CPPI with guaranteed minimum
equity exposure (GMEE-CPPI). In particular, they introduced the GMEE αmin with 0 ≤ αmin ≤ 1
in eq. (3) obtaining

αt := max

{
min

{
m(V CPPI

t − Ft)

V CPPI
t

, LEV

}
, αmin

}
, t ∈ [0, T ]. (36)

Thanks to eq. (36), the equity participation will never go below αmin even in case of a severe
market drop. However, at the same time, it would mean that this adjusted CPPI allocation imple-
mented in a real portfolio might not be able to protect the invested capital. For this reason, the
authors introduced a new structured product consisting in a combination of a CPPI strategy and an
OBPI one. In particular, this new strategy can be summarized into the following key points:

(i) a significant proportion of the initial portfolio value is invested in time-congruent zero coupon
bonds following the classical OBPI approach described in Section 2,

(ii) the remaining part of the portfolio is put into an exotic call option linked to a GMEE-CPPI
strategy where the CPPI portfolio has an equity index as a risky asset.

In particular, the authors provided historical simulations showing how the risk-return profile
changes according to the market environment and describing the option price behaviours under
different frameworks, namely, when the underlying is a pure risky asset, a CPPI strategy, or a
CPPI–GMEE based one.

The authors argued that this new method provides a valuable compromise between a pure risky
asset investment strategy and a traditional CPPI one. Indeed, this innovative method overcame, at the
same time, different problems since the use of the OBPI can drastically reduce the cash-in risk, and
the use of GMEE-CPPI as the underlying risky asset can ensure some equity market participation.

6 Conclusion and further research

In the present paper, we have reviewed the main properties of Portfolio Insurance strategies and
the main risk affecting these particular kinds of dynamic hedging processes, the so-called cash-in
risk. We have focused on modelling and hedging cash-in risk within the prominent portfolio in-
surance strategy, the Constant Proportion Portfolio Insurance (CPPI). First, we have introduced the
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main properties of the CPPI strategy within three different frameworks. In particular, we consider
the CPPI strategy when the underlying risky asset follows (i) a geometric Brownian motion, (ii) a
more general jump-diffusion process, and (iii) a geometric Brownian motion where trading is re-
stricted to discrete time. We provide an in-depth analysis of how cash-in risk can be modelled and
hedged for each setting mentioned above. Then, we analyzed the most important modifications of
the CPPI strategy designed to reduce the probability of cash-in risk. The first is obtained by consid-
ering a stochastic time-varying definition of the floor process, the so-called Time-Invariant Portfolio
Protection (TIPP). The second one is obtained by varying the multiplier over time according to
market fluctuations, the so-called Variable Proportion Portfolio Insurance (VPPI). Lastly, we have
reviewed another way to hedge cash-in risk using options linked to the CPPI strategy. Within this
framework, we analyze a two-step principal protection strategy obtained by combining a modifica-
tion of the CPPI, the so-called CPPI with guaranteed minimum equity exposure (GMEE-CPPI), and
a classical OBPI strategy. As discussed in Section 5.2, this novel approach, introduced by Di Persio
et al. (2021), represents a concrete innovation in the literature related to portfolio protection strate-
gies. Along this line of research, further contributions could be made by including more structured
derivatives evaluated concerning general stochastic volatility models with the presence of jumps.
Moreover, other inputs for further research can be represented by furnishing a sensitivity analysis of
the CPPI-GMEE approach w.r.t. to changes in market parameters. Lastly, another line of research
can be represented by comparing options on CPPI with options on other dynamic asset allocation
strategies, such as the VolTarget ones, allowing the CPPI-GMEE to have lock-in elements.
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