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Abstract

A portfolio allocation problem relies upon the decision process to establish how resources must
be allocated among different possible investments. Investors are interested in gaining as much as
possible from their investment, but at the same time, they are concerned with the risks they have to
face. Investors aim to maximize their returns without exceeding a certain level of risk. Moreover,
this behavior has to be mathematically modeled, resorting to the optimal control theory and the
maximization of expected utility. This paper reviews the literature on portfolio allocation, to give
a complete picture of what has been done, as well as, possible contributions for future research.
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1 Introduction

The first attempt to solve a portfolio allocation problem is due to Markowitz (1952), with the
celebrated mean-variance approach. The latter continues to be widely applied in several financial
frameworks, such as risk management, mainly because of its simplicity, since only the knowledge
of the expectation and covariances of random variables is required.
The main drawback of this approach is the static nature of the optimal allocation. Indeed the initial
wealth is allocated between different assets at the beginning of the time horizon without allowing
for changes in the allocation until maturity.
Moreover, this behavior ignores the presence of price volatility, so adopting this type of allocation
model could result in large losses.

A solution widely adopted in the literature is to consider continuous-time models for price dy-
namics: by allowing continuous trading, the investor can immediately react to possible changes in
price volatility.

In this view, the pioneering work of Merton (1971) can be considered a starting point for
continuous-time portfolio management. In this setting, the asset allocation problem is solved using
the stochastic control method, and the optimal portfolio rules are expressed in terms of solutions to
the second-order partial differential equation (the so-called Hamilton-Jacobi-Bellman (HJB) equa-
tion). In this seminal paper, an investor willing to allocate his wealth between stock and a risky asset
is taken into account.

The bond price grows at the constant interest rate r, and the stock price dynamic follows the
Black-Scholes model

dSt
St

= µdt+ σdZt,

where µ ∈ R, σ ∈ R+ and Z is a standard Brownian motion. We assume that the investor’s wealth
X = {Xt}t∈[0,T ] is apportioned among the risk-free asset and the stock, so that, for any t ∈ [0, T ],
the non-negative process X is governed by the following diffusion dynamics:

dXt = αtXt((µ− r)dt+ r)dt+ ασXtdZt, (1)

where α represents the proportion of wealth invested at time t into the stock and observes that the
proportion invested into the riskless asset is equal to 1− α.
The objective function to maximize over α ∈ A is of the form

U(XT ) = E

[∫ T

0

f(Xt, α)dt+ g(XT )

]
, (2)

where f and g are measurable functions on Rd × A, satisfying suitable integrability conditions and
ensuring that the expectation in (2) is well-defined. The dynamic programming method to solve (2)
consists in defining the value function, that corresponds to the maximum value for (2) when varying
initial states. In symbols, we have

v(t, x) = sup
α∈A

E[U(Xt,x
T )], (t, x) ∈ [0, T ]× Rd, (3)

where U is an increasing and concave function on Rd.

The corresponding HJB equation for (3) is

∂v

∂t
+ sup
α∈R

[
(α(µ− r) + r)x

∂v

∂x
(t, x) +

1

2
α2σ2x2

∂2

∂x2
(t, x)

]
= 0, (4)
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for (t, x) ∈ [0, T ]× Rd, with terminal condition

v(T, x) = U(x), x ∈ Rd.

Proceeding with the first-order condition for (4), the candidate for the optimal allocation is obtained
as follows

α̂(t, x) = −µ− r

σ2

∂v
∂x

x ∂
2v
∂x2

(t, x). (5)

Merton has also shown that Equation (4) can be explicitly solved for the special case of the utility
function, as when we choose a CRRA (Constant Relative Risk Aversion) utility function,{

1
1−γx

1−γ , if x ≥ 0

−∞, if x ≤ 0

where γ is the coefficient of risk aversion.
It is worth pointing out that the formal derivation of the HJB equation is justified by a verification

theorem, which states that, when there exists a smooth solution to the HJB, such a solution coincides
with the value function, see Pharm (2007).

An alternative approach to solving optimal allocation problems is the so-called martingale method
developed by Plisca (1986), Karatzas et al. (1987) and Cox and Huang (1989), such an alternative
is based on the transformation of the optimal portfolio allocation problem into a static optimization
problem with the determination of the optimal terminal wealth, finding a portfolio strategy that leads
to optimal terminal wealth. Several authors extend this approach, we recall that Carr et al. (2001)
obtained optimal consumption and investment plans in a complete market when the underlying asset
price is a pure jump Lévy process. Schroder and Skiadas (1999) developed the utility gradient ap-
proach for computing portfolios and consumption plans that maximize Stochastic differential utility
function (SDU) and prove the existence, uniqueness, and basic properties of a parametric class of
homothetic SDUs. A few years later Schroder and Skiadas (2003) derived closed-form solutions for
the optimal consumption and trading strategy in terms of the solution to a single constrained BSDE
using the utility gradient approach methodologically. The focus of this paper is the necessary and
sufficient first-order conditions of optimality that one would be to solve to compute a solution.

2 Investments under Uncertainty

In a context of uncertainty, an investor chooses among different strategies based on his/her pref-
erences, and this is done in terms of utility function, according to the expected utility criterion, see
e.g. Von Neuman and Morgenstern (1947).
If we assume that an investor compares random returns whose probability distributions are known on
a probability space (Ω,F ,P), we denote by ≻ the preference order that satisfies the Von-Neumann
Morgenstern criterion, so that

X1 ≻ X2 ⇐⇒ E[U(X1)] > E[U(X2)], (6)

where X1, X2 are random variables and U is an increasing real-valued function. The choice of the
utility function allows defining the concept of risk aversion and risk premium of the investor. Among
the properties that the utility function must have we recall the concavity of the utility function. If we
have a utility function that satisfies Jensen’s inequality, then an agent prefers to get the expectation
E[X] of this return (with certainty), that is:

U(E[X]) ≥ E[U(X)], (7)
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which holds only for concave functions. For a risk-averse agent with concave utility function U we
can define the risk premium associated with a random return X he is willing to pay, to get a certain
gain:

U(E[X]− π) = E[U(X)]. (8)

The quantity (E[X]−π) is called certainty equivalent ofX , which is smaller than the expectation
of X .

It is easy to obtain the absolute risk aversion at level x, given by:

α(x) = −U
′′(x)

U ′(x)
, (9)

that is the Arrow-Pratt coefficient of absolute risk aversion of U at level x.
In the context of dynamic programming, the choice of the utility function is very relevant. The

most preferred class of utility functions is given by HARA (Hyperbolic Absolute Risk Aversion)
functions, where the inverse of absolute risk aversion is linear in consumption. We mention the
quadratic, exponential, and isoelastic preferences. The most popular preference specification is
either isoelastic preferences CRRA, or power utility see Hansen and Singleton (1982). The power
utility has the following specification:

U(x) =

{
1

1−γx
1−γ , if x > 0

−∞, if x ≤ 0
, (10)

where γ > 0 and the second part of the utility specification impose a non-negative wealth constraint.
The parameter γ plays a crucial role, indeed it is the risk aversion parameter and summarizes

the behavior of the consumer toward risk, but at the same time its reciprocal is equal to the con-
stant elasticity of intertemporal substitution (EIS) in consumption, and measures how consumption
changes in time. So, only one parameter governs both investor risk aversion and EIS, and the latter
is independent of the level of consumption.

To give rational support to observable investors’ behavior decision-makers might take into ac-
count more complex utility functions, to use a nonlinear aggregator to bring together present and
future utility thus dropping the hypothesis of expected utility.

In this perspective, the literature refers to the so-called stochastic differential utilities (SDU)
introduced by Epstein and Zin (1989), who derive a parametrization of recursive utility in a discrete-
time setting, and generalized by Duffie and Epstein (1992) and Fisher and Gilles (1999) in a continuous-
time setting.

The Duffie and Epstein (1992) parametrization is

J = Et
[∫ ∞

t

f(Cs, Js)ds

]
, (11)

where f(Cs, Js) is a normalized aggregator of current consumption and utility with the following
form:

f(C, J) =
β

1− 1
ψ

(1− γ)J

( C

((1− γ)J)
1

1−γ

)1− 1
ψ

− 1

 , (12)

where β > 0 is the rate of time preferences, γ > 0 is the coefficient of relative risk-aversion
and ψ > 0 is the elasticity of intertemporal substitution in consumption. In this setting there is a
separation among preferences parameters, so the degree of risk aversion γ is disentangled from the
elasticity of intertemporal substitution of consumption EIS. The Epstein-Zin preferences can be seen
as a generalization of the standard time additive expected utility function, in that the former collapse
to the power utility when the elasticity of intertemporal substitution of consumption EIS equals the
reciprocal of the coefficient of relative risk aversion, so when we set ψ = 1

γ .
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3 Models for optimal portfolio allocation

3.1 Power Utility
If we focus on portfolio decisions, the literature has produced numerous contributions especially

when the investor’s decisions are based on his risk aversion, through the isoelastic utility function.
Merton (1971) firstly studied optimal portfolio allocation, and derived optimal consumption and
investment rules maximizing the expected utility in an economy composed of a riskless asset and
a risky stock, when the asset price follows a Geometric Brownian motion. He showed that when
investors have some special case of the HARA utility function, the maximization problem can be
solved in a closed form.

Subsequently, several authors generalized Merton’s work in incomplete markets: we recall,
among others, the work of Liu et al. (2003), who used the event-risk framework of Duffie et al.
(2000) to provide analytical solutions to optimal portfolio problems by assuming discontinuities in
the state variable dynamics. In particular, Liu et al. (2003) provided two examples to illustrate their
results. In the first one, they consider a model where the risky asset follows a jump-diffusion pro-
cess with deterministic jump size, assuming constant volatility. They find that an investor would
hold less of the risky asset when the price jumps occur. In the second example the authors con-
sider a model where both the risky asset S = {St}t∈[0,T ] and its return volatility V = {Vt}t∈[0,T ]

follow jump-diffusion processes with deterministic jump sizes, in particular, consider the following
dynamics: {

dSt = (r + ηVt − JλVt)Stdt+
√
VtStdZ

(1)
t + JSt−dNt

dVt = (kθ − kVt − ξλVt)dt+ σ
√
Vt)dZ

(2)
t + ξdNt

, t ∈ [0, T ] (13)

where Z(1)
t and Z(2)

t are standard Brownian motions with correlation ρ. Vt is the instantaneous vari-
ance of diffusive returns and Nt is a Poisson process with stochastic arrival intensity λVt, assuming
λ to be nonnegative. The parameter θ > 0 is the long-run mean, k > 0 is the mean-reversion rate,
σ > 0 is the vol-of-vol coefficient and η is the market risk premium. Finally, J, ξ > 0 are the jump
sizes, assumed to be constant.
Defining the indirect utility function W as

W (X,V, t) = max
ϕs,t≤s≤T

Et [U(XT )] , (14)

we have the following HJB equation for the indirect utility function W :

max
ϕ

(
ϕ2X2V

2
WXX + ϕρσXVWXV +

σ2V

2
WV V + (r + ϕ(η − Jλ)V )XWX+ (15)

(kθ − kV − ξλV )WV + λV (E[W (X(1 + ϕJ), V + ξ, t)]−W ) +Wt

)
= 0

where WX , WV and Wt denote the derivatives of W (X,V, t) with respect to X,V and t and simi-
larly for the higher derivatives. Proceeding with a Guess and Verify approach, the problem is solved
assuming that the indirect utility function is of the form

W (X,V, t) =
1

1− γ
X1−γ exp{FtVt +Gt}, (16)

where Ft and Gt are deterministic functions of time .
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Depending on the model Ft and Gt can be solved in closed form or numerically, the latter case
is that of this model. This model led to the following expression for optimal portfolio weights:

ϕ∗ =
η − Jλ

γ
+
ρσFt
γ

+
λJ

γ
(1 + Jϕ∗)−γeξFt , (17)

where F is the solution to the following ordinary differential equation

Ḟt +
σ2F 2

t

2
+ (ϕ∗ρσ(1− γ)− k − ξλ)Ft+ (18)(

γ(γ − 1)ϕ∗2

2
+ (η − Jλ)(1− γ)ϕ∗ + λM2 − λ

)
= 0,

with Ḟt = ∂F
∂t , Liu et al. (2003) for further technical details.

It is possible to note that the investment horizon affects optimal portfolio weights through the hedg-
ing component of the demand for the risky asset (ρσFtγ ) and from the static hedging component
(eξFt) in Equation (18). Moreover, the authors found that volatility jumps can have a significant
effect on optimal portfolio: in presence of jumps in volatility, the investor increases the optimal al-
location in the risky asset. This means that volatility jumps have a compensating effect concerning
price jumps.

Liu (2007) solved dynamic portfolio choice problems using affine models to face stochastic
volatility. Three applications are presented: the first one is the bond portfolio selection problem
when bond returns are described by quadratic term structure models; the second one is the stock
portfolio selection problem when volatility is stochastic as in the Heston model; the last application
is a portfolio selection problem in the incomplete market when the interest rate is stochastic and
stock returns have stochastic volatility.
Very relevant to understand the subsequent works is to focus on the second application, the following
dynamics are considered:{

dSt = (r + ηVt)Stdt+
√
VtStdZ

(1)
t

dVt = (kθ − kVt)dt+ σ
√
VtdBZ

(2)
t

, t ∈ [0, T ] (19)

where S = {St}t∈[0,T ] is the stock price, V = {Vt}t∈[0,T ] is the volatility and ηVt = µ − r is the
risk premium.
Associated with the system (19) we have the following HJB equation:

max
ϕ

(
ϕ2X2V

2
WXX + ϕρσXVWXV +

σ2V

2
WV V + (r + ϕηV XWX+ (20)

(kθ − kV )WV +Wt

)
= 0,

where WX = ∂W
∂X , WV = ∂W

∂V , Wt =
∂W
∂t , WXX = ∂2W

∂X2 , WV V = ∂2W
∂V 2 and WXV = ∂W

∂X∂V .
The problem is solved assuming Equation (16) as an indirect utility function.
The optimal stock portfolio weight ϕ∗s is given by

ϕ∗s =
1

γ
η + ρσFt, (21)

where

Ft =

 − 2[exp(k2t)−1]
(k1+k2)[exp(k2t)−1]+2k2

δv if k22 ≥ 0

− 2

k1+ζ
cos(ζt/2)
sin(ζt/2)

δ if ζ2 ≥ 0
, (22)
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and

k1 = k − 1− γ

γ
ασρ, k2 =

√
k21 + 2δ[ρ2 + γ(1− ρ2)]σ2δ = −1− γ

2γ2
α2, ζ = −ik2.

The stock portfolio weight in the stochastic volatility model is a nonmonotonic function of risk
aversion. Indeed the myopic component decreases when risk aversion increases. A surprising and
criticized feature of the optimal portfolio weight is that it is independent of the variance V . One
might be expected the agent to hold more stocks when the volatility is low and less when the volatility
is high, but this is true if the risk premium is independent of the volatility: in this model, the risk
premium is proportional to the conditional variance. Hence, when the variance is high, the risk
premium is also high, and vice versa.

We observe that the aforementioned findings are not related to a specific verification theorem, so
we do not know under which conditions the candidate for the optimal portfolio strategy is the unique
optimal solution to the allocation problem.

The work by Kraft (2005) filled this gap, by proving a verification result within the stochastic
volatility framework, the author also derived the parameters’ conditions ensuring well-defined can-
didates for the solution of the problem, a condition that ensures that these are indeed the solutions
of the optimal portfolio process given the value function.

In contrast, Pharm (2022) and Fleming and Hernandez-Hernandez (2003) derived explicit verifi-
cations results proving that their portfolio strategies are indeed optimal. In particular, Pharm (2022)
considered a multidimensional model for securities with stochastic volatilities, assuming certain
Lipschitz conditions for coefficients. Such a choice excluded de facto the Heston model.

On the other hand, Fleming and Hernandez-Hernandez (2003) assumed the asset volatility to be
a function σ depending on a state process with constant volatility, with boundedness assumptions
for σ and σ′. Also, in this case, the Heston model is not included.

Buraschi et al. (2010) developed a new framework for multivariate intertemporal portfolio choice,
in which the correlations across asset classes and volatilities are stochastic. In this setting, volatilities
and correlations are conditionally correlated with returns. To model stochastic variance-covariance
risk, the authors specified the covariance matrix process as a Wishart diffusion process. More pre-
cisely, we refer to the bi-dimensional case, so that the dynamics of the price vector St = (S1, S2)

T

are described by the bivariate stochastic differential equation:{
dSt = diag(St)

[
(r +Λ(Σ, t))dt+Σ

1/2
t dZ

(1)
t

]
dΣt = [ΩΩ′ +KΣt +ΣtK

′] dt+Σ
1/2
t dZ(t)(2)Q+Q′(dZ2

t )
′Σ

1/2
t

, t ∈ [0, T ] (23)

where diag(St) is the square matrix with St in the diagonal and 0 on the off-diagonal elements,
Λ(Σ, t)) is a vector of possibly state-dependent risk premia. Here the latter is assumed to be a
constant market price of variance-covariance risk, namely Λ(Σ, t)) = Σ(t)η with η = (η1, η2)

T ∈
R2. Finally, the processes Z(1)

t ∈ R2×1, and Z(2)
t ∈ R2×2 are matrix Wiener processes, while

K,Q,Ω are 2 × 2 square matrix (with Ω invertible). One property that the model must satisfy is
ΩΩ′ = φQQ′ with φ ∈ R and φ > N − 1.
The Wiener processes determining shocks in prices St and in the variance-covariance matrix Σt are
correlated according to

Z
(1)
t = Z

(2)
t ρ+

√
1− ρ′ρZ

(3)
t , (24)

where ρ = (ρ1, ρ2) is a vector of correlation parameters, and Z(3)
t is a two-dimensional standard

Brownian motion, independent of Z(2)
t .

The optimal weights obtained in such a framework are:

ϕ∗ =
α

γ
+ 2FtQ

′ρ, (25)
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with Ft being the solution to the following equation

Ḟt + Γ′Ft + FtΓ + 2FtΛFt + C = 0, FT = 0. (26)

The optimal weight in (25) is the sum of a myopic demand and hedging demand of the risky asset,
as already highlighted in Liu (2007) in the univariate case, and it is independent of the variance.
Moreover, the authors pointed out that the hedging demand is typically larger than in univariate
models, and it includes a significant covariance hedging component.

In a similar context, Jin and Zhang (2012) examined a multi-asset model with constant volatility
when the price can jump. Differently from other authors, such as Das and Uppal (2004) and Ait-
Sahalia et al. (2009), who focused on one type of jump and assumed constant coefficients in their
dynamics, Jin and Zhang (2012) includes multiple types of jumps and a large number of assets
and state variables. Furthermore, this paper also incorporates model uncertainty into the portfolio
choice problem, tackling the problem by focusing on ambiguity aversion to inaccurate estimates of
parameters associated with jumps. The theoretical results showed that ambiguity aversion increases
the effect of jumps for a risk-averse investor, thus the exposure to jumps is smaller in the case of an
investor not neutral to ambiguity.

The evidence highlighted in the works mentioned above shows once again that the optimal
weights result to be independent of the instantaneous volatility when the dynamics of the risky
asset are affine, implying a static allocation mechanism.

To overcome this drawback, Oliva and Renò (2018) study a continuous time optimal portfolio
allocation with volatility and co-jump risk in a multi-asset framework. They deviate from affine
models by specifying a Wishart jump-diffusion for the co-precision (the inverse of the covariance
matrix), generalizing the dynamics in Chacko and Viceira (2005) to a multivariate setting. They
solved the optimal portfolio problem, providing an exact solution to this problem in the absence of
jumps and an approximated solution in the presence of co-jumps. More precisely, it is assumed there
exist N risky assets, whose prices are given by St = (St,1, · · · , St,N )T ∈ RN×1 with dynamics

 dSt = diag(St)

[
(ηdt+

√
Y −1
t dZ

(1)
t + JdN(λ)t

]
dYt = [ΩΩ′ +KYt + YtK

′] dt+
√
YtdZ

(2)
t Q+Q′(dZ2

t )
′√Yt + ξ(Yt)dN(λ)t

, t ∈ [0, T ]

(27)

where diag(St) is the diagonal matrix with St in the diagonal and 0 on the off-diagonal elements,
η, J ∈ RN×1, Z

(1)
t ∈ RN×1 and Z(2)

t ∈ RN×N are matrix Wiener processes, K,Q, ξ ∈ RN×N

while N(λ)t is a non-compensated Poisson process with intensity λ ∈ R. Furthermore Ω is a
symmetric, positive definite and invertible matrix such that ΩΩ′ = φQQ′ with φ ∈ R and φ > N −
1. The Wiener processes determining shocks in prices and variance-covariance matrix Σt = Y −1

t

are correlated according to

Z
(1)
t = Z

(2)
t ρ+

√
1− ρ′ρZ

(3)
t , (28)

where ρ ∈ RN×1, Z(3)
t ∈ RN×1is a Wiener process and the elements of Z(3)

t and Z(2)
t are all

independent among them.
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The approximated HJB for the investment problem is:

max
ϕ

(
Wt + [ϕ′t(η − r1) + r]XtWX + Tr([ΩΩ′ +KYt + YtK

′]∇W ) +
1

2
X2
t ϕ

′Y −1
t ϕt

WXX + (2ϕ′t∇Q′ρWX)X +
1

2
Tr (4Yt∇Q′Q∇)W + λE[W (Xt + ϕ′JXt, Yt+

ξ)−W (Xt, Yt)]

)
, (29)

where ∇ :=
(

∂
∂Yi,j

)
1≤i,j≤N

.

The value function associated with Equation (29) is given by:

W (t, Yt, Xt) = exp{Tr(FtYt) +Gt}
X1−γ
t

1− γ
, (30)

where Tr represents the trace of a square matrix. It’s important to note that to recover a viable HJB
equation in this realistic case the authors follow an approximated approach. The first approximation
consists in assuming that the jump matrix in the co-precision ξ is constant, not depending on Yt. The
second approximation consists of the linearization of the jump term appearing in the HJB equation,
using second-order Taylor expansion:

(1 + ϕ′tJ)
1−γ = 1 + (1− γ)ϕ′tJ + o((ϕ′tJ)

2), (31)

and the approximation consists in not consider the o((ϕ′tJ)
2) term in the HJB equation.

The solution to the optimal allocation is dynamic consistently with the well-known Markowitz eco-
nomic intuition, in that the optimal weight is proportional to the instantaneous co-precision:

ϕ∗ = Yt

[
(η − r1) + 2FtQ

′ρ+ λE
[
eTr(Ftξ)J

]
γ

]
=: YtBt, (32)

where Ft solves

Ḟt + (1− γ)(η)− r1B′
t + FtK +K ′Ft −

γ(1− γ)

2
BtB

′
t + 2(1− γ)FtQ

′ρB′
t (33)

+ 2FtQ
′QFt + λ(1− γ)E

[
eTr(Ftξ)J

]
B′
t = 0, FT = 0.

The optimal portfolio weights consist of three terms: the first one is the myopic demand com-
ponent, which is now proportional to inverse volatility and so takes the typical form of standard
mean-variance allocation; the second one is the intertemporal hedging demand term, which depends
on the correlation coefficients and co-precision. Finally, the third term assumes the meaning of an
illiquidity term.

Differently, Zhou et al. (2019) solves the dynamic portfolio allocation considering an AR(1)-
GARCH(1,1)-ARJI model to describe the asset returns which enables capturing the dynamics pro-
cess of both volatility and jump intensity. The authors find that both initial jump intensity and jump
persistence are important for the investor’s optimal portfolio decision.

More recently Jin et al. (2021) formulates a portfolio choice problem in a multi-asset market
characterized by ambiguous jumps and constant volatility. In the paper, therefore, a portfolio choice
problem with ambiguity and ambiguity aversion in a continuous-time incomplete financial market
is considered. Recall that ambiguity is uncertainty that cannot be measured by a single probability
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measure. The authors investigate the impact of tail risk on portfolio selection. The optimal portfolio
is solved in closed form through a decomposition approach, with two different jump size distri-
butions. They also show that underestimating tail risk might result in a sizeable wealth loss in the
presence of jump ambiguity. Furthermore, they confirm that ambiguity-averse investors reduce more
of their jump exposure if the jump distribution exhibits a fatter left tail.

So far we have assumed an incomplete market setting. To complete the market, we can add
some financial securities susceptible to the whole range of risk components. The natural choice is
to include derivative contracts on the underlying portfolio equity. Among the numerous references
we first focus on Liu and Pan (2003) who studied the impact of options on wealth allocation in
a stochastic volatility framework considering only jumps in price. In particular, they consider the
following dynamic for the risky asset S = {St}t∈[0,T ]:{

dSt = (r + ηVt + J(λ− λQ)Vt)Stdt+
√
VtStdZ

(1)
t + JSt−(dNt − λVtdt)

dVt = k(θ − Vt)dt+ σ
√
Vt

(
ρdZ

(1)
t +

√
1− ρ2dZ

(2)
t

) , t ∈ [0, T ]

(34)

where Z(1)
t and Z(2)

t are standard Brownian motions, and N is a pure-jump process. All the random
shocks are assumed to be independent. The instantaneous variance process V = {Vt}t∈[0,T ] is a
stochastic process with long-run mean θ > 0, mean-reversion rate k > 0, and vol-of-vol coefficient
σ ≥ 0. In this setting, the agent is interested in investing not only in stock and riskless bonds but also
in derivatives. More specifically the derivatives involved are those providing different exposures to
the three fundamental risk factors in the economy. The market can be completed once we introduce
enough non-redundant derivatives Oit = gi(St, Vt) for i = 1 · · ·N and the price dynamics for the
i-th derivative security is:

dO
(i)
t =rOitdt+ (g(i)s St + σρg(i)v )(ηVtdt+

√
VtdBt) + σ

√
1− ρ2g(i)v (ϵVtdt+

√
VtdZ

(1)
t (35)

+∆g(i)(λ− λQ)Vtdt+ dNt − λVtdt,

where g(i)s and g(i)v measure the sensitivity of the i−th price to infinitesimal changes in the stock
price and volatility, respectively, and where ∆

(i)
g measures the change in the derivative price for

each jump in the underlying stock price. To solve the investment problem, the authors define the
indirect utility function

W (t,Xt, Vt) =
X1−γ
t

1− γ
exp{γF (T − t)Vt + γG(T − t)}. (36)

which satisfies the following HJB equation,

max
ϕt,νt

(
Wt +XtWX

(
rt + θBt ηVt + θZt ϵVt − θNt Jλ

QVt
)
+

1

2
X2
tWXXVt

(
(θBt )

2 + (θZt )
2
)

+ λVt∆W + k(θ − Vt)WV +
1

2
σVtWV V + σVtXtWWV

(
ρθBt +

√
1− ρ.2θZt

))
= 0, (37)

where ∆W =W (t,Xt(1 + θNJ), Vt)−W (t,Xt, Vt) denotes the jump in the indirect utility func-
tion W for given jumps in the stock price, and where Wt,WX and WV denotes the derivatives of
W (t,X, V ) with respect to t, X and V, similar notations for higher derivatives. The authors solve
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the optimization problem in closed form and the optimal portfolio weights on the risk factors B
(bond), Z(stock), and N (derivatives) are given by:

θ∗Bt =
η

γ
+ σρF (τ),

θ∗Z =
ϵ

γ
+ σ

√
1− ρ2F (τ, ) (38)

θ∗N =
1

J

((
λ

λQ

)1/γ

− 1

)
,

where η and ϵ are the risk premia and

F (τ) =
exp(k2τ)− 1

2k2 + (k1 + k2)(exp(k2τ)− 1)
δ, (39)

with

δ =
1− γ

γ
(η2 + ϵ2) + 2λQ

[(
λ

λQ

)
+

1

γ

(
1− λ

λQ

)
− 1

]
,

k1 = k − 1− γ

γ

(
ηρ+ ϵ

√
1− ρ2

)
σ,

k2 =
√
k21 − δσ2.

The optimal exposure to the three risk factors, according to Liu et al. (2003) for the incomplete
market setting, does not depend on instantaneous volatility. The authors showed as derivatives ex-
tend the risk and return tradeoffs associated with stochastic volatility and price jumps. In particular,
they illustrated two significant examples. In the first example, they focused on the role of deriva-
tives as a vehicle for volatility risk and as result, the optimal portfolio weight in derivative security
depends explicitly on the sensitivity of the derivative to volatility. The second example is the role of
derivatives as a vehicle to disentangle jump risk from diffusive risk.

Later Branger et al. (2007) extended the Liu and Pan (2003) framework by also considering
discontinuities in the stochastic process that governs volatility. They showed that the demand for
jump risk includes a hedging component which is not present in the models without volatility jump,
this is the main difference with the previous setting. More precisely, we have

θ∗N =
1

J

[(
λ

λQ

)1/γ

− 1

]
+

1

J

(
λ

λQ

)[
eF (τ)ξ − 1

]
, (40)

with ξ volatility jump size assumed to be constant, and consequently this impacts also on F (τ),
equation (39), while the other exposures (θ∗B , θ∗Z) are the same as Equation (38) of Liu and Pan
(2003).

Moreover, the authors showed how the volatility jump magnitude has a significant impact on the
optimal portfolio. They analyzed the distribution of terminal wealth for an investor who uses the
wrong model by ignoring volatility jumps or including wrong estimates of such jumps.

In this context, we also mention Escobar et al (2015), who determine the optimal portfolio for
an ambiguity-averse investor when stock price follows a stochastic volatility jump-diffusion process
(considering only a jump in the stock dynamics), and when the investor can have different levels
of uncertainty about diffusion parts of the stock and its volatility. The authors illustrate that the
optimal exposures to stock and volatility risks are significantly affected by ambiguity aversion to
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the corresponding risk factor only. Moreover, they also show that volatility ambiguity has a smaller
impact in incomplete markets. As an extension, Cheng and Escobar-Anel (2021) consider an optimal
allocation problem with both risk and ambiguity aversion under a 4/2 model. The numerical analysis
finds that wealth-equivalent losses (WELs) from ignoring uncertainty or market completeness are
moderate, while the WELs for investors who follow different models such as Heston or Merton
(geometric Brownian motion) is quite substantial.

Unlike previous works in Ilhan and Sicar (2005) the investors maximize expected exponential
utility function of terminal wealth and restrict a static position in derivative securities. The main
result is that in a general incomplete arbitrage-free market there exists a unique optimal strategy for
the investor.

Haugh and Lo (2001) construct a buy-hold portfolio of stocks, bonds, and options that involves
no trading once set at the beginning of the investment horizon, and solve this problem for several
combinations of preferences as CRRA and CARA (Constant Absolute Risk Aversion) preferences
and different return dynamics (Geometric Brownian motion, the Ornstein Uhlenbeck process and
a Bivariate Linear Diffusion process). The authors show that under certain conditions a portfolio
consisting of just a few options is an excellent substitute for more complex dynamic policies.

3.2 Non-expected utility: Epstein–Zin preferences
As an alternative to power utilities, a strand of extant literature has focused on Epstein-Zin pref-

erences, since they include the effect of both risk aversion, and separate EIS from the coefficient
of relative risk aversion. The power utility functions restrict risk aversion to be the reciprocal
of the elasticity of intertemporal substitution and this does not reflect the empirical evidence that
has shown how these parameters have very different effects on optimal consumption and portfolio
choice, as highlighted in Chacko and Viceira (2005). The latter examines the optimal consump-
tion and portfolio-choice problem of long-horizon investors in an incomplete market setting, by first
introducing precision process, intended as the inverse of volatility, to obtain dynamic optimal portfo-
lio rules. The authors consider recursive utility over consumption and derive an analytic expression
for the optimal consumption and portfolio policies. The latter are exact when an investor has unit
elasticity of intertemporal substitution of consumption, and approximate otherwise.

To simplify the analysis, the market is assumed to be made of only two assets, the first one is the
riskless asset with dynamics:

dBt
Bt

= rdt, (41)

where r is the risk-free rate. The second one is stock, with the following dynamics :{
dSt = µStdt+

√
y−1
t StdZ

(1)
t

dyt = k(θ − yt)dt+ σ
√
ytdZ

(2)
t

, t ∈ [0, T ] (42)

where yt is the instantaneous precision of the risky asset return that follows a mean-reverting process,
with 1

vt
= yt, being vt the variance process, and k, θ, σ > 0. Moreover in such a setting shocks to

precision are correlated with the instantaneous returns on the risky asset, with ⟨dZ(1)
t dZ

(2)
t ⟩ = ρdt.

The HJB equation for this problem is:

sup
ϕt,C

(
f(Cs, Js) + [ϕt(µ− r)Xt + rXt − Ct]WX +

1

2
ϕ2tX

2
tWXX

1

yt
+ k(θ − yt)Wy+

1

2
σ2Wyyyt + ρσϕtXtWXy

)
= 0, (43)
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where f(C, J) = β(1 − γ)W
[
log(C)− 1

1−γ log((1− γ)W )
]

is the aggregator for ψ = 1 and
subscripts on W denote partial derivatives. When ψ = 1, there is an exact analytical solution to the
optimization problem with value function given by:

W (Xt, yt) =
X1−γ
t

1− γ
exp{Fyt +G}, (44)

where Ft and Gt are deterministic functions to be determined. This value function implies the
following optimal consumption and portfolio rules:{

Ct
Xt

= β

ϕ∗t =
1
γ (µ− r)yt +

(
1− 1

γ

)
(−ρ)σFyt

, (45)

with β > 0 rate of time preferences, γ > 0 is the coefficient of relative risk aversion, and Ft, Gt are
given by the solution of the following system:

aF 2 + bF + c = 0, (46)
(1− γ)(β log β + r − β)− βG+ kθF = 0 (47)

where

a =
σ2

2γ(1− γ)
[γ(1− ρ2) + ρ2], b =

ρσ(µ− r)

γ
, c =

(µ− r)2

2γ
. (48)

When ψ ̸= 1 the HJB is still given by (43) but the first-order condition for consumption is different
due to the different form of the aggregator, as in equation (12). So, in this case, guessing that

W (Xt, yt) = I(yt)
X1−γ
t

1− γ
(49)

with the transformation I = H
−1−γ
1−ψ and replace into HJB equation, also replacing the expression

for ϕt, the authors obtain a non-homogeneous ordinary differential equation:

− βψH−1 + ϕβ +
(1− ψ)(µ− r)2

2γ
yt −

ρσ(µ− r)(1− γ)

γ

Hy

H
yt + r(1− ψ)+ (50)

ρ2σ2(1− γ)2

2γ(1− ψ)

(
Hy

H

)2

yt −
Hy

H
k(θ − yt) +

σ2

2

(
1− γ

1− ψ
+ 1

)(
Hy

H

)2

yt
σ2

2

Hyy

H
yt = 0,

the solution is obtained by approximating the term

βψH−1 = exp{ct − xt}, (51)

where ct − xt = log(Ct/Xt) and using a first-order Taylor expansion of exp{ct − xt}:

βψH−1 ≈ h0 + h1(ct − xt),

where h1 = exp c− x and h0 = h1(1 − log h1). Substituting Equation (51) in the first term of
Equation (50), the resulting ODE has a solution of the form H = exp{F1yt + G1}. This solution
implies the following value function

W (Xt, yt) =
X1−γ
t

1− γ
exp

{
−
(
1− γ

1− ψ

)
(F1yt +G1)

}
. (52)

13



Ilaria Stefani Annali Memotef 2022

In this latter case the optimal consumption is equal to Ct
Xt

= βψe−F1yt−G1 , F1 and G1 are given
by solution to a system similar to (46), see Appendix A. of Chacko and Viceira (2005) for more
details.

The optimal portfolio rule has two components, namely a myopic portfolio demand, and a Mer-
ton’s intertemporal hedging demand. Both components are linear functions of precision. The op-
timal consumption wealth ratio is invariant to changes in volatility if ψ = 1, while it is an affine
function of instantaneous precision when ψ ̸= 1. In a similar framework, Faria and Correia-da-Silva
(2016) extended the model of Chacko and Viceira (2005) for optimal dynamic portfolio choice,
introducing ambiguity in stochastic investment opportunity set, showing a small impact of the elas-
ticity of intertemporal substitution of consumption (EIS) on optimal allocation. Since standard ver-
ification results are not applicable (Duffie and Epstein (1992)), due to the non-Lipschitzianity of
Epstein-Zin preferences, Kraft et al. (2013) provided a suitable verification theorem for the associ-
ated HJB equation. This paper contributes to providing new explicit solutions to the HJB equation
with recursive utility for a non-unit EIS. Those results represent the first explicit benchmark for the
Cambell-Shiller approximation, used by Chacko and Viceira (2005) in their approximation. Kraft
et al. (2016) extended their previous work and provided the existence and uniqueness of solutions
of HJB equation by exploiting fixed point arguments, and developed a fast and accurate numerical
method for computing both indirect utility and optimal strategies.

Xing (2017) studied an investment problem via backward stochastic differential equations con-
sidering a multi-asset model in which the assets follow a Geometric Brownian motion and volatility
is constant, focusing on the empirically relevant specification where both risk aversion and EIS are
greater than one. The utility specification makes the optimization problem very difficult to solve
since the Epstein-Zin aggregator is not Lipschitzian.

In a complete market setting, we refer to Hsuku (2007), where a recursive utility function defined
on intermediate consumption (rather than terminal wealth) is maximized, to reflect the realistic be-
havior of an investor who saves money for the future. This setting is based on a general assumption
according to which expected stock returns are affine functions of volatility. The economy is formed
by a riskless bond

dBt
Bt

= rdt, (53)

where r is the risk-free rate and a risky stock with the following dynamic:

{
dSt
St

= µdt+
√
VtdZ

(1)
t

dVt = k(θ − Vt)dt+ σ
√
VtρdZ

(1)
t +

√
1− ρ2dZ

(2)
t

, t ∈ [0, T ] (54)

where Z(1)
t and Z(2)

t are standard Brownian motions. In such a market, the authors refers to Liu
and Pan (2003), so that the non-redundant derivative Ot = g(St, Vt) at the time t ∈ [0, T ] has the
following dynamics:

dOt =
[
(µ− r)(gsSt + ρσgv) + ησ

√
1− ρ2gv + rOt

]
dt+ (gsSt + ρσgv)

√
VtZ

(1)
t +

(σ
√
1− ρ2gv)

√
VtdZ

(2)
t , t ∈ [0, T ] (55)

where η determines the stochastic volatility risk premium, gs and gv are measures of derivative price
sensitivities to small changes in the underlying stock price and volatility, respectively. When ψ → 1
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the optimal portfolio weights in stock and derivatives, and the optimal consumption wealth ratio is:

Ct
Xt

= β, (56)

ϕ∗t =
1

γ

µ− r

Vt
+

1

γ
(Q1 +Q2)

1

Vt
)ρσ − 1

γ

η

Vt

(gsSt + ρσgv)

σ
√

1− ρ2gv
− 1

γ

(
Q1 +Q2

1

Vt

)
(57)

(gsSt + ρσgv)

gv
,

ν∗ =
1

γ

λ

Vt

1

σ
√
1− ρ2(gv/Ot)

+
1

γ

(
Q1 +Q2

1

Vt

)
Ot/gv, (58)

with Q1 and Q2 that solve the following equations:(
1

2

1

1− γ
σ2 +

1

2

1

γ
σ2

)
Q2

2 +

[
1

γ
σ(µ− r)ρλ

√
1− ρ2 +

1

1− γ
kθ − 1

2

1

1− γ
σ2

]
Q2+ (59)

1

2

1

γ
[(µ− r)2 + λ2] = 0,

(
1

2

1

1− γ
σ2 +

1

2

1

γ
σ2

)
Q2

1 −
(

1

1− γ
β +

1

1− γ
k

)
Q1−

1

1− γ
β
1

θ
Q2 = 0.

For the general case ψ ̸= 1 there is no exact solution. To find an approximate solution the authors
apply the approximation proposed in Chacko and Viceira (2005). Equation (56) demonstrates the
invariance of the optimal log consumption–wealth ratio to changes in volatility when ψ = 1, as
already seen in Chacko and Viceira (2005) . The results obtained in Hsuku (2007) further show that
optimal consumption–wealth ratio is a function of stochastic volatility when ψ ̸= 1: in particular it is
an increasing function for investors whose EIS is smaller than one, while it is a decreasing function
for investors whose EIS is larger than one. Finally, the analyses confirm the conclusions of Liu and
Pan (2003) in the case of the power utility, regarding the role of derivatives: derivative securities are
a significant tool for expanding investors’ dimension of risk-and-return tradeoffs, being a vehicle for
the additional risk factor of stochastic volatility in the stock market.

4 Conclusions

In this paper, a review of the literature on dynamic allocation has been proposed. In particu-
lar, some of the most popular models for the investor’s choice strategy were analyzed, considering
different preferences for the investor and market settings. It is observed how the use of affine mod-
els to model stochastic volatility leads to optimal weights that do not depend on the instantaneous
volatility nor on the long-run mean level contradicting the foundations of the Markowitz portfo-
lio theory, which theorize and demonstrates a relationship of inverse proportionality between the
invested wealth and the synthetic indicators of variability.

Further contributions could be extended along two different lines: at first, the problem of optimal
allocation in a complete market could be faced by considering the co-precision (the inverse of volatil-
ity) in a setting where there are discontinuities in both price and volatility to understand the impact
of jumps and derivatives on the optimal portfolio in presence of precision when the investor has
a power utility; at second the optimal allocation problem can be solved considering non-separable
preferences for the investor (SDU utility function) and discontinuities in both price and volatility,
analyzing both cases of complete and incomplete market.
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