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Capture-recapture models for official statistics in
presence of out-of-scope units: an overview

Abstract. During the last years, National Statistics Institutes have been exploring the possibility to produce statistics based on 
administrative data only. In particular, the interest in populations’ size estimation is increasing. However, some issues naturally 
emerge since the aims of those who collect data and those who use them differ. On the one hand, it is very likely to have out-of-
scope units in the datasets. On the other hand, some units that belong to the target population are not observed. In practice, this 
is the case of incomplete contingency tables that include some overcounts. The aim of this paper is to review the main and most 
recent literature dealing with the population size estimation problem, with an insight on the overcoverage issue.

Keywords: capture-recapture, population size estimation, log-linear models, overcoverage, Bayesian graphical models, 
erroneous enumeration

1. Introduction

In recent years, National Statistics Institutes (NSIs) have been more and more interested in producing statistics
using administrative data only. The idea of replacing censuses with the integration of data coming from multiple
sources is very attractive, due to the several shortcomings presented by surveys. First, there exists a well-known
and unavoidable trade-off between timeliness and accuracy; second, the response rate is becoming lower and lower.
Third, to conduct a survey implies huge costs. In these terms, a data integration approach would imply an enormous
potential gain. Nevertheless, several methodological issues emerge, especially since the aims of those who collect
data and those who use them differ. Consequently, more uncertainty and the risk of biasedness naturally arise. The
Italian Statistical Institute (ISTAT) is among the NSIs that are paying more attention to the “paradigm shift” in official
statistics; see Filipponi et al. (2017) and Chiariello and Tuoto (2018) among others.
In line with the NSIs interests, academia is producing a vast literature. One of the most recent examples is “Analysis
of Integrated Data” edited by Zhang and Chambers (2019). The contributes therein deal with statistical uncertainty
and inference issues that arise when a dataset is created via integration of multiple sources. Certainly, among the key
issues there is that of undercoverage. A list is subject to undercoverage if it enumerates only a subset of the population
of interest (or target population). In the case of multiple lists, we may face a situation in which the union of the lists
is still a subset of the target population. Special attention is devoted to the entity ambiguity problem, which arises
“whenever it is not possible to state with certainty that the integrated source corresponds to the target population of
interest” (Zhang and Chambers (2019), Preface). One of the frameworks in which it is possible to encounter such entity
ambiguity is when the units of a target population are partially or erroneously covered in each source. A particular
case is that of overcoverage, which occurs when some out-of-scope units are erroneously included in one or more data
sources.

On the one hand, the undercoverage issue has been largely treated in literature. The most widespread models are the
so-called capture-recapture models. Although the idea of capture-recapture dates back to the eighteenth century (see
Amorós (2014)), they have developed during the twentieth in the field of ecology. In such models, the capture (or
miss) of specimens belonging to a target animal population is registered, and the registration is repeated for several
capture occasions. A milestone is Fienberg (1972). In this work, Fienberg uses a contingency table to describe the
capture histories of the registered units; the table is said to be incomplete since the cell referring to those units that
have never been captured is unobserved. The use of log-linear models allows the estimation of the missing cell count
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and consequently of the total population size. Since 1972, a vast literature dealing with population size estimation in
a capture-recapture framework has been developing, following both frequentist and Bayesian approaches; the most
recent developments in capture-recapture models for social sciences can be found in Böhning et al. (2018).
On the other hand, the overcoverage issue has become relevant only recently, with the increase of the interest of the
NSIs in the production of statistics through data integration. The approach which has spread the most is the latent
class modelling. We will discuss this topic more in detail in section 5.

This work aims to review the main and most recent literature about the population size estimation problem. Section
2 introduces the basic notation we will use throughout the paper. Section 3 presents the most recent literature about
capture-recapture models which follows Fienberg’s line; from its milestone Fienberg (1972), to the Bayesian version
of log-linear models. An example of interest will be presented in section 4. Section 5 extends the models previously
introduced to the overcoverage issue and section 6 compares them with two examples simulating different scenarios.
The conclusions follow.

2. Notation

In this section we mainly follow the notation presented in Zhang (2019). Consider K lists Ak, k = 1, ...,K,
only partially enumerating a target population U of unknown cardinality |U | = N . Refer to A = A1, ..., AK as the
lists’ universe. Now let δAk

(i) be a random variable assuming value 1 if i ∈ Ak, i.e. if the unit i, i ∈ {1, ..., N} is
“captured” in the kth list, and 0 otherwise. This way, the vector

δA(i) = (δA1
(i) ... δAK

(i)) ,

represents the capture history (or capture vector) of unit i. Now define

ω(i) = {k; δAk
(i) = 1, 1 ≤ k ≤ K} ,

i.e. ω(i) is the index set of the lists in which the observed unit i is enumerated. For instance, when K = 3 the possible
values for ω will be {1, 2, 3, 12, 13, 23, 123} for any i. Define Aω as the cross-classified list domain according to δA,

with
K∑

k=1

δAk
≥ 1. Similarly, Aω+ is the marginal list domain. Together the Aω’s form a partition of the lists’ universe

A, which is of size |A| =
∑
ω
|Aω| =

∑
ω
xω , i.e., xω is the number of individuals observed in Aω; e.g., x12 is the

number of units observed in both (and only) A1 and A2, and x1 is the number of those observed in A1 only. The
counts can be summarized in an incomplete contingency table, as shown in Table 1. In a similar fashion, xω+ is the
number of units in Aω+; for instance, x12+ is the number of units in both A1 and A2 but not exclusively, and x1+ is
the number of units observed at least in A1.

Now assume that some lists partly enumerate out-of-scope units, i.e. ∪K
k=1Ak ⊂ {U ∪ Ũ}, Ũ being the set that

includes units not belonging to the target population. Let

δU (i)

{
1 if i ∈ U

0 otherwise.

Let yω =
∑

i∈Aω

δU (i) be the number of in-scope units in Aω; e.g., y12 is the number of population units enumerated

both in list A1 and A2. For all ω’s including at least one of the lists not affected by overcoverage, the observed count
xω is equal to yω . Yet, for the others yω = xω−rω , with rω unobserved. Finally, indicate with y0 the unknown number
of population units enumerated in none of the lists. Hence, the total target population’s size will be N =

∑
ω
yω + y0.

For convenience, we define y =
∑
ω
yω to indicate the total number of in-scope individuals captured in the lists.

Table 2 helps clarifying the notation; it shows a three-way incomplete contingency table where all sources are affected
by overcoverage.
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δA1(i) = 1 δA1(i) = 0

δA2(i) = 1 δA2(i) = 0 δA2(i) = 1 δA2(i) = 0

δA3(i) = 1 x123 x13 x23 x3

δA3(i) = 1 x12 x1 x2 ?

Table 1. Three lists observed contingency table

δA1(i) = 1 δA1(i) = 0

δA2(i) = 1 δA2(i) = 0 δA2(i) = 1 δA2(i) = 0

δA3(i) = 1
δU (i) = 1 y123 y13 y23 y3

δU (i) = 0 r123 r13 r23 r3

δA3(i) = 0
δU (i) = 1 y12 y1 y2 y0

δU (i) = 0 r12 r1 r2 ?

Table 2. Latent structure of three lists contingency table where all sources are affected by overcoverage

3
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3. Capture-recapture

Capture-recapture models were born in ecology at the end of 19th century, when the need of accurate tools able to
estimate the number of specimens belonging to a target animal population became stronger. Indeed, C. G. J. Petersen1

and F. C. Lincoln2 are the ones who can be considered the “fathers” of capture-recapture methods; a marine biologist
and an ornithologist respectively. Starting from the popular Lincoln-Petersen estimator, capture-recapture models have
evolved and found one of their main applications in social sciences. In the following subsection we briefly review the
most recent models suitable for official statistics’ needs.

3.1 Log-linear models’ setup

Log-linear models have been the most popular representation for count data so far. The way these models work
is self-explanatory; considering the observed counts as random variables’ realizations, we may express the natural
logarithm of their expected values as a linear function of a set of unknown parameters.
Assume to be able to classify y units belonging to a particular population in a contingency table according to some
characterizing factors, e.g. A1, A2, A3. Also assume that each factor have different levels, l1 = 1, ..., c1, l2 = 1, ..., c2
and l3 = 1, ..., c3 respectively.
Let Yl1l2l3 be the random variable indicating the number of counts for the cell corresponding to level l1l2l3. In case of
independence among factors, i.e. P (i ∈ A123) = P (i ∈ A1++)P (i ∈ A+2+)P (i ∈ A++3), its expected value is

λl1l2l3 =
yl1++

y

yl+2+

y

yl++3

y
y

where λl1l2l3 = E(Yl1l2l3) and y =
∑
l1

∑
l2

∑
l3

yl1l2l3 is the total number of counts.

Analogously to the analysis of the variance, Fienberg (1970) expresses the natural logarithm of such expected value
as

log(λl1l2l3) = φ+ θl1 + θl2 + θl3

where the θ’s represent deviations from the grand mean, i.e. φ. Equivalently,

log(λl1l2l3) = [1] + [A1]l1 + [A2]l2 + [A3]l3 .

Yet, in case the factors’ independence assumption does not hold, we need to introduce additional parameters, i.e. the
interaction terms. In the case of three factors, the so-called saturated model will include three two-factor interaction
terms and one three-factor:

log(λl1l2l3) = φ+ θl1 + θl2 + θl3 + θl1l2 + θl1l3 + θl2l3 + θl1l2l3

or

log(λl1l2l3) = [1] + [A1]l1 + [A2]l2 + [A3]l3 + [A1A2]l1l2 + [A1A3]l1l3 + [A2A3]l2l3 + [A1A2A3]l1l2l3 .

Any model which does not include all the interaction terms is said to be unsaturated. Generalizing, we may classify
units according to K factors Ak, k = 1, ...,K, each of which assumes lk levels, lk = 1, ..., ck. Therefore, the most
general log-linear model for the expected value of the number of counts corresponding to level l1...lK will be

log(λl1...lK ) = φ+
∑
k

θlk +
∑
k

∑
j>k

θlklj + ...+ θl1...lK .

The over parameterization of the model emerges clearly, asking for a constraint which will allow for the model’s
identification. One possibility is the sum-to-zero constraint:

ck∑
lk=1

θlk =

c1∑
l1=1

θl1lk = ... = 0 ∀k .

1see Petersen (1985)
2see Lincoln (1930)
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Model specification Highest order interactions
φ+ θ1 + θ2 + θ3 + θ12 + θ13 + θ23 + θ123 [A1A2A3]
φ+ θ1 + θ2 + θ3 + θ12 + θ13 + θ23 [A1A2][A1A3][A2A3]
φ+ θ1 + θ2 + θ3 + θ12 + θ13 [A1A2][A1A3]
φ+ θ1 + θ2 + θ3 + θ12 + θ23 [A1A2][A2A3]
φ+ θ1 + θ2 + θ3 + θ13 + θ23 [A1A3][A2A3]
φ+ θ1 + θ2 + θ3 + θ12 [A1A2]
φ+ θ1 + θ2 + θ3 + θ13 [A1A3]
φ+ θ1 + θ2 + θ3 + θ23 [A2A3]
φ+ θ1 + θ2 + θ3 [A1][A2][A3]

Table 3. Different model specifications for log(λ123)

Another option is the corner point constraint, which will be used throughout this paper:

θ(lk=1) = 0, ..., θ(lk=1)...lj = 0 ∀k �= j .

Log-linear models have been applied to capture-recapture data in Fienberg (1972) for the first time. Here, the factors
Ak are the capture occasions, or lists. For each list only two levels lk are possible: captured (lk = 1) or missed
(lk = 0). As a result, the observed units can be classified in an incomplete 2K contingency table. By incomplete
we mean that it will presents a missing cell, the one corresponding to {l1 = 0 ... lK = 0}, by construction. In
this framework, three assumptions play a key role. First, the population is assumed to be closed (Fienberg (1972)).
Second, the probability of being captured in one or more lists is the same for any individual i belonging to the target
population; in other words, there is capture homogeneity. Another crucial assumption is the units’ unique labelling: the
entire multiple recapture history of any observed individual can be inferred from its label anytime. In the conclusion,
we will see how literature has addressed the cases of deviation from the last two assumptions.
To my knowledge, the entire capture-recapture literature on log-linear models has only focused on the hierarchical
ones, i.e. those models where the higher-order relatives of a zero term are constrained to be zero as well (see Fienberg
(1972)). For instance, assume K = 3; the saturated model results being

log(λl1=1 l2=1 l3=1) = φ+ θl1=1 + θl2=1 + θl3=1 + θl1=l2=1 + θl1=l3=1 + θl2=l3=1 + θl1=l2=l3=1.

Since the only admissible levels for each list are 0 and 1, with a little abuse of notation we replace the subscript lk
with its index k when lk = 1 and we omit it when lk = 0. The result is in line with notation described in section 2.
Therefore, we can rewrite the equation above as

log(λ123) = φ+ θ1 + θ2 + θ3 + θ12 + θ13 + θ23 + θ123.

Generalizing,
log(λω) = φ+

∑
ν∈Ω(ω)

θν

where Ω(ω) is the set of all non-empty subsets of ω; equivalently,

log(λω) = φ+ dω
T θ

where φ ∈ R is the grand mean and dω is the design vector that indicates which elements of the regression parameters
vector θ apply to the cell indexed by ω. θ is the vector of the factors’ effects and interaction terms:

θ = (θ1, ..., θK , ..., θk1k2
, ..., θk1k2k3

, ..., θ1...K)T

Table 3 shows all possible model specifications for the number of counts y123 when K = 3.

Fienberg’s approach consists in estimating the most parsimonious log-linear model, restricted to the incomplete table,
and use it to predict the count of the missing cell. To give an insight of the effectiveness of such estimation procedure,
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we briefly describe the main steps; see Fienberg (1972) for the details.
Let {yω} be Multinomial with parameters N, pω , where pω is function of some parameters ζ, i.e. pω = pω(ζ), and let
L(N ; ζ) be the relative likelihood function:

L(N ; ζ) =
N !

y0!
(1−

∑
ω

pω(ζ))
y0

∏
ω

pω(ζ)
yω

yω!

As shown in Sanathanan (1972), the likelihood can be factorised and expressed as

L(N ; ζ) = L1(N ;
∑
ω

pω(ζ))L2 (ζ) ,

where

L1(N ;
∑
ω

pω(ζ)) =
N !

(
∑
ω
yω)!y0!

(1−
∑
ω

pω(ζ))
y0(

∑
ω

pω(ζ))

∑
ω

yω

and

L2 (ζ) = (
∑
ω

yω)!
∏
ν

pν(ζ)
yν

yν !(
∑
ω
pω(ζ))yν

Maximizing L(N ; ζ) we obtain the unrestricted estimates of N , N̂U , and ζ, ζ̂. Yet, maximizing L1(N,
∑
ω
pω(ζ̂C))

where ζ̂C is the MLE of L2, we obtain a conditional estimate of N , N̂C . Sanathanan (1972) proves that (N̂U , ζ̂U ) and
(N̂C , ζ̂C) are both consistent estimators; hence, Fienberg (1972) suggests to use (N̂C , ζ̂C) to assess the appropriateness
of a given model.
The maximum likelihood estimator for NC is

N̂C =



∑
ω
yω

∑
ω
pω


 ,

where [.] stands for the the closest integer. After some algebraic manipulation, we get

N̂C =
∑
ω

yω + λ̂0

where, for any K,

λ̂0 =
Λ̂odd

Λ̂even

,

Λ̂odd (Λ̂even) being the product of all λ̂ω whose ω has an odd (even) number of elements. λ̂ω’s are the MLE’s obtained
from the incomplete contingency table, given by setting the expected values of the marginal totals corresponding to
the highest order interaction terms in the model equal to their observed value (see Fienberg (1972)). A confidence
interval can be computed relying either on the asymptotic normality of the estimator N̂ Bishop et al. (1975), or the
profile likelihood of N̂ (see Cormack (1992)).
The appropriateness of a given model can be assessed using either the Pearson’s Chi-squared or the likelihood ratio
statistics. Certainly, it is possible to use any information criterion, such as the Akaike or the Bayesian, as well.
However, notice that for small K and large number of model’s parameters the available degrees of freedom may be
very few (0 in case of K = 2 and independence model). Moreover, as proved by Regal and Hook (1991), it may
happen that more than one specification can fit the data perfectly, even with same number of parameters, giving very
different confidence intervals for the population size. Zhang (2019) proposes a model selection criterion based on a
so-called latent likelihood ratio which may help to select a model in cases of zero degrees of freedom.
Another limitation of Fienberg’s approach consists of the difficulty of including any information on the population’s
size that may be available a priori.
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(N̂C , ζ̂C) are both consistent estimators; hence, Fienberg (1972) suggests to use (N̂C , ζ̂C) to assess the appropriateness
of a given model.
The maximum likelihood estimator for NC is

N̂C =



∑
ω
yω

∑
ω
pω


 ,

where [.] stands for the the closest integer. After some algebraic manipulation, we get

N̂C =
∑
ω

yω + λ̂0

where, for any K,

λ̂0 =
Λ̂odd

Λ̂even

,

Λ̂odd (Λ̂even) being the product of all λ̂ω whose ω has an odd (even) number of elements. λ̂ω’s are the MLE’s obtained
from the incomplete contingency table, given by setting the expected values of the marginal totals corresponding to
the highest order interaction terms in the model equal to their observed value (see Fienberg (1972)). A confidence
interval can be computed relying either on the asymptotic normality of the estimator N̂ Bishop et al. (1975), or the
profile likelihood of N̂ (see Cormack (1992)).
The appropriateness of a given model can be assessed using either the Pearson’s Chi-squared or the likelihood ratio
statistics. Certainly, it is possible to use any information criterion, such as the Akaike or the Bayesian, as well.
However, notice that for small K and large number of model’s parameters the available degrees of freedom may be
very few (0 in case of K = 2 and independence model). Moreover, as proved by Regal and Hook (1991), it may
happen that more than one specification can fit the data perfectly, even with same number of parameters, giving very
different confidence intervals for the population size. Zhang (2019) proposes a model selection criterion based on a
so-called latent likelihood ratio which may help to select a model in cases of zero degrees of freedom.
Another limitation of Fienberg’s approach consists of the difficulty of including any information on the population’s
size that may be available a priori.
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3.2 Decomposable graphical models

With the aim of overcoming the aforementioned limitations of Fienberg (1972), Madigan and York (1997) pre-
sented the Bayesian approach to population size estimation problem which has deeply influenced the following litera-
ture. This approach is hierarchical log-linear models based, but it focuses only on a subset of such models, namely the
so-called decomposable graphical models. A statistical model is said to be graphical if it embodies a set of conditional
independence relationships which can be summarized by a graph. For the sake of clarity, we briefly introduce the basic
terminology of graph thoretic, mainly relying on Madigan and York (1995).

Define a graph as a pair G = (V,E), with V being a finite set of vertices and E being the set of edges, i.e. a subset
of V × V of ordered pairs of distinct vertices. In practise, the vertices represent the model’s variables and the edges
the dependence relations among them. A graphical model consists of a statistical model describing the conditional
independence relationships among variables via a graph. Two variables may be just correlated, or there might be a
casual relation between them. In the former case, both (Vi, Vj), (Vj , Vi) ∈ E, ∀ i, j and such edge is represented as a
plain line; Vi and Vj are said to be neighbours and the resulting is a graph so-called undirected. Yet, if (Vi, Vj) ∈ E
but (Vi, Vj) /∈ E, the edge is a directed arrow, and the graph is said to be directed. When all pairs of vertices are joined
by an edge, the graph is complete. A complete subset of the vertex set that is not contained in any other complete
subset is a maximal clique C. In an undirected graph, G = ∪g

i=1Cg , (C1, ..., Cg) is a perfect ordering of the cliques
when the vertices of each clique Ci also contained in previous cliques are all members of one previous clique only;
the sets Si = Ci ∩ (∪i−1

j Cj) are called clique separators. Figure 1 shows an undirected graph composed by two
cliques, C1 = {A2, A1} and C2 = {A1, A3}, whose ordering is perfect and where A1 is a separator. Now focus on
undirected graphs and define a path as a sequence V0, ..., Vn of distinct vertices such that (Vi, Vi−1) are neighbours for
all i = 1, ..., n. If V0 and Vn coincide, that path is said to be a cycle. An undirected graph is chordal when it contains
no cycles of four or more vertices without a chord, i.e. two non-consecutive vertices that are neighbours. Only if a
graph is chordal, it admits a perfect ordering of its cliques. A decomposable model is represented by an undirected
chordal graph.

Let us go back to log-linear models. With a little abuse of notation, let Ak be the variable indicating a unit’s presence
or absence in each of the K lists; allowing for all the pairwise interactions [A1A2]...[AK−1AK ] the resulting graph
would be a cycle, and there is no way to exclude the Kth-order interaction [A1...AK ]. Figure 2 shows this concept
in the case K = 3. It results that decomposable graphical models are only a subset of the log-linear models. Clearly,
limiting ourselves to the decomposable models is restrictive. However, the analysis of solely log-linear models that
can be represented as decomposable graphs is much more tractable from a computational point of view. Indeed, Dawid
and Lauritzen (1993) show that if a model is decomposable, the joint distribution can be factorized into a product of
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conditional distributions; following the notation in Di Cecco (2019):

pG =

g∏
i=1

pCi




g∏
j=2

pSj




−1

= pC1

g∏
i=2

pCi

pSi

= pC1

g∏
i=2

pCi|Si

where pCi (pSj ) is the marginal distribution of over the variables included in the ith clique (jth separator), and pCi|Si

is the conditional distribution of the ith clique given the relative separator. This way, both the maximization and the
integration tasks can be solved in closed form; see Dawid and Lauritzen (1993). Focusing on the Bayesian approach,
it is possible to set a prior distribution on cells probabilities which are conjugate with multinomial sampling, as proved
by Dawid and Lauritzen (1993). Particularly, a Dirichlet marginal distribution on the probability of each clique Ci, ρCi

must be placed following the perfect ordering of the cliques. Such prior distribution is the so-called hyper-Dirichlet.
To account for model uncertainty, Madigan and York (1997) suggests to average all posterior distributions of N
conditional on different models m weighted by their posterior model probabilities in order to obtain an unconditional
posterior distribution. On model averaging for graphical models see Madigan and Raftery (1994). An illustration of
the model in Madigan and York (1997) follows.
Indicate with M the class of possible models for the cell probabilities of the contingency table, indexed by M =
{1, 2, ..., s}. Define p(m) as being the vector of cell probabilities for each model m ∈ M.
Let y|N, θ,M = m be Multinomial with parameters (N,p(m)), where

• the prior on N might be

· π(N) ∝ 1
N , i.e. Jeffreys prior;

· π(N) ∝ 2− log∗(N), with log∗(N) is the sum of the positive terms in {log2(N), log2{log2(N)}, ...}, i.e.
the Rissanen’s prior;

· N ∼ Poisson(λ) and λ ∼ Gamma(a, b) if needed;

• the prior on M is Uniform, and

• p(m) ∼ hyper-Dirichlet, as stated before, with pC(m) ∼ Dirichlet(ρ) for each clique. As non-informative
choice, ρ is set equal to 1 or 1

2 .

The model has been implemented in the R package dga (Johndrow et al. (2015)). Considering decomposable models
only, all posterior distributions of N conditional on different model M could be easily calculated when K is low.
However, as K increases, the number of parameters grows exponentially; thus the calculation becomes cumbersome
and the model averaging impracticable. Madigan and York (1995) suggests to use Markov Chain Monte Carlo Model
Composition to approximate the average of the posterior distributions under each of the models. On the other hand,
Madigan and Raftery (1994) proposes to average over a small set of models, facilitating the communication of model
uncertainty (Madigan, Raftery, et al. (1994)). A completely different approach is suggested by Green (1995), that
introduces the reversible jump MCMC. The RJMCMC is a sampler able to move (“jump”) across different dimen-
sions’ parameters spaces, thus allowing to explore different dimensions’ models in a single chain. Dellaportas and
Forster (1999) and King and Brooks (2001) apply the RJMCMC to the log-linear models, going beyond the class of
decomposable graphical ones.
In the next subsection, we will review Bayesian hierarchical log-linear models for capture-recapture and give an insight
of the RJMCMC.

3.3 Bayesian log-linear models and the Reversible Jump sampler

Dealing with the decomposable class of graphical log-linear models from a Bayesian perspective requires a prior
specification for the cell probabilities. Yet, specifying a prior for the model parameters implies the possibility to go
beyond the decomposable model and take into account the broader class of log-linear ones.
Dellaportas and Forster (1999) and King and Brooks (2001) are the first main references for a detailed specification
of a fully Bayesian log-linear model. Nowadays, Overstall and King (2014a) is a widespread approach; mainly based
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choice, ρ is set equal to 1 or 1
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The model has been implemented in the R package dga (Johndrow et al. (2015)). Considering decomposable models
only, all posterior distributions of N conditional on different model M could be easily calculated when K is low.
However, as K increases, the number of parameters grows exponentially; thus the calculation becomes cumbersome
and the model averaging impracticable. Madigan and York (1995) suggests to use Markov Chain Monte Carlo Model
Composition to approximate the average of the posterior distributions under each of the models. On the other hand,
Madigan and Raftery (1994) proposes to average over a small set of models, facilitating the communication of model
uncertainty (Madigan, Raftery, et al. (1994)). A completely different approach is suggested by Green (1995), that
introduces the reversible jump MCMC. The RJMCMC is a sampler able to move (“jump”) across different dimen-
sions’ parameters spaces, thus allowing to explore different dimensions’ models in a single chain. Dellaportas and
Forster (1999) and King and Brooks (2001) apply the RJMCMC to the log-linear models, going beyond the class of
decomposable graphical ones.
In the next subsection, we will review Bayesian hierarchical log-linear models for capture-recapture and give an insight
of the RJMCMC.

3.3 Bayesian log-linear models and the Reversible Jump sampler

Dealing with the decomposable class of graphical log-linear models from a Bayesian perspective requires a prior
specification for the cell probabilities. Yet, specifying a prior for the model parameters implies the possibility to go
beyond the decomposable model and take into account the broader class of log-linear ones.
Dellaportas and Forster (1999) and King and Brooks (2001) are the first main references for a detailed specification
of a fully Bayesian log-linear model. Nowadays, Overstall and King (2014a) is a widespread approach; mainly based
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on Forster (2010), it is the main theoretical support of the popular R package conting3 (see also Overstall and King
(2014b)). Notice that these works mainly deal with general log-linear models; they can be easily adapted to capture-
recapture problems though. Below we outline a model common to the most recent literature on Bayesian log-linear
models, but plugging it in the particular framework of incomplete contingency tables. We mainly refer to Overstall
and King (2014b), dwelling on the differences when not negligible.
Following the notation of the previous sections, let yω be the number of population units count in cell ω. Moreover,

yω|φ,θ,m ∼ Poisson(λω)

log(λω) = φ+ dT
ωθ .

Then, introducing the model indicator m as in subsection 3.2 we obtain

log(λω) = φ+ dT
m,ωθm

that may be written in compact form as
log(λ) = (12K ,Dm)γm

where Dm is a the matrix whose rows are given by dm,ω , and γm = (φ,θm)T . As an alternative model for the data
counts we can also consider

y|N,θ,m ∼ Multinomial(N,p)

with p being the vector of pω’s, and each pω = λω∑
ω

λω
. Whatever the model specification, we need to specify the joint

prior
π(φ,θm,m) = π(φ,θm|m)π(m)

For the first factor, Overstall and King (2014b) follows Sabanés Bové and Held (2011) using the hyper-g prior, i.e. it
decomposes the joint prior on φ and θm as

π(φ,θm|m) = π(φ)π(θm|m)

with π(φ) ∝ 1, and
θm|σ2,m ∼ N(0,Σ)

Σ = σ2n(dT
mdm)−1

σ2 ∼ Inverse Gamma
(
a

2
,
b

2

)

Yet, it sets a Uniform prior over the model space, i.e.

π(m) =
1

|M|
=

1

s

Overstall, King, et al. (2014) proves that under the prior specifications depicted above and choosing the Jeffreys prior
for N , the joint posterior for θm, m and y0 are identical under Poisson or Multinomial models.
We report the presence of sensible differences with respect to the other references exclusively concerning the specifi-
cation of the variance-covariance matrix Σ.
We refer the reader to Dellaportas and Forster (1999) and King and Brooks (2001) for more details.
The joint posterior distribution results being

π(y0, φ,θm,m|y) ∝ π(y, y0|φ,θm,m)π(θm|σ2,m)π(σ2)π(m)

Updating y0 and σ2 from their full conditional distributions is straghtforward; yet, to simulate from the full conditional
distribution of the other parameters, Overstall and King (2014b) implements a RJMCMC algorithm.

Let m be the current model at iteration t; denote γ
(t)
m the current parameter vector.

3available from the CRAN at https://cran.r-project.org/web/packages/conting/index.html
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δA1 = 1 δA1 = 0

δA2 = 1 δA2 = 0 δA2 = 1 δA2 = 0

δA3 = 1
δA4 = 1 27 32 42 123

δA4 = 0 18 31 106 306

δA3 = 1
δA4 = 1 181 217 228 936

δA4 = 0 177 845 1131 ?

Table 4. Number of casualties during the conflict in Kosovo, March-June 1999. Ball et al. 2002

1. Propose a move from model m to model m′ ∈ M with probability πm,m′ . Typical jumps are those to models
with parameters’ dimension close to that of model m; in the case of log-linear models this is equivalent to limit
the moves to models with one more or one less interaction term. A move to model m itself is also allowed. If
m′ = m, the algorithm turns up being a Metropolis-Hastings, otherwise step 2 follows;

2. generate a vector of innovation variables um,m′ from a proposal distribution qm,m′(u);

3. apply a mapping function T to (γm,um,m′) to obtain γm′ ;

4. set γ(t+1) =

{
γm′ with probability α

γm with probability 1− α

where

α = min

{
1;

π(y, y0|γm′ ,m′)πm′,mqm′,m(um′,m)

π(y, y0|γ(t)
m ,m)πm,m′qm,m′(um,m′)

∣∣∣∣∣
∂T (γ

(t)
m , um,m′)

∂(γ
(t)
m , um,m′)

∣∣∣∣∣

}

See Green (1995) or Robert and Casella (2004) for more details. Clearly, the RJMCMC can be adapted to the restricted
class of decomposable models; see King and Brooks (2001).

Once simulated from the posterior distribution, model adequacy can be assessed via information criteria or via the
computation of the Bayesian p-value (see Gelman et al. (2004)), as in Overstall, King, et al. (2014).

4. A comparing example: killings in Kosovo

We compare the methods outlined in the previous section using the dataset reported in Ball et al. (2002) about
killings in Kosovo during the period March-June 1999. A total of 4400 deaths have been documented by four different
sources, i.e. the interviews conducted by the American Bar Association/Central and East European Law Initiative,
the exhumation reports produced on behalf of the International Criminal Tribunal for Former Yugoslavia, the Human
Rights Watch, and the Organization for Security and Cooperation in Europe. We refer to the sources as A1, A2, A3

and A4 respectively. The number of casualties recorded by the four sources is summarized in Table 4.
A decade after the conflict, the Humanitarian Law Center (HLC) has published a near-exhaustive list of victims (Hu-
manitarian Law Center (2014)) for the whole period 1998-2000. Manrique-Vallier (2016) uses these data to compute
the total number of casualties for the period considered by Ball et al. (2002), giving us a point of reference for the
“true” N , which results NHLC = 10401.
Ball et al. (2002) estimates N̂ for all possible hierarchical log-linear models, computing the confidence interval ac-
cording to the profile likelihood method of Cormack (1992). According to the adjusted Pearson Chi-square statistic,
the best model has one three-factor and two two-factor interaction terms, as shown in Table 5. The 95% confidence
interval contains NHLC . To obtain comparative estimates of the total number of casualties, we use the R packages
dga and conting implementing Madigan and York (1997) and Overstall and King (2014a) methods respectively. We
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Model N̂ 95% CI
Cormack 1992 [A1 A2 A4][A2 A3][A3 A4] 10356 (9002 12122)

Madigan and York 1997 – 11257 (9352 14318)
Overstall and King 2014 – 12672 (9888 15728)

Table 5. Killings in Kosovo: results

remind that, according to the former, N̂ represents the posterior mean of the unconditional posterior distribution of
N ; for the latter, N̂ is the posterior mean of a distribution sampled via a reversible jump algorithm. The results are
shown in Table 5. We decided to use the default priors when implementing these models, which are noninformative
priors. The credible intervals contain NHLC as well, but they are much wider than the confidence interval obtained
with Cormack (1992) method due to the fact that they incorporate the uncertainty linked to the model.

5. Dealing with out-of-scope units

The overcoverage issue has become relevant only recently, with the increase of the interest of the NSIs in the
production of statistics through data integration. Such problem naturally arises due to the fact that the aims of those
who collect the data and those who use them differ. Out-of-scope units cannot be ignored; the estimate would result
strongly biased otherwise. In the next subsections we show how the models discussed in the previous section have
since been extended to deal with the presence of latent out-of-scope units in the lists.

5.1 Log-linear models

In the log-linear models framework, Zhang (2015) addresses the overcoverage issue directly modelling the prob-
ability of being erroneously classified, i.e. the error rate. The author introduces two main alternatives to deal with
out-of scope units when K = 2, the first of which relies on the conditional independence assumption (CIA) at the base
of the standard log-linear models; we briefly discuss the details.
Consider the latent structure of a contingency table of two lists, both affected by overcoverage. Assume the cell counts
to be Multinomial with parameters N∗, defined as the sum of N and the captured out-of-target units, and pδUω . The
error rates {ξω}, where ξω = P (i /∈ U |i ∈ Aω), can be defined as functions of pδUω , i.e.

ξ12 =
p0{12}

p+{12}

ξ1 =
p0{1}

p+{1}

ξ2 =
p0{2}

p+{2}

Since we only observe x1, x2, x12, the vector pδUω can not be estimated without further assumptions. Hence, assume
that a coverage survey S exclusively affected by undercoverage is available and that its inclusion probability is equal
to τS ; also, let yS be the number of units listed in S and ySω be the number of units captured by both S and the set
of lists indexed by ω. Then, Zhang (2015) introduces a system of moment equations to model the observations as
function of the error rates:




E(yS12|x) = x12(1− ξ12)τS

E(yS1|x) = x1(1− ξ1)τS

E(yS2|x) = x2(1− ξ2)τS

E(yS0|x) = (E(N |x)− x12(1− ξ12)− x1(1− ξ1)− x2(1− ξ2))τS

(1)

The system is underidentified, due to the presence of four parameters in the first three equations; the additional un-
known in the fourth equation, E(N |x), can be derived given the estimates of the others. The idea is to impose a

112525



constraint on the ξω’s in order to make the system identifiable. Let us define a log-linear model for the pδUω’s; the
largest nonsaturated model will be

log(pδUω) = β + βδU + βA1
+ βA2

+ βδUA1
+ βδUA2

+ βA1A2

Now consider the logit of ξ12; after some algebra, it results

logit(ξ12) = logit(ξ1) + logit(ξ2) + p1{0} ;

the model above is said to be incidental since it introduces a constraint between the error rate and the population size,
thus it can not be taken into account. To overcome this issue, Zhang (2015) set a log-linear model for a transformation
of pδUω , namely qδUω =

pδUω

1−p1{0}
. Again, the error rate can be expressed as a function of the qδUω’s, i.e. ξω =

q0{ω}
p+{ω}

and logit(ξ12) becomes
logit(ξ12) = logit(ξ1) + logit(ξ2)

which is not an incidental model and makes the system (1) identifiable. For small ξω , logit(ξω) ≈ log(ξω); hence,

ξ12 = ξ1ξ2 . (2)

However, in case of good data quality and low error rates, it is reasonable to assume that the domain {12} is much
larger than both {1} and {2}, and that the error rate among the units in {12} is much lower than that in {1+} and
{+2}. Therefore, as an alternative to the previous model, Zhang (2015) suggests to express ξ12 as the product of the
marginal error rates rather than the cross-classified ones; in other words, it can be assumed that

P (i /∈ U |i ∈ A12) = P (i /∈ U |i ∈ A1+)P (i /∈ U |i ∈ A+2) ,

or
ξ12 = ξ1+ξ+2 . (3)

Contrarily to identity (2), the condition above can not be derived from a standard log-linear model, thus it does not rely
on the concept of conditional independence; Zhang (2015) calls that in (3) pseudo conditional independence (PCI)
assumption, whose concept is extended to the case of K ≥ 2 in Zhang (2019). The idea is to define a general log-linear
model for the marginal ξω+

log(ξω+) =
∑

ν∈Ω(ω)

logψν+

such that each unsaturated model corresponds to a different specification of the PCI assumption; e.g. the model
including none of the interaction terms corresponds to the mutual PCI between the marginal list domains. ξω is
estimated via ML; we refer the reader to Zhang (2019) for the details.

5.2 Decomposable graphical models

Di Cecco (2019) extends the decomposable model described in subsection 3.2 introducing a latent class (LC)
approach developed both from a frequentist and a Bayesian perspective - the latter proposed also in Di Cecco et al.
(2020).
There exists a vast literature on the use of LC models in the capture-recapture framework, particularly addressing the
heterogeneity problem; among others, see Agresti (1994), Bartolucci and Forcina (2001) and Bartolucci and Pennoni
(2007). The first dealing with erroneous enumeration using LC models were Biemer, Brown, Judson, and Wiesen
(2001), followed by Biemer, Woltmann, et al. (2001) and Biemer, Brown, and Judson (2004). Such strand of literature
has led to frame the identifiability problems arising in this context, highlighting the fact that at least four lists are
needed to estimate any LC model that include interactions among lists; see Brown et al. (2004) and Biemer (2011) for
further details.
Here we describe the approach by Di Cecco (2019) mainly because of its computational advantages.

Recalling the notation in section 2, define xδA as the number of observed units with capture history δA. Introduce
the latent class δU ; let xδUδA be the number of observed units with capture history δA belonging (δU = 1) or not
(δU = 0) to the target population. Coherently with the notation introduced, we may also rename x1δA = yδA , and
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constraint on the ξω’s in order to make the system identifiable. Let us define a log-linear model for the pδUω’s; the
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+ βA2

+ βδUA1
+ βδUA2

+ βA1A2
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pδUω

1−p1{0}
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q0{ω}
p+{ω}
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∑

ν∈Ω(ω)

logψν+
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x0δA = rδA . The objective is to estimate N =
∑
δA

yδA + y0.

The class of model considered can be expressed as

pδA =
∑
δU

pδU pδA|δU

Restrict the interest to decomposable model only. Since the latent variable δU interacts with all other variables, the
likelihood in subsection 3.2 can be written as

pG = pδU pC1|δU

g∏
i=2

pCi|Si
.

Such likelihood function may be maximized via EM algorithm (see Di Cecco (2019) for a detailed description) or used
to compute population size’s posterior distribution in a fully Bayesian analysis. In the latter case, the prior specification
is similar to that described in section 3.2; it is sufficient to add a Beta prior on pδU . MCMC methods can be used to
sample from the posterior distribution; in particular, a Gibbs sampler is appropriate in case of Jeffreys prior on N , a
Metropolis-within-Gibbs is needed otherwise.

5.3 Bayesian log-linear models

The last approach to overcoverage we analyse is that in Overstall, King, et al. (2014), which is proposed also in
Overstall and King (2014b) as an extension of the basic model. Assume that J < K lists enumerate also units that
are not part of the target population. For those cells ω affected by overcoverage, yω can be seen as the true value of
a left censored cell count, since only its upper bound is observed, i.e. xω . Let y indicate the vector of counts such
that xω = yω; let xc and yc be the vectors of observed counts and number of population units respectively such that
yω < xω (c stands for censored). Recall the joint posterior introduced in subsection 3.3; now it becomes

π(y0,y
c, φ, θm, σ2,m|y,xc) ∝ π(y, y0,y

c|φ, θm,m)π(xc|yc)π(θm|σ2,m)π(σ2)π(m)

The additional step to include in the algorithm relative to the model described in subsection 3.3 is the sampling of the
latent true count for those ω’s affected by overcoverage;

ycω|φ, θm, xc
ω,m ∼ Truncated Poisson(λω, x

c
ω)

6. Comparing examples with simulated data

As for the general capture-recapture setting, we may want to compare the methods described in the previous
section. Nevertheless, while the three models introduced in the general framework are applicable to the same context
and aim at the same objective, the models proposed for facing the overcoverage issue differ in their motivations.
E.g. the idea behind the strand of LC models for capture-recapture is to identify the different behaviors of different
(sub)populations captured in the same occasions in order to reliably estimate the size of the population of interest. In
Overstall, King, et al. (2014) the cross-classified overcount can be seen as a noise, a measurement error deriving from
no specific underlying behavior; yet Zhang (2019) models the erroneous enumerations relying on the goodness of data.
Moreover, Zhang (2019) models a situation in which all the sources - at least two - are affected by overcoverage but
the enumeration survey, whereas in Overstall, King, et al. (2014) a maximum number of cell counts with erroneous
enumeration is defined depending on the total number of observations, to preserve the identifiability of the model. For
the same reason, LC models with less than four lists can be estimated only if local independence is assumed.

Having this premise in mind, in the next paragraphs we present two different simulated scenarios and for each of them
we compare the models described in section 5 to see how different assumptions impact the results. The first scenario
simulates the situation in which the sources are homogeneously affected by the presence of erroneous enumeration; the
second scenario is the (typical) case in which a post-enumeration survey is conducted in order to assess the goodness
of administrative lists in covering the target population and the data quality of such lists is pretty good.
We follow the frequentist approach in the estimation of the decomposable graphical models (see Di Cecco (2019)).
The estimates for Overstall, King, et al. (2014) model are obtained using the R package conting (see Overstall and
King (2014b)).
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δA1 = 1 δA1 = 0

δA2 = 1 δA2 = 0 δA2 = 1 δA2 = 0

δA3 = 1

δA4 = 1
δU = 1 25 40 22 446

δU = 0 74 30 25 55

δA4 = 0
δU = 1 148 245 134 2697

δU = 0 200 81 67 148

δA3 = 0

δA4 = 1
δU = 1 164 270 148 2981

δA4 = 0 148 60 49 110

δA4 = 0
δU = 1 992 1636 898 18034

δU = 0 403 164 134

Table 6. Data from scenario 1

Model N̂
∑
ω
ŷω

Di Cecco 2019 - [XA1A2][XA3][XA4] 28943 10903
Zhang 2019; error free list - A4 19238 9599

Overstall, King et al. 2014 - [A1A2][A1A3][A1A4][A2A3][A2A4][A3A4] 28428 27925

True values 28880 10846

Table 7. Results from scenario 1

6.1 Scenario 1: capturing two groups

First we generate the contingency table in Table 6 from a decomposable graphical LC model [XA1A2][XA3][XA4].
The coverage rates of lists A1, A2, A3, A4 are set to be between 9% and 15%, yet their marginal error rates are equal to
0.25, 0.3, 0.15 and 0.12 respectively; the target population size N amounts to 28880 and the number of units captured
by the four sources is equal to 30927.
We compare the estimates obtained via the EM algorithm for capture-recapture LC models by Di Cecco (2019) using
the true data model with those obtained using Zhang (2019) algorithm and the R package conting; Table 7 shows the
best results in terms of AIC or Bayesian p-value. For Zhang (2019) we indicate which of the sources is preferred as
being the error free source, whereas for Overstall, King, et al. (2014) the maximal model we fixed.

In this scenario, the PCI based model from Zhang (2019) performs poorly in terms of y0 estimation, whatever the
choice of the error free list. However, it is good in detecting the amount of out of scope units in the sample; according
to the information criterion, such model best performs assuming list A4 to be the overcoverage free source, which is
in fact the list with the lowest error rate. On the other hand, for the Bayesian log-linear model by Overstall, King,
et al. (2014) the population size estimate improves as the number of interaction terms included in the maximal model
increases, regardless of which cells are censored. Note that to include at least all the two-ways interactions, the number
of censored cells can not be more than three; the best performing model allows for the censoring of cells (x1, x2).
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ŷω

Di Cecco 2019 - [XA1A2][XA3][XA4] 28943 10903
Zhang 2019; error free list - A4 19238 9599

Overstall, King et al. 2014 - [A1A2][A1A3][A1A4][A2A3][A2A4][A3A4] 28428 27925

True values 28880 10846

Table 7. Results from scenario 1

6.1 Scenario 1: capturing two groups

First we generate the contingency table in Table 6 from a decomposable graphical LC model [XA1A2][XA3][XA4].
The coverage rates of lists A1, A2, A3, A4 are set to be between 9% and 15%, yet their marginal error rates are equal to
0.25, 0.3, 0.15 and 0.12 respectively; the target population size N amounts to 28880 and the number of units captured
by the four sources is equal to 30927.
We compare the estimates obtained via the EM algorithm for capture-recapture LC models by Di Cecco (2019) using
the true data model with those obtained using Zhang (2019) algorithm and the R package conting; Table 7 shows the
best results in terms of AIC or Bayesian p-value. For Zhang (2019) we indicate which of the sources is preferred as
being the error free source, whereas for Overstall, King, et al. (2014) the maximal model we fixed.

In this scenario, the PCI based model from Zhang (2019) performs poorly in terms of y0 estimation, whatever the
choice of the error free list. However, it is good in detecting the amount of out of scope units in the sample; according
to the information criterion, such model best performs assuming list A4 to be the overcoverage free source, which is
in fact the list with the lowest error rate. On the other hand, for the Bayesian log-linear model by Overstall, King,
et al. (2014) the population size estimate improves as the number of interaction terms included in the maximal model
increases, regardless of which cells are censored. Note that to include at least all the two-ways interactions, the number
of censored cells can not be more than three; the best performing model allows for the censoring of cells (x1, x2).
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δA1 = 1 δA1 = 0

δA2 = 1 δA2 = 0 δA2 = 1 δA2 = 0

δA3 = 1

δA4 = 1
δU = 1 768 5474 164 1145

δU = 0 0 0 6 380

δA4 = 0
δU = 1 3660 3703 711 721

δU = 0 0 0 172 2259

δA3 = 0

δA4 = 1
δU = 1 4563 4951 843 1006

δU = 0 0 0 403 1696

δA4 = 0
δU = 1 4112 1659 834 343

δU = 0 0 0 1372

Table 8. Data from scenario 2

6.2 Scenario 2: post-enumeration survey and accurate administrative data

Table 8 summarizes the capture histories of 40945 units during four capture occasions. A1 is an error free source
with a high population coverage rate, equal to 0.83, whereas the others are affected by the presence of erroneous
enumerations, with marginal error rates set to be between 10% and 15%, with a total of 6288 out-of-target units.
Since a post-enumeration survey should capture target units uniformly, we assume A1 to be independent from the
other sources, but lists A2, A3 and A4 target captures are dependent on each other, i.e. the target counts in Table 8
are generated from the log-linear model [A1][A2A3A4]. Counts of out-of-scope units are added such that the error
rates domains {23+}, {24+} and {34+} are smaller than {2+}, {3+} and {4+} and larger than {234+}; moreover,
cross-sectional error rates are much bigger than their respective marginal ones. We estimate the population size
implementing the three models described in section 5; results are shown in Table 9.

Zhang (2019) algorithm correctly detects list A1 as the error free source, although it overestimates the number of
out-of-target units. Nevertheless, it performs well in the estimation of y0. On the other hand, Overstall, King, et
al. (2014) overestimates both the number of out-of-target units and y0, despite it recognizes the true data model; in
this case it allows for the censoring of cells (x2, x3, x4, x23, x24, x34). Concerning the LC model, we experimented
the functioning of the EM algorithm in Di Cecco (2019) allowing for the interaction between the latent variable and
list A1; results are far from the true values. Hence, we split the estimation procedure in two steps. Firstly the EM
for LC in capture-recapture is implemented considering the lists affected by erroneous enumeration only; given the
identifiability problems previously discussed, we are constrained to the local independence model, i.e. A2, A3 and
A4 are set to be independent given the latent variable. Then, we use the vector ŷ to get an estimate of y0 fitting a
log-linear model. Here, the main issue consists of the impossibility to compare (or average) different models and to
allow for the manifest variables’ interaction; this leads to the underestimation of the number of out-of-scope units.

7. Conclusions

In this paper we reviewed the main and most recent literature dealing with the population size estimation problem,
with an insight on the overcoverage issue. Nevertheless, we do not claim to be exhaustive. Many methodological
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Model N̂
∑
ω
ŷω

Di Cecco 2019 - local independence 37291 36876
Zhang 2019 - error free list: A1 33345 33089

Overstall, King et al. 2014; [A1][A2A3A4]: 35258 33807

True values 34657 34314

Table 9. Results from scenario 1

N̂ 95% CI
HLC count 10401 –

Manrique-Vallier 2016 10442 (9020 13637)
Ball et al. 2002 [A1 A2 A4][A2 A3][A3 A4] 10356 (9002 12122)

Table 10. Killings in Kosovo: Manrique-Vallier 2016 results

issues that have not been covered in this paper deserves attention. Among them, how to include available covariates in
the model is one of the most interesting. See Part III of Böhning et al. (2018) for some recent advances. Furthermore,
in real applications the assumptions at the basis of log-linear models introduced in section 3.1 may not hold. On the
one hand, there might be heterogeneity in the population, i.e. the capture probabilities vary among individuals. On the
other hand, it may occur that the captured units are not uniquely labelled across the multiple lists.

The latter case, i.e. the lack of unique labelling, implies a non-exact match of the units observed in multiple lists, and
hence a potential overestimation of the population of interest; in this framework, linkage uncertainty must be taken into
account. Di Consiglio, Tuoto, and Zhang (2019) reviews some of the approaches taking into account such uncertainty
in the population size estimation procedure, from natural extensions of Fienberg (1972) model (see Di Consiglio and
Tuoto (2018)), to fully Bayesian models as that in Tancredi and Liseo (2011). A unique labelling may miss within the
sources as well, implying the presence of duplicates in some lists; see Tancredi, Steorts, et al. (2019) for an approach
to this kind of issue.

The former case includes scenarios in which heterogeneity is either due to some measurable attributes, e.g. sex, age,
or given by some unmeasurable characteristics (Johnson et al. (1986)). If the source of heterogeneity is known and
the attributes are recorded in the available data, a convenient strategy is to stratify the population to obtain different
homogeneous groups. Otherwise, literature offers a variety of methods to address the issue. Among them, we cite
Fienberg et al. (1999), which encompasses the log-linear models and the Rasch model (Rasch (1960)) in a fully
Bayesian hierarchical framework. Moreover, the latent variable approach described in subsection 5.2 can be easily
adapted to the heterogeneity problem; actually, in Di Cecco (2019) and Di Cecco et al. (2020) the mixture model is
allowed to have more than two components.

A nonparametric Bayesian approach dealing with population heterogeneity in capture-recapture experiments can be
found in Manrique-Vallier (2016). The underlying idea is that, in case of heterogeneous population and in the absence
of covariates allowing to appropriately stratify the sample, it is convenient to assume that the population may be
partitioned into an unknown number of homogeneous strata within which the independence model holds. In this case,
the generating mechanism of the capture vectors consists of a general capture-recapture Multinomial model in which
the probability mass function of each capture vector is a Dirichlet-process mixture of product-Bernoulli distributions.
Indeed, letting the weights of the mixture be generated from a stick-breaking process allows to avoid the specification
of the number of mixture components in advance; the identification of the number of homogeneous groups within the
heterogeneous population occurs in an unsupervised way. Manrique-Vallier (2016) applies the nonparametric latent
class model to the data killings in Kosovo shown in section 4, and it results to perform very well. The point estimate
of N is incredibly close to the count NHLC . See Table 6 to compare Manrique-Vallier (2016) results to the real
count of casualties and to the best model in Ball et al. (2002). We refer the reader to Manrique-Vallier (2016) for
model’s details. From the same author, and specifically for casualties estimation in capture-recapture experiments,
see Manrique-Vallier et al. (2019). Yet, for a review of most of the literature on heterogeneous animal populations in
capture-recapture models, see Gimenez et al. (2018).
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of covariates allowing to appropriately stratify the sample, it is convenient to assume that the population may be
partitioned into an unknown number of homogeneous strata within which the independence model holds. In this case,
the generating mechanism of the capture vectors consists of a general capture-recapture Multinomial model in which
the probability mass function of each capture vector is a Dirichlet-process mixture of product-Bernoulli distributions.
Indeed, letting the weights of the mixture be generated from a stick-breaking process allows to avoid the specification
of the number of mixture components in advance; the identification of the number of homogeneous groups within the
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