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Abstract

The issue of the location of charging stations for electric vehicles is becoming very
important due to governmental decisions on electric mobility. Many authors have ad-
dressed this problem with the support of graph theory and graph optimization. In deal-
ing with this problem, typical operational research models and approaches used for
facility location, such as p-median, coverage problem and queuing theory, have been
resorted to. In this paper we apply these models to the location of charging stations
in the city of Rome. In particular, we analyze the suitability of existing charging sites
and suggest where to implement new chargers using a p-median-like model. Finally,
we study the waiting time distribution when the nearest charging stations are occupied,
and we use queuing theory to show how much demand for the service would improve
with the implementation of the new charging points.
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1 Introduction

The deployment of electric vehicles (EVs) is instrumental to reduce CO2 emissions and
tackle climate change. According to the BCG report Electric Cars Are Finding Their Next
Gear (Boston Consulting Group, 2022), it is estimated that electric vehicles will represent
20% of global car sales in 2025 and 59% in 2035, but with different rates of increase depend-
ing on geographical localization. The EU’s strict environmental regulations will boost sales
of electric cars in Europe by more than 90% by 2035. Regarding Italy, Forbes Italy (Forbes,
2022) estimates that in 2035 the expected market share of sales of new zero-emission ve-
hicles will be over 85% of the total. Furthermore, zero-emission vehicles are estimated to
grow from 1% in 2021 to over 27% in 2035.

Achieving these goals will require a major effort to create networks of charging stations
capable of sustaining the above-mentioned growth rates, as highlighted by Beckers et al.
(2015) and by The National Academies (2023).

Clearly location of charging stations is very important in order to meet future customers
demand. For this reason, extensive literature has been devoted to this problem in recent
years and various models, algorithms, and approaches, both in theory and in practice, have
been proposed and studied. Here, we report some recent works where approaches are pre-
sented that share some similarities with ours. Frade et al. (2011) propose a location model
to maximize the coverage of electric charging demand in a neighbourhood in Lisbon, distin-
guishing between night-time and day-time demand. In Xi et al. (2013), the authors propose
a simulation-optimization model to determine location and size of electric charging infras-
tructures by estimating the expected number of electric vehicles charging at a location as a
function of the stations at that location and apply the model to the central-Ohio region. Zhu
et al. (2017) rely on a model which combines p-median and maximum-coverage approaches
to determine the location of charging stations so to maximize traffic satisfaction and to op-
timize charging capacity using queuing theory. In Baouche et al. (2014), an optimization
model is presented with the aim of locating charging stations so that fixed costs related to
the stations and cost of travelling for electric vehicles are minimized. The model incorpo-
rates an estimate of energy consumption of electric vehicles in urban centres. In Zhu et al.
(2016), the authors propose a mathematical model to determine where to locate charging
stations and the number of chargers to be placed: construction and access costs, distance
between destinations and charging points, and drivers preferences are taken into account.
Andrenacci et al. (2016) present a demand-side approach to find the suitable locations for
charging stations, assuming a complete switch to electric vehicles. The authors use a large
dataset of vehicle usage in the city of Rome and, applying cluster analysis, estimate the
energy demand. He et al. (2016) compare three classical facility location models, i.e. set
covering, maximal covering location and p-median, by applying them to the real scenario
of the city of Beijing; locations obtained from the p-median approach are shown to be more
convenient and affordable. Likewise, in Bouguerra and Layeb (2019), a real case study is
presented related to the city of Tunis, and five linear integer programming formulations are
considered based on weighted set covering models, with real constraints.

Many other studies have been conducted on location strategies for charging stations: the
interested reader is referred to the thorough reviews in Kchaou (2021); Pagany et al. (2019);
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Shareef et al. (2016) and also to Farahani et al. (2012).
Following this line of research, we focus on the difficult context of the city of Rome,

Italy. According to the fourth edition of MOTUS E reports (MotusE, 2023), Rome is the
Italian city with the largest number of charging points. However, Rome is the most popu-
lous city in Italy, and the urban area has the largest surface in the country. So, when relating
the number of charging points to these aspects, the pictures change.

Our aim is to improve the quality of charging services by identifying, among already ex-
isting charging sites, those where to place additional charging points. Under the assumption
of demand and supply occurring at the existing sites, we propose to find the optimal ones
where to install new charging points by minimizing a measure of their distance from all the
other sites. In a nutshell, we rely on a p-median-like model, which result in a linear integer
programming problem. This is a typical approach for the location of facilities where some
service is available to customers. Then, we validate our approach via numerical testing and
a posteriori analysis. We analyze the time needed to reach the nearest sites in the presence
of congestion and, taking a hint from Marianov and ReVelle (1996), we resort to queuing
theory to study the advantages of the approach in terms of service demand.

We believe that one of the strengths of our approach lies in its simplicity: it can be easily
interpreted and replicated; also, solution procedures are available to practically implement
it. Yet, the model we propose, while simple, seems to be sufficiently accurate and to retain
descriptive power, as witnessed by the numerical evidence we have obtained. We remark
that we have tested our approach on real-world data, focusing on the problem of improving
charging services in the difficult context of the city of Rome.

The rest of the paper is organized as follows. In Section 2 we introduce the p- median-
like model. In Section 3 we analyze the distribution of charging points in the city of Rome.
In Section 4 we focus on the results obtained from the application of the model to the con-
text of the city of Rome, focusing on several different scenarios. In Section 5 we investigate
waiting times in case of congestion, and in Section 6 queuing theory is used to analyze
improvements in terms of meeting the demand. In Section 7 we give some final remarks.

2 P-median-like model

Given a set of n already available charging sites, and assuming demand and supply to
occur at such locations, we wish to find the best ones to be upgraded by installing additional
charging points. We rely on the distance of these sites from the other ones as a selection
criterion to be minimized.

We consider a graph G(N ;A) where N denotes the set of nodes corresponding to the
charging sites and A the set of arcs connecting the nodes, and the distance matrix D where
dij indicates the distance between node i and node j. We want to identify p nodes in
the graph where new chargers are to be installed by solving the following linear integer
programming problem (similar to Christofides (1975)):
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minimize
x

∑n
i=1

∑n
j=1 dijxij

s.t.
∑n

i=1 xij = 1 j = 1, ..., n∑n
i=1 xii = p

xij ≤ xii ∀i, j
xij ∈ {0, 1}

(1)

Binary decision variable xij is equal to 1 if upgraded service (consisting in the presence of
additional charging points) is available for site j at location i, 0 otherwise. In particular,
xii = 1 if site i is upgraded by placing there new charging points.

Constraints ensure that:

• upgraded service for site j is provided by one site where new charging points are to
be installed, for every j;

• the number of charging sites where to install new charging points is equal to p;

• upgraded service for site j is not available at site i if no additional charging points
are to be installed there.

The linear integer optimization problem (1) belongs to the class of p-median-like models.
The p-median is a min-sum problem where the average distance between points where
demand appears and locations where services are provided is to be minimized (see e.g.,
Hakimi (1964); Hakimi (1965);ReVelle and Swain (1970)). This model has been widely
used and developed in the literature to determine the location of facilities (see e.g.,Drezner
and Hamacher (2004); Daskin and Maass (2015); Serra and Marianov (1998); Karatas and
Yakıcı (2019); Blanco (2019)).

Due to our initial assumptions and choices, model (1) turns out to be easily interpretable.
Also, efficient algorithmic procedures are available to compute solutions. Thus, the core
aspects of our approach are readily implementable and replicable. Yet, the simple model
we rely on retains descriptive power, as confirmed by the numerical evidence we describe
in the next sections.

3 Data analysis

To perform our analysis, we consider the charging points activated and operating at the
date of 24th of October 2022 in the city of Rome in all the fifteen municipalities. The
locations where the stations are located have been retrieved and collected from the Roma
Capitale institutional website (Roma Capitale (a)). It turns out that the total number of
functioning chargers is 656 as of the given date. 1

We report the data per municipality in tab. 1 with a color scale ranging from deep green
to deep red, where deep green represents the largest number of chargers installed and deep
red the smallest one.

1 At https://www.comune.roma.it/web/it/informazione-di-servizio.page?contentId=IDS1090137. it is possi-
ble to find, for each municipality, the updated list of locations where the charging points are active
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Table 1. Charging points for each municipality activated at the date 24 October 2022.

Municipality Activated Stations %

I 92 14.0%

II 99 15.1%

III 24 3.7%

IV 23 3.5%

V 24 3.7%

VI 12 1.8%

VII 84 12.8%

VIII 57 8.7%

IX 87 13.3%

X 65 9.9%

XI 23 3.5%

XII 19 2.9%

XIII 16 2.4%

XIV 15 2.3%

XV 16 2.4%

Total 656 1

Source: Authors’ elaboration on data from Roma Capitale (a) website.

We also relate the number of charging points to population density of each municipality.
Data are obtained from the Roma Capitale Institutional website (Roma Capitale (b)) and are
updated to 31st of December 2022. For some areas, as reported in table 2, the number of
chargers seems proportional to population density (see e.g., the I and II), but for other ones
(which we highlight in bold) this relation does not seem to apply.

We consider as nodes in G(N ;A) the locations where charging stations are already
present and active, and derive the coordinates of each point using Google Maps. We aggre-
gate some locations that are a few meters apart to simplify the collection of coordinates and
representation of data. We report, in figure 1, the resulting 358 nodes in a map of Rome,
generated using MATLAB.

We consider the upgrade of existing charging sites and not the construction of new ones.
We make this choice for simplicity, because to identify sites where charging stations are to
be located, supply and demand factors must be considered. Demand factors may be proxim-
ity to attractive places and the purpose of parking, while supply factors are the availability
of grid connection and parking areas (for more details see MotusE (2022)). Existing sites
are, thus, the locations where demand is assumed to appear. Focusing on existing sites is
also crucial to streamline construction procedures and to keep construction costs at bay.
However, demand-related aspects are considered in the subsequent analysis of charging sta-
tion congestion, in section 5, and of the arrival rate λ, in section 6.
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Table 2. Population density for each municipality

Municipality Surface
(sq.km)

Population Density
(pop/sq.km)

I 20.1 164520 8185.1

II 19.7 165496 8400.8

III 98 204342 2085.1

IV 48.9 171890 3515.1

V 26.9 237648 8834.5

VI 112.3 242082 2155.7

VII 47.6 311500 6544.1

VIII 47.2 128417 2720.7

IX 183.2 183282 1000.4

X 150.7 228042 1513.2

XI 71.5 152569 2133.8

XII 73.1 140337 1919.8

XIII 66.9 130379 1948.9

XIV 133.5 190283 1425.3

XV 187.2 160630 858.1

Not classified 2127

Rome 1286.8 2813544 2186.47

Source: Roma Capitale (b) website; Authors’ representation with a color scale for Density.

Relying on the coordinates of the 358 nodes, we compute, via an API2 implemented in
MATLAB R2021b, the distance matrix in meters/km and minutes of journey (in the absence
of traffic).

4 Computational results

To address the integer linear problem, we use the Gurobi 10.0.0 optimizer. We test our
approach considering four different scenarios, depending on the value of the parameter p:
we set p equal to 72,107,143 and 179, that is a fraction of 20%, 30%, 40% and 50% of the
total number of the sites, respectively. So, we take into account considerable increases in
the number of charging points. We also apply the model to two matrices of distances, one
in terms of travel minutes, one in terms of km.

The output of the approach is given by the matrix containing all the Boolean variables
xij , where the diagonal represents the p-median. We remark that for all the tests we have
conducted the procedures give the output in the order of seconds.

After identifying the sites to be upgraded, we estimate the number of chargers to be
added to each of them. We make assumptions to satisfy as many requests from other nodes
as possible, and at the same time, consider a plausible scenario. In order to do so, according
to the output matrix from Problem (1), for each site a where additional charging points have
to be installed, we compute the number of sites (nodesa) for which the upgraded service

2 OSRM API Documentation: https://project-osrm.org/docs/v5.5.1/api/#general-options
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Figure 1. Map of existing nodes of electric charging stations in the city of Rome

Source: Authors’ elaboration on existing positions generated via MATLAB.

is given at location a. Given maximum (denoted by max), minimum (denoted by min)
and median 3 of nodesa over sites a, we estimate the number of charging points to install
(newpointsa) as follows:

newpointsa = 1 if nodesa = min
newpointsa = 2 if min < nodesa ≤ median
newpointsa = 3 if median < nodesa < max
newpointsa = 4 if nodesa = max

(2)

Fig. 2, 3 show the nodes where one has to increase the number of charging points in
a map of Rome generated by MATLAB. We represent nodes in a color scale ranging from
yellow (where to add 1 charger) to dark red (where to add 4 chargers), both for the distance
matrix in minutes and in km.

In the summarizing tables, tab. 3 - 6, we report, for each municipality, the number
of charging points to be installed. We note no differences in our analysis if distances are
evaluated in terms of space or time. Furthermore, as for the sensitivity analysis we perform
with respect to the value of parameter p, the number of charging points to be installed
increases significantly from p = 72 to p = 107, while, for larger values of p, the growth of
the number of new chargers is smaller.

3 We considered the median and not the mean to get integer numbers
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Table 3. Summary table of the new chargers to install, matrix in minutes, p=72 and p=107

Municipality Nodes to upgrade p=72 Chargers to add p=72 Nodes to upgrade p=107 Chargers to add p=107

I 6 14 12 27

II 7 18 11 27

III 4 8 6 11

IV 5 9 7 11

V 3 6 5 9

VI 3 6 5 7

VII 9 20 14 27

VIII 6 14 9 20

IX 9 20 13 27

X 6 15 5 14

XI 3 5 5 8

XII 2 5 3 7

XIII 2 4 4 7

XIV 3 6 3 7

XV 4 7 5 8

Total 72 157 107 217

Table 4. Summary table of the new chargers to install , matrix in km, p=72 and p=107

Municipality Nodes to upgrade p=72 Chargers to add p=72 Nodes to upgrade p=107 Chargers to add p=107

I 7 16 11 25

II 6 16 12 27

III 4 8 6 11

IV 4 8 7 11

V 3 6 5 9

VI 3 6 6 8

VII 8 18 13 27

VIII 6 15 8 19

IX 9 20 14 28

X 6 14 6 15

XI 3 5 4 6

XII 2 5 3 7

XIII 3 6 3 6

XIV 3 6 3 7

XV 5 7 6 9

Total 72 156 107 215
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Figure 2. Map of additional charging points for the distance matrix in minutes, created with MAT-
LAB
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Figure 3. Map of additional charging points for the distance matrix in km, created with MATLAB
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Table 5. Summary table of the new chargers to install, matrix in minutes, p=143 and p=179

Municipality Nodes to upgrade p=143 Chargers to add p=143 Nodes to upgrade p=179 Chargers to add p=179

I 19 38 25 39

II 17 34 23 40

III 10 15 11 15

IV 7 11 9 12

V 6 11 10 12

VI 7 8 8 8

VII 15 31 20 36

VIII 12 25 16 28

IX 17 34 19 36

X 9 23 9 23

XI 5 8 7 12

XII 4 9 5 9

XIII 4 7 5 8

XIV 4 7 5 8

XV 7 10 7 10

Tot 143 271 179 296

Table 6. Summary table of the new chargers to install, matrix in km, p=143 and p=179

Municipality Nodes to upgrade p=143 Chargers to add p=143 Nodes to upgrade p=179 Chargers to add p=179

I 18 36 22 39

II 16 34 24 39

III 9 15 10 15

IV 8 11 9 12

V 8 12 10 12

VI 7 8 8 8

VII 17 34 23 38

VIII 11 24 13 25

IX 17 34 20 35

X 9 24 11 26

XI 4 6 6 9

XII 4 9 5 10

XIII 4 7 5 8

XIV 4 7 5 8

XV 7 10 8 10

Tot 143 271 179 294
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5 Charging station congestion and waiting times

Focusing on demand, we also study charging station congestion with the aim of deriv-
ing waiting times estimates. More precisely, we deal with time and travel distance to reach
the nearest node if the stations at the considered location and in the surrounding area are
occupied.

We deal with four different cases when considering a location: the two nearest nodes
are occupied, the three nearest nodes are occupied, the four nearest nodes are occupied, the
eight nearest nodes are occupied.

Then, we calculate the Probability Density Function (PDF) and the percentiles of the
distance distribution in minutes and in km. Namely, we order the results (i.e., minutes/km
to reach the nearest nodes) from the largest one to the smallest one and take the values cor-
responding to different percentiles to study the distribution. We use the results to represent
the empirical PDF and identify the most frequent values, normalizing the number of events
to have a frequency between 0 and 1. The results are reported in tables 7-9 below and in the
plots 4-6 in the Appendix.

If we analyze congestion when distances in km are considered (see tab.7 and fig. 4), we
notice that, on average, drivers do not have to travel long distances in case nearby stations
are occupied. For instance, to reach the 5th nearest node, drivers have to travel less than
1.5 km in 50% of cases, and only 5% of cases require more than 5.5 km. To reach the 9th
nearest node, 2 km and 6.5 km have to be covered in 50% and 5% of cases, respectively.

If we consider the distance matrix as expressed in time, without traffic, the picture does
not change much (see tab.8 and fig. 5). For example, if the stations of the considered lo-
cation and of the three nearest nodes are occupied, the time to reach the 4th nearest node
is less than 2.35 minutes in 50% of cases and, only in 5% of cases it is greater than 8.5
minutes. But such a scenario is almost unrealistic for a busy city like Rome.

Table 7. Congestion with distance matrix in km

5perc 25perc 50perc 75perc 95perc

to the 3th nearest node 0.36 0.72 1.06 1.65 4.52

to the 4th nearest node 0.44 0.87 1.24 1.87 5.24

to the 5th nearest node 0.56 0.99 1.38 2.02 5.38

to the 9th nearest node 0.75 1.39 1.87 2.59 6.46

So, it is worthwhile to study how these values change in presence of traffic, but we
cannot obtain this information from the API we rely on. In absence of actual data, we
attempt to estimate a distance matrix with traffic correction by adding, to the distance in
minutes, an increasing multiplying factor ranging from 0.5 (in case of shorter distances in
km) to 1 (in case of longer distances in km).

Indeed, the analysis conducted when traffic correction is adopted reveals longer travel
times of about 5-10 minutes, depending on the circumstances (see tab. 9 and fig. 6). Hence,
the time needed to reach the 4th nearest node is about 4 minutes in 50% of cases, and in 5%
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Table 8. Congestion with distance matrix in minutes

5perc 25perc 50perc 75perc 95perc

to the 3th nearest node 0.73 1.44 2.06 3.09 7.33

to the 4th nearest node 0.86 1.61 2.36 3.44 8.48

to the 5th nearest node 1.09 1.90 2.62 3.61 8.96

to the 9th nearest node 1.46 2.53 3.43 4.54 10.14

of cases it is above 13 minutes, while to reach the 9th nearest node, drivers need more than
5 minutes in 50% of cases and more than 15 minutes in 5% of cases.

Therefore, since, if traffic is accounted for, the time to reach the furthest stations can
be long, one can expect queues to form at the stations closest to the demand point. For
this reason, in order to quantify the improvements resulting from the installation of new
chargers, it is useful to study the fractions of demand that can be satisfied in a certain area
in an hour, both in the current situation and after applying our approach.

Table 9. Congestion with distance matrix in minutes with estimated traffic correction

5perc 25perc 50perc 75perc 95perc

to the 3th nearest node 1.10 2.16 3.08 4.64 10.99

to the 4th nearest node 1.29 2.42 3.54 5.15 12.72

to the 5th nearest node 1.63 2.84 3.94 5.41 13.44

to the 9th nearest node 2.19 3.80 5.15 6.82 15.21

6 The arrival rate λ

We try to calculate the flow of charging demand that can be satisfied at each node and
its surroundings.

Following the work of Marianov and ReVelle (1996) and referring to the queuing the-
ory, we calculate the customers’ arrival rate (λi) at each node and in a surrounding area,
which indicates how many charging requests per hour each node and its neighborhood can
meet. We calculate this metric in the initial conditions and after applying our approach, so
as to capture the improvements in meeting the demand that would result from adding new
chargers 4.

We rely on the formula proposed by Marianov and ReVelle (1996) to compute the prob-

4 We do this study only using the matrix in time because queuing theory is based on the study of waiting
times.
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ability α of at least one ”server” being available within the radius considered:

1−
(
ρi
si

)si

≥ α, (3)

where ρi =
λi

µi
is the traffic intensity since

1

µi
is the single server’s mean service time and

si is the number of available servers in the considered area. We measure the arrival rate λi

for each node i as follows:
λi = µisi(1− α)(1/si). (4)

For each node, we consider the total number of charging points within two minutes,
including those at the node itself. This value is the number of chargers easily reachable
from each node, that is the number of available servers si within the radius. We set a radius
of two minutes, considering that, even with traffic, it is an easy distance to cover.

Then, we fix the single server’s mean service time
1

µ1
= 1.5 i.e. we consider an average

charging time of an hour and a half 5. We focus on three different levels of reliability
of the probability of at least one server being available within the range considered, i.e.
α = 0.90, 0.95, 0.98.

We then calculate how many requests can be fulfilled in one hour at a node and its
neighbors up to a two-minute radius. To make a comparison, keeping the other parameters
unchanged, we calculate again the arrival rate λ after applying our approach and increasing
the number of chargers accordingly, and thus updating the number si of available servers in
the selected area.

The results show, as detailed next, that in sites where additional charging points are
installed, an increase in the number of requests that can be met is experienced.

We report statistics related to the arrival rate for the three α reliability levels and for
the four scenarios about the number p of sites to be upgraded. Referring to tab. 10, 11, 12
and plots concerning the empirical PDF (fig. 7, 8, 9) reported in the Appendix, increasing
the confidence level of finding at least one unoccupied server leads to a reduction of λ.
We also observe that the percentile values of the distribution of the new arrival rate do not
change substantially from p=72 to p=179, except regarding 5th and 95th percentiles, which,
however show minor variations.

So, one might infer that, if new charging points are well positioned to optimize the
distance between the different sites, upgrading already existing nodes by 20%-30% may
suffice to satisfy more requests. As a consequence, it would be possible to meet the new
charging demand, while also keeping construction time and costs at bay.

Overall, the application of our approach leads to a significant increase of the value of λ.
Indeed, with the activation of new charging points, each upgraded site is able to meet more
charging demands. For example, to date, with a 90% probability of finding an unoccupied
server within a 2-minute radius, in 75% of cases, the areas within 2-minute radius from each
node’s location are able to serve up to 6 cars per hour. Following the indications given by
our approach, this number is 8 when p = 72, and almost 9 for other values of p.

5 We used an indicative charging value, considering that the stations are both quick and fast. For actual
charging times, see MotusE (2022)
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Table 10. Summary statistics for the arrival rate with α = 0.90

P=72 5perc 25perc 50perc 75perc 95perc P=107 5perc 25perc 50perc 75perc 95perc

Initial λ 0.07 0.93 2.73 5.95 17.86 Initial λ 0.07 0.93 2.73 5.95 17.86

New λ 0.21 1.50 4.00 7.92 21.85 New λ 0.42 1.50 4.00 8.58 21.85

P=143 5perc 25perc 50perc 75perc 95perc P=179 5perc 25perc 50perc 75perc 95perc

Initial λ 0.07 0.93 2.73 5.95 17.86 Initial λ 0,07 0.93 2.73 5.95 17.86

New λ 0.42 2.10 4.00 8.58 23.84 New λ 0.42 2.10 4.65 8.58 23.84

Table 11. Summary statistics for the arrival rate with α = 0.95

P=72 5perc 25perc 50perc 75perc 95perc P=107 5perc 25perc 50perc 75perc 95perc

Initial λ 0.03 0.74 2.43 5.59 17.44 Initial λ 0.03 0.74 2.43 5.59 17.44

New λ 0.14 1.26 3.67 7.54 21.42 New λ 0.30 1.26 3.67 8.19 21.42

P=143 5perc 25perc 50perc 75perc 95perc P=179 5perc 25perc 50perc 75perc 95perc

Initial λ 0.03 0.74 2.43 5.59 17.44 Initial λ 0.03 0.74 2.43 5.59 17.44

New λ 0.30 1.83 3.67 8.19 23.41 New λ 0.30 1.83 4.30 8.19 23.41

Table 12. Summary statistics for the arrival rate with α = 0.98

P=72 5perc 25perc 50perc 75perc 95perc P=107 5perc 25perc 50perc 75perc 95perc

Initial λ 0.01 0.54 2.08 5.14 16.89 Initial λ 0.01 0.54 2.08 5.14 16.89

New λ 0.08 1.00 3.27 7.06 20.87 New λ 0.19 1.00 3.27 7.70 20.87

P=143 5perc 25perc 50perc 75perc 95perc P=179 5perc 25perc 50perc 75perc 95perc

Initial λ 0.01 0.54 2.08 5.14 16.89 Initial λ 0.01 0.54 2.08 5.14 16.89

New λ 0.19 1.52 3.27 7.70 22.86 New λ 0.19 1.52 3.88 7.70 22.86
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7 Conclusion

The use of electric vehicles is spreading in all countries: this is one of the actions
that can be taken to tackle climate change and to help decarbonization. Accordingly, a
widespread network of charging stations needs to be implemented in all urban centers. We
choose to address this issue in the city of Rome by relying on an optimization p-median-
like technique. In summary, our goal is to devise a simple methodology that can be relied
upon by the city administration to make decisions on where to place new charging points
to improve charging service. With such aim in mind, a crucial feature of our approach is
its simplicity: to streamline construction procedures and to keep construction costs at bay,
we focus on already existing charging sites; we then resort to a p-median-like optimization
model to identify charging sites where to install additional chargers. The best charging sites
to be upgraded are selected by minimizing their distances from locations where demand is
assumed to appear. The resulting model belongs to the class of linear integer programming
problems; also, one can rely on available efficient algorithms to compute solutions. Hence,
the overall approach turns out to be easily interpretable, implementable and replicable.

Despite its simplicity, the model appears to be accurate, as witnessed by the results
that we have obtained in our numerical analysis; in fact, empirical evidence supports our
choices. We remark that the tests we have conducted are based on the real-world data re-
lated to the context of the city of Rome. In the a posteriori study, we focus on demand,
whose dynamics has not been factored in explicitly in the model. More in detail, we rely
on queuing theory to give estimates on the number of charging requests that can be met
including the new charging points. Notably, we also incorporate the presence of traffic in
our study.

Moreover, we consider several scenarios to perform a sensitivity analysis and to inves-
tigate the behavior of the output of our approach with respect to some problem parameters
values.

The coverage of charging stations, in most cases, results to be correlated with the pop-
ulation density of municipalities. Indeed, applying our approach essentially requires new
charging points to be installed where they are already numerous and, mainly, in most pop-
ulated municipalities. Even so, the most peripheral areas are still not perfectly covered.
However, we point out that to determine number and position of new chargers to be im-
plemented, we use simplifying assumptions based on the possibility of being able to easily
accommodate requests coming from other nodes.

In terms of charging demand that can be met, in almost all cases, the improvements
resulting from the suitable increase in the number of charging points at existing nodes are
significant. They do not seem to depend substantially on the number of nodes to be up-
graded (i.e. whether p=72, p=107, p=143, or p=179): this indicates that, if new charging
points are well located, even if fewer of them are built, charging sites can handle the overall
demand.

Clearly, our study leaves room for further developments: as future research, we would
like to enhance our analysis by using more elaborated models in the optimization phase.
For instance, we intend to treat demand not only in an a posteriori analysis, but already in
the optimization model. For this purposes, we wish to consider, e.g. Competitive Location

38



Location models of electric charging stations in the city of Rome

models (see e.g., Drezner and Eiselt (2023)), set covering and maximal covering location
models (see e.g., Farahani et al. (2012)) and Capacitated Facility location models (see e.g.,
Current and Storbeck (1988)). In addition, we would like to compare some of these facility
location models to identify the ones that suit the most the context of complex and crowded
cities like Rome.
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A Additional results

Figure 4. PDF in case of congestion for matrix in km
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Figure 5. PDF in case of congestion for matrix in minutes

43



Cenci et al. Annali Memotef 2024

Figure 6. PDF in case of congestion for matrix in estimated minutes of traffic
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Figure 7. PDF of the arrival rate with α = 0.90
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Figure 8. PDF of the arrival rate with α = 0.95
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Figure 9. PDF of the arrival rate with α = 0.98
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