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Diego Battagliese∗

Extensions of the Univariate PC Prior

Abstract. In the present paper, we describe and explore new methods for constructing joint penalised complexity prior distributions, 
PC priors hereafter, on the additive model components that build up a more flexible model starting from a base model which would 
not include those components. Although, an extension to the multivariate case has been already proposed, it is difficult to handle, 
especially in high-dimensional problems. So, we need something more manageable, particularly for computational purposes. 
We propose two different constructions of the multivariate PC prior, one based on the conditional PC prior distributions via the 
Hammersley-Clifford theorem, the other one based on the marginal PC prior distributions by means of a copula approach.

Keywords: Multivariate PC prior, Hammersley-Clifford theorem, Copula modeling, Gaussian copula.

1. Introduction

Penalised complexity priors have been proposed by Simpson, Rue, Riebler, Martins and Sørbye (2017). As
pointed out by Simpson et al. (2017), in the univariate case the prior is formulated by means of the penalisation of the
distance between two nested models and through the injection of a user-sensible perception about a tail event. The
introduction of the belief about the tail event seems to lead to a subjective prior, even though we could control the
information to be introduced into the prior by selecting a value for the hyperparameter of the PC prior in order to make
it as uninformative as possible. The distance between the two models is penalised by assigning to it an exponential
distribution whose rate parameter constitutes the shrinking parameter that establishes the informativeness of the PC
prior. Here, we are not claiming that PC priors are objective, even though they could be more easily seen as weakly
informative priors, but we are just saying that they are objective in the sense that they are principled, say they are
constructed on the basis of a well known machinery. For a general review of objective priors see Consonni, Fouskakis,
Liseo and Ntzoufras (2018).
Among the main advantages of these priors we can mention the invariance with respect to reparameterisations, that
makes these priors close to Jeffreys’ priors, they invoke the Occam’s razor principle, preferring simplicity over com-
plexity, and have good robustness properties. In addition, the connection with the Jeffreys’ prior is not only given by
the invariance with respect to reparameterisation, but, in general, for certain values of the shrinkage parameter, the PC
prior approaches the Jeffreys’ one.
Another relevant feature is that, in several models, PC priors are invariant with respect to the other parameters lying
both in the base and the complex models, and in practice only the additional model component matters. This is a direct
consequence of the Kullback-Leibler divergence we use to derive the prior as, in most of the cases, it does not depend
on other parameters that are not of interest. An example of such an invariance is related to location-scale models. The
latter property is very important because it allows us to derive a separable prior on the additional model component
without the need of building a joint prior on the composite parameter vector.
Simpson et al. (2017) focus on the class of hierarchical models, where an unobserved latent structure is added by
means of a set of model components. Such perspective is the building block which the penalised complexity priors are
based on, since it requires the definition of a base model. The choice of the base model is not univocal as it demands
the user to define the simplest model for the problem at hand. Nonetheless, the prior mass at the base model should
not be zero in order to avoid the prior to overfit. The prior does not overfit when the prior mass at the base model is
non zero, otherwise we would incur in posterior distributions that give no evidence to the base model, even when it
is the true one, and as a consequence, we would not be able to understand whether the evidence for the more flexible
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model come from the data or it is just induced by the prior distribution.
Here, we consider, as a base model, the one such that a particular value of the flexibility parameter ξ makes the com-
ponent to disappear from the base model. The concept of base model finds natural connection to the hypothesis testing
problem. Indeed, when introducing an additive model component we just wonder if such a component should or
should not be included in the model. This means that PC priors can play an important role in the Bayesian hypothesis
testing, especially when one wants to use objective priors like Jeffreys’ priors that most of the times are not integrable
and then could lead to the Jeffreys-Lindley’s paradox. In fact, PC priors are proper by construction and this allows
their general use in testing problems.

2. The principled construction of the univariate PC prior

Simpson et al. (2017) defined four basic principles behind the construction of a PC prior for ξ.

• Occam’s Razor. Simpler model formulation is preferred until there is enough support for a more complex
model. The PC prior is meant to penalise deviations from a base model. Here, one could debate the choice
of the base model; for instance, choosing as a base model an arbitrary value of ξ in the parameter space Ξ
is plausible. We want to remark that the base model should be viewed as the model where the additional
component ξ is absent, even though nothing prevents us to choose a different base model coming from our
belief about it.

• Measure of Complexity. The increased complexity is measured by the Kullback-Leibler divergence

KLD(f‖g) =
∫

X
f(x; ξ) log

(
f(x; ξ)

g(x)

)
dx, (1)

where g(x) = f(x; ξ = ξ0), with ξ0 being a particular value of ξ that simplifies the model. The Kullback-
Leibler divergence is a measure of the information lost when g is used to approximate the density f . There-
fore, it is not a metric and to obtain a more interpretable distance scale, it is transformed into d(f‖g) =√
2KLD(f‖g).

• Constant Rate Penalisation. A constant decay-rate r implies an exponential prior distribution on the distance
scale

πd(d+ ν)

πd(d)
= rν , d, ν ≥ 0 (2)

where πd(d) = θ exp(−θd) and r = exp(−θ). The penalisation of an additional distance ν does not depend on
the initial amount of distance d. Roughly speaking, the constant decay-rate means that we are equally penalising
each additional portion of distance in the parameter space; no matter the initial point where we are. This is a
reasonable choice in situations where we have not a clear idea about the distance scale. Also in this case,
nothing prevents us to make a different assumption on the distribution of the distance, but in this case we would
drop the constant penalisation rate assumption. At the best of our knowledge, the only continuous distribution
with this property is the exponential distribution, while in the discrete case, the geometric distribution share this
property as well.
We define the PC prior by means of a change of variable

π(ξ) = πd(d(ξ))

∣∣∣∣∣
∂d(ξ)

∂ξ

∣∣∣∣∣. (3)

• User-defined scaling. The parameter θ of the exponential prior can be chosen by making an assumption on a
tail event

Prob(Q(ξ) > W ) = α. (4)

This is the crucial point of the principled procedure, since some choices of the hyperparameter can make the
prior unnecessarily or unintentionally very informative.
Anyhow, the choice of θ is a user task and this renders the PC prior close to a weakly informative prior. Notice
that Q(ξ) is a generic transformation of the parameter ξ, it could be for instance d(ξ) or ξ itself, while W is an
upper bound defined by the user and α is the weight we put on the tail event. By changing the prior mass in the
tail, we prescribe how informative the prior is.
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We would like to remark that there is also another principle embedded in the construction above. In particular, we could
obtain asymmetric versions of the PC prior by simply assigning different weights to sections of the parameter space
where the distance function is monotone. Let us think for instance of a complex model being a standard skew-normal
distribution, while the base model is represented by a standard normal. In this case the distance is not a one-to-one
function, rather it is symmetric around zero. So, by assigning half an exponential to each part of the parameter space
we would end up with a symmetric PC prior, otherwise we would have its asymmetric counterpart.
The asymmetric PC prior can be useful for instance in certain long memory processes where the user has a prior belief
in favour of a persistent or an anti-persistent process, like in the fractional Gaussian noise (Sørbye and Rue, 2016).

2.1 Multivariate case

Simpson et al. (2017) also proposed an extension of the univariate PC prior to the multivariate setting ξ, with
base model ξ = 0. The multivariate extension proposed by Simpson et al. (2017) preserves all the features of the
univariate case. Given that many multivariate parameters spaces are not Rn, we will let M be a subset of a smooth
n-dimensional manifold.
First of all, assume that d(ξ) has a non-vanishing Jacobian. For each r ≥ 0, the level sets γ ∈ Sr = {ξ ∈ M : d(ξ) =
r} are a system of disjoint embedded submanifolds of M. Roughly speaking, the submanifolds Sr are the leaves of a
foliation. To better understand, consider, for instance, that in the bivariate case the KLD would be a sort of cone; so the
cone is cut in many slices where each slice has a uniform distribution. Hence the natural lifting of the PC prior concept
onto M is the prior that is exponentially distributed in d(ξ) and uniformly distributed on the leaves Sd(ξ). Then, we
should find a mapping ϕ(·) such that (d(ξ), ϕ(ξ)) = g(ξ). This mapping allows us to get a local representation for the
multivariate PC prior as

π(ξ) =
λ

|Sd(ξ)|
exp(−λd(ξ))| det(J(ξ))|, (5)

where Jij = ∂gi
∂ξj

is the Jacobian of g. Computational geometry tools can be used to approximately evaluate (5) in low
dimensions.
Anyhow, when the level sets are simplexes or spheres, exact expressions for the PC prior can be found. These situations
occur when d(ξ) is a linear or a quadratic function, i.e.

d(ξ) = h(bT ξ), b > 0, ξ ∈ Rn
+ (6)

or
d(ξ) = h(

1

2
ξTHξ), H > 0, ξ ∈ Rn, (7)

for some function h(·) satisfying h(0) = 0. The linear case is useful for deriving the PC prior for general correlation
matrices. Think for instance of a multivariate Gaussian copula where the marginals have different pair correlations, so
we can change the parameterisation and get the distance d(ξ) as a linear function.
In the linear case with b = 1, the PC prior is

π(ξ) = λ exp(−λd(ξ))
(n− 1)!

r(ξ)n−1
|h′(r(ξ))|, r(ξ) = h−1(d(ξ)), (8)

while in the quadratic case with H = I, the PC prior is

π(ξ) = λ exp(−λd(ξ))
Γ
(
n
2 + 1

)

nπ
n
2 r(ξ)n−2

∣∣∣∣∣h
′
(
1

2
r(ξ)2

)∣∣∣∣∣, r(ξ) =
√

2h−1(d(ξ)). (9)

Anyhow, the general multivariate case for the PC prior is hard. In our opinion, there are some issues related to (5).
First of all, we want to compute a prior for many parameters but we have only one distance and the distribution we
assign to such a distance is a univariate exponential density function. Then, we should know the level sets Sr = {ξ ∈
M : d(ξ) = r} and their geometry, in order to define the local mapping ϕ(·) that allows us to build the Jacobian
matrix. In our opinion this latter is the most difficult part, especially from a computational point of view. Finally,
formula (5) is very difficult to compute for high dimensional models, apart from the cases where the distance function

33535



is linear or quadratic, so something easier to use is needed, especially for computational purposes.
In the next section we explore the construction of the multivariate PC prior via the Hammersley-Clifford theorem and
in the last section we propose to use a copula to connect the univariate PC priors. Anyhow, for orthogonal parameters
the multivariate PC prior is simply the product of univariate PC prior distributions.

3. The Hammersley-Clifford Theorem

An interesting property of the full conditionals, which the Gibbs sampler is based on, is that they fully specify the
joint distribution, as Hammersley and Clifford proved in 19701. Note that the set of marginal distributions does not
have this property.

Definition 1 (Positivity condition). A distribution with density f(x1, . . . , xp) and marginal densities fXi
(xi) is said

to satisfy the positivity condition if f(x1, . . . , xp) > 0 for all x1, . . . , xp with fXi
(xi) > 0.

The positivity condition thus implies that the support of the joint density f is the Cartesian product of the support
of the marginals fXi .

Theorem 1 (Hammersley-Clifford). Let (X1, . . . , Xp) have joint density f(x1, . . . , xp) which satisfies the positivity
condition. Then for all choices of (ε1, . . . , εp) ∈ supp(f)

f(x1, . . . , xp) ∝
p∏

j=1

fXj |X−j
(xj |x1, . . . , xj−1, εj+1, . . . , εp)

fXj |X−j
(εj |x1, . . . , xj−1, εj+1, . . . , εp)

. (10)

For the proof see Besag (1974).
Note that the Hammersley-Clifford theorem does not guarantee the existence of a joint probability distribution for
every choice of the conditionals (Johansen and Evers, 2007). In Bayesian modeling such problems mostly arise when
using improper prior distributions.
Our proposal is to derive the one-dimensional conditional PC priors and then check whether they are compatible to
create a joint PC prior.

3.1 Joint PC Prior for the bivariate Uniform model

As a first example consider a random vector having as a base model a Uniform distribution on the unit square
(
X

Y

)
∼ Unif [(0, 1)× (0, 1)] ,

while the more flexible model has random edges a and b less than or equal to 1

(
X

Y

)
∼ Unif [(0, a)× (0, b)] .

Here we confine ourselves to the case a, b ≤ 1 in order to avoid problems with the positive definiteness of KLD in
non-regular models.
Before applying the Hammersley-Clifford theorem we need to compute the full conditional PC priors. Let us compute
the conditional KLDs

KLD(a|b) =
∫ a

0

∫ b

0

1

ab
log

(
1

ab

)
dxdy = − log (ab) , (11)

where b is not a random variable, rather it is just a parameter with values between 0 and 1. For the sake of clarity,
notice that with abuse of notation we denote the conditional KLD in (11) like a conditional distribution, as it will be

1Hammersley and Clifford actually never published this result, as they could not extend the theorem to the case of non-positivity.
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turned into the prior for a, while b will represent just a parameter. Obviously, the same result holds when computing
the conditional KLD of b given the parameter a

KLD(b|a) =
∫ a

0

∫ b

0

1

ab
log

(
1

ab

)
dxdy = − log (ab) . (12)

Hence, the distances are the same

d(a|b) =
√
−2 log (ab) (13)

d(b|a) =
√
−2 log (ab) (14)

Now, it is easy to compute the conditional PC priors. Let us do it just once, since the same holds for the other full
conditional

πPC(a|b) = µe−µ
√

−2 log(ab)

∣∣∣∣∣−
2
a

2
√
−2 log (ab)

∣∣∣∣∣, (15)

where µ is the rate parameter of the exponential distribution assigned to the distance scale.
Then

πPC(a|b) = µ

a
e−µ

√
−2 log(ab) 1√

−2 log (ab)
. (16)

The prior for b given a with rate parameter θ is

πPC(b|a) = θ

b
e−θ

√
−2 log(ab) 1√

−2 log (ab)
. (17)

Suppose to set (ε1, ε2) = (a∗, b∗) =
(
1
2 ,

1
2

)
, then according to the Hammersley-Clifford theorem the joint density can

be written as

πPC(a, b) ∝ πPC(a|b∗) · πPC(b|a)
πPC(a∗|b∗) · πPC(b∗|a)

(18)

=

µ
a e

−µ
√

−2 log( a
2 ) 1√

−2 log( a
2 )

· θ
b e

−θ
√

−2 log(ab) 1√
−2 log(ab)

2µe
−µ

√
−2 log( 1

4 ) 1√
−2 log( 1

4 )
· 2θe−θ

√
−2 log( a

2 ) 1√
−2 log( a

2 )

∝ 1

ab
e
−(µ−θ)

√
−2 log( a

2 )e−θ
√

−2 log(ab) 1√
−2 log (ab)

. (19)

The choice of µ = θ = λ will provide a symmetric prior

πPC(a, b) ∝ 1

ab
exp

(
−λ

√
−2 log (ab)

) 1√
−2 log (ab)

. (20)

Let us study the behaviour of the prior at the boundaries of the parameter space

if a, b → 1




1
ab → 1

exp
(
−λ

√
−2 log(ab)

)
→ 1

1√
−2 log(ab)

→ ∞
; (21)

on the other hand

if a, b → 0





1
ab → ∞
exp

(
−λ

√
−2 log(ab)

)
→ 0

1√
−2 log(ab)

→ 0

. (22)
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The Hammersley-Clifford construction poses two questions. The first one is related to the positiveness of the resulting
joint distribution, while the second one is related to its integrability.
Let us integrate the density in (20)

∫ 1

0

∫ 1

0

exp
(
−λ

√
−2 log(ab)

)

ab
√
−2 log(ab)

dadb =
1

λ3
, (23)

so, the proper joint PC prior should be written as

πPC(a, b) =
λ3

ab
exp

(
−λ

√
−2 log (ab)

) 1√
−2 log (ab)

. (24)

Finally, both the conditions are satisfied. This means that the aforementioned construction makes sense for the bivariate
Uniform model.

3.2 PC Prior for the mean vector of the bivariate Normal distribution

As a second example, let us consider the PC prior for the vector of the means in the bivariate Gaussian distribution,
where the covariance matrix is assumed to be the identity matrix.
Therefore, suppose to have the base model

f0(x, y) =
1

2π
e−

1
2 (x

2+y2), (25)

and the more flexible model given by the introduction of the mean parameters µx and µy

f1(x, y) =
1

2π
e−

1
2 [(x−µx)

2+(y−µy)
2]. (26)

Then, the Kullback-Leibler divergence between the two models is

KLD(f1‖f0) =
∫∫

R2

1

2π
e−

1
2 [(x−µx)

2+(y−µy)
2] log

(
e−

1
2 [(x−µx)

2−x2+(y−µy)
2−y2]

)
dxdy, (27)

or equivalently

KLD(µx, µy) =

∫∫

R2

1

2π
e−

1
2 [(x−µx)

2+(y−µy)
2]
(
−1

2

[
µ2
x − 2xµx + µ2

y − 2yµy

])
dxdy. (28)

Notice that after integrating out x and y, the KLD above is just a function of the remaining parameters. In practice,
the arguments of the KLDs in (27) and (28) give rise to the same meaning. Now, we can write

KLD(f1‖f0) = −1

2
µ2
x − 1

2
µ2
y + µxE∼f1 [X] + µyE∼f1 [Y ]

= −1

2
µ2
x − 1

2
µ2
y + µ2

x + µ2
y

=
µ2
x + µ2

y

2
. (29)

Notice that the KLD has the same expression both for µx given µy and for µy given µx. In fact, when we consider
either µx or µy as a parameter, the KLD is just a function of the other random variable.
It follows that the distance is

d(µx, µy) =
√

µ2
x + µ2

y. (30)

Let us compute now the conditional PC prior for µx given µy

πPC(µx|µy) =
λx

2
exp

(
−λx

√
µ2
x + µ2

y

) 1

2
√
µ2
x + µ2

y

2|µx|

=
λx

2
exp

(
−λx

√
µ2
x + µ2

y

) |µx|√
µ2
x + µ2

y

. (31)
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The Hammersley-Clifford construction poses two questions. The first one is related to the positiveness of the resulting
joint distribution, while the second one is related to its integrability.
Let us integrate the density in (20)

∫ 1

0

∫ 1

0

exp
(
−λ

√
−2 log(ab)

)

ab
√
−2 log(ab)

dadb =
1

λ3
, (23)

so, the proper joint PC prior should be written as

πPC(a, b) =
λ3

ab
exp

(
−λ

√
−2 log (ab)

) 1√
−2 log (ab)

. (24)

Finally, both the conditions are satisfied. This means that the aforementioned construction makes sense for the bivariate
Uniform model.

3.2 PC Prior for the mean vector of the bivariate Normal distribution

As a second example, let us consider the PC prior for the vector of the means in the bivariate Gaussian distribution,
where the covariance matrix is assumed to be the identity matrix.
Therefore, suppose to have the base model

f0(x, y) =
1

2π
e−

1
2 (x

2+y2), (25)

and the more flexible model given by the introduction of the mean parameters µx and µy

f1(x, y) =
1

2π
e−

1
2 [(x−µx)

2+(y−µy)
2]. (26)

Then, the Kullback-Leibler divergence between the two models is

KLD(f1‖f0) =
∫∫

R2

1

2π
e−

1
2 [(x−µx)

2+(y−µy)
2] log

(
e−

1
2 [(x−µx)

2−x2+(y−µy)
2−y2]

)
dxdy, (27)

or equivalently

KLD(µx, µy) =

∫∫

R2

1

2π
e−

1
2 [(x−µx)

2+(y−µy)
2]
(
−1

2

[
µ2
x − 2xµx + µ2

y − 2yµy

])
dxdy. (28)

Notice that after integrating out x and y, the KLD above is just a function of the remaining parameters. In practice,
the arguments of the KLDs in (27) and (28) give rise to the same meaning. Now, we can write

KLD(f1‖f0) = −1

2
µ2
x − 1

2
µ2
y + µxE∼f1 [X] + µyE∼f1 [Y ]

= −1

2
µ2
x − 1

2
µ2
y + µ2

x + µ2
y

=
µ2
x + µ2

y

2
. (29)

Notice that the KLD has the same expression both for µx given µy and for µy given µx. In fact, when we consider
either µx or µy as a parameter, the KLD is just a function of the other random variable.
It follows that the distance is

d(µx, µy) =
√
µ2
x + µ2

y. (30)

Let us compute now the conditional PC prior for µx given µy

πPC(µx|µy) =
λx

2
exp

(
−λx

√
µ2
x + µ2

y

) 1

2
√
µ2
x + µ2

y

2|µx|

=
λx

2
exp

(
−λx

√
µ2
x + µ2

y

) |µx|√
µ2
x + µ2

y

. (31)
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Figure 1. Joint PC prior for the mean vector of a bivariate Gaussian density, where λ = 0.1.

Equivalently, the PC prior for µy given µx is

πPC(µy|µx) =
λy

2
exp

(
−λy

√
µ2
x + µ2

y

) |µy|√
µ2
x + µ2

y

. (32)

Finally, we have all the ingredients to apply the Hammersley-Clifford theorem

πPC(µx, µy) ∝
πPC(µx|µ̃y) · πPC(µy|µx)

πPC(µ̃x|µ̃y) · πPC(µ̃y|µx)

=

λx

2 e−λx

√
µ2
x+µ̃2

y |µx|√
µ2
x+µ̃2

y

· λy

2 e−λy

√
µ2
x+µ2

y
|µy|√
µ2
x+µ2

y

λx

2 e−λx

√
µ̃2
x+µ̃2

y |µ̃x|√
µ̃2
x+µ̃2

y

· λy

2 e−λy

√
µ2
x+µ̃2

y
|µ̃y|√
µ2
x+µ̃2

y

∝ |µxµy|√
µ2
x + µ2

y

e−λx

√
µ2
x+µ̃2

y+λy

√
µ2
x+µ̃2

y−λy

√
µ2
x+µ2

y . (33)

Now, let us assume, for simplicity, λx = λy = λ, then

πPC(µx, µy) ∝
|µxµy|√
µ2
x + µ2

y

e−λ
√

µ2
x+µ2

y . (34)

Figure 1 shows the joint PC prior obtained via the Hammersley-Clifford theorem, where the rate parameter λ is set
equal to 0.1. We may notice that the Hammersley-Clifford construction makes the joint PC prior similar to a non-local
prior (Johnson and Rossell, 2010).
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Figure 2. Joint PC prior in terms of the polar coordinates, ϕ and r, for the mean vector of a bivariate normal density,
where λ = 0.1.

Alternatively, we can express the parameterization in terms of the polar coordinates



µx = r cosϕ

µy = r sinϕ

µ2
x + µ2

y = r2
(35)

so that our prior can be written as

πPC(r, ϕ) ∝ r2| sinϕ cosϕ|
r

exp(−λr)

= r exp(−λr)| sinϕ cosϕ|, (36)

where r exp(−λr) ∝ Gamma(r|ν = 2, λ). Figure 2 shows the same PC prior with the parameterisation in terms of
the polar coordinates, where ϕ ∈ (0, 2π) and r ∈ (0, 10); even in this case the rate parameter λ = 0.1.

3.3 PC Prior in the bivariate Skew-Normal model

As a third example, consider the bivariate skew-normal model. The scalar skew-normal density can be extended
to the d-dimensional case by considering the following density function (Azzalini and Capitanio, 1999)

fd(x; Ω, α) = 2φd(x; Ω)Φ(α
Tx), x ∈ Rd, (37)

where Ω is a positive-definite d× d correlation matrix, φd(x; Σ) is the density function of a Nd(0,Σ) variate and α is
a d-dimensional vector parameter.
To make the multivariate skew-normal more concrete we have a closer look at the bivariate skew-normal distribution.
From equation (37), we define the bivariate skew-normal as

f(x1, x2;α1, α2, ω) = 2φ2(x1, x2;ω)Φ(α1x1 + α2x2), (38)
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Figure 2. Joint PC prior in terms of the polar coordinates, ϕ and r, for the mean vector of a bivariate normal density,
where λ = 0.1.

Alternatively, we can express the parameterization in terms of the polar coordinates



µx = r cosϕ

µy = r sinϕ

µ2
x + µ2

y = r2
(35)

so that our prior can be written as

πPC(r, ϕ) ∝ r2| sinϕ cosϕ|
r

exp(−λr)

= r exp(−λr)| sinϕ cosϕ|, (36)

where r exp(−λr) ∝ Gamma(r|ν = 2, λ). Figure 2 shows the same PC prior with the parameterisation in terms of
the polar coordinates, where ϕ ∈ (0, 2π) and r ∈ (0, 10); even in this case the rate parameter λ = 0.1.

3.3 PC Prior in the bivariate Skew-Normal model

As a third example, consider the bivariate skew-normal model. The scalar skew-normal density can be extended
to the d-dimensional case by considering the following density function (Azzalini and Capitanio, 1999)

fd(x; Ω, α) = 2φd(x; Ω)Φ(α
Tx), x ∈ Rd, (37)

where Ω is a positive-definite d× d correlation matrix, φd(x; Σ) is the density function of a Nd(0,Σ) variate and α is
a d-dimensional vector parameter.
To make the multivariate skew-normal more concrete we have a closer look at the bivariate skew-normal distribution.
From equation (37), we define the bivariate skew-normal as

f(x1, x2;α1, α2, ω) = 2φ2(x1, x2;ω)Φ(α1x1 + α2x2), (38)
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Figure 3. Joint PC prior for the vector α of the bivariate skew-normal model, where the rate parameter λ = 1.

where ω is the off-diagonal element of Ω.
Figure 3 shows the joint PC prior, obtained via the Hammersley-Clifford theorem, for the vector α of the bivariate
skew-normal model. Notice that the prior must be numerically computed as the KLD has no closed form and it is
given by

KLD(α1, α2) =

∫ ∞

−∞

∫ ∞

−∞
2φ2(x)Φ(α1x1 + α2x2) log(2Φ(α1x1 + α2x2))dx1dx2. (39)

In order to apply the Hammersley-Clifford theorem, we need to compute the univariate conditional PC priors and
therefore we need to calculate the derivative of (39) both wrt α1 and α2, and to do that we use the Leibnitz’s rule, i.e.
we invert the integral and the derivative operators. In practice, we have

∂KLD(α1, α2)

∂α1
=

∫ ∞

−∞

∫ ∞

−∞
2φ2(x)φ(α1x1 + α2x2)x1 · (1 + log(2Φ(α1x1 + α2x2)))dx1dx2, (40)

and
∂KLD(α1, α2)

∂α2
=

∫ ∞

−∞

∫ ∞

−∞
2φ2(x)φ(α1x1 + α2x2)x2 · (1 + log(2Φ(α1x1 + α2x2)))dx1dx2. (41)

Once again the integrals must be numerically computed.

4. Copula based approach to construct the multivariate PC prior

In the previous section, we have explored the construction of the multivariate PC prior via the Hammersley-
Clifford theorem. Apart from the Uniform model, the resulting multivariate PC priors exhibit non-locality in corre-
spondence of the base model. So, whenever the base model is at the interior of the parameter space, the prior would
show non-locality. Notice that this latter is a consequence of the non-locality of the conditional PC priors.
Therefore, the Hammersley-Clifford construction seems to lead to a sort of multivariate non-local prior. This could be
useful in some situations, but in our case it is not adequate. In fact, our goal is to construct a prior which penalizes

9
4141



distance from the base model and which maintains some mass at the base model itself in order to avoid overfit-
ting (Simpson et al., 2017).
In this section, we explore the construction of the multivariate PC prior by looking at its embedded properties of the
Kullback-Leibler divergence. Recall that, in the bivariate case, the KLD is a function of two parameters. This latter is
obtained by considering as the base model the one where the two parameters themselves are absent.
Let us define now the KLD as a function of two generic parameters ξ1, ξ2

KLD(ξ1, ξ2) = KLD(ξ1) + KLD(ξ1|ξ2), (42)

where KLD(ξ1|ξ2) is the conditional relative entropy. Equation (42) is validated by the following theorem.

Theorem 2 (Chain Rule for relative entropy).

KLD(p(x, y)‖q(x, y)) = KLD(p(x)‖q(x)) + KLD(p(y|x)‖q(y|x)). (43)

Proof. Let us assume, for simplicity, that p(·, ·) and q(·, ·) are bivariate discrete distributions

KLD(p(x, y)‖q(x, y))

=
∑
x

∑
y

p(x, y) log
p(x, y)

q(x, y)
(44)

=
∑
x

∑
y

p(x, y) log
p(x)p(y|x)
q(x)q(y|x)

(45)

=
∑
x

∑
y

p(x, y) log
p(x)

q(x)
+
∑
x

∑
y

p(x, y) log
p(y|x)
q(y|x)

(46)

= KLD(p(x)‖q(x)) + KLD(p(y|x)‖q(y|x)). (47)

For the sake of clarity, notice that for joint probability mass functions p(x, y) and q(x, y), the conditional rela-
tive entropy KLD(p(y|x)‖q(y|x)) is the average of the relative entropies between the conditional probability mass
functions p(y|x) and q(y|x) averaged over the probability mass function p(x) (Cover and Thomas, 2006). Another
interesting property is that the conditional entropy H(ξ1|ξ2) ≤ H(ξ1) (Conditioning reduces entropy), therefore
H(ξ1, ξ2) ≤ H(ξ1) + H(ξ2), with the equality holding when ξ1 and ξ2 are independent. On the other hand, condi-
tioning increases divergence. Notice that equation (42) can be also used to derive conditional PC priors based on the
conditional relative entropy, as the latter is the difference between KLD(ξ1, ξ2) and KLD(ξ1) or KLD(ξ2).
Whenever it happens that KLD(ξ1, ξ2) = KLD(ξ1)+KLD(ξ2), the joint prior for the distance scales can be considered
with independent components. In this case, the construction of the joint PC prior for a vector of parameters assumes
orthogonality among the univariate distances and, as a consequence, among the marginal PC prior distributions. In
the latter case, the joint PC prior is simply the product of the marginal PC priors. This is equivalent to assume a
multivariate version of the exponential distribution, i.e. the product of independent exponential densities, over the
distance. Recall that, in the multivariate case, Simpson et al. (2017) still consider a univariate exponential distribution
to penalise the multi-parameters distance.
Let now (X,Y ) be a random vector with generic parameters ξ1 and ξ2, then for KLD(ξ1, ξ2) = KLD(ξ1)+KLD(ξ2),
the distance d(ξ1, ξ2) =

√
2KLD(ξ1, ξ2) turns out to be the norm of the vector resulting from the linear combination

of the basis vectors, in fact d(ξ1, ξ2) =
√

d(ξ1, 0)2 + d(0, ξ2)2. Notice also that d(ξ1, 0) = d(ξ1), i.e. the conditional
distance is equal to the marginal one, but not for instance if we consider a correlation structure in the joint density of
(X,Y ).
As an example, let us consider the base model of section 3.2

(
X

Y

)
∼ N2

[(
0

0

)
, I

]
,

and the more complex model given by (
X

Y

)
∼ N2

[(
µx

µy

)
, I

]
.
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distance from the base model and which maintains some mass at the base model itself in order to avoid overfit-
ting (Simpson et al., 2017).
In this section, we explore the construction of the multivariate PC prior by looking at its embedded properties of the
Kullback-Leibler divergence. Recall that, in the bivariate case, the KLD is a function of two parameters. This latter is
obtained by considering as the base model the one where the two parameters themselves are absent.
Let us define now the KLD as a function of two generic parameters ξ1, ξ2

KLD(ξ1, ξ2) = KLD(ξ1) + KLD(ξ1|ξ2), (42)

where KLD(ξ1|ξ2) is the conditional relative entropy. Equation (42) is validated by the following theorem.

Theorem 2 (Chain Rule for relative entropy).

KLD(p(x, y)‖q(x, y)) = KLD(p(x)‖q(x)) + KLD(p(y|x)‖q(y|x)). (43)

Proof. Let us assume, for simplicity, that p(·, ·) and q(·, ·) are bivariate discrete distributions

KLD(p(x, y)‖q(x, y))

=
∑
x

∑
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p(x, y) log
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+
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p(x, y) log
p(y|x)
q(y|x)

(46)

= KLD(p(x)‖q(x)) + KLD(p(y|x)‖q(y|x)). (47)

For the sake of clarity, notice that for joint probability mass functions p(x, y) and q(x, y), the conditional rela-
tive entropy KLD(p(y|x)‖q(y|x)) is the average of the relative entropies between the conditional probability mass
functions p(y|x) and q(y|x) averaged over the probability mass function p(x) (Cover and Thomas, 2006). Another
interesting property is that the conditional entropy H(ξ1|ξ2) ≤ H(ξ1) (Conditioning reduces entropy), therefore
H(ξ1, ξ2) ≤ H(ξ1) + H(ξ2), with the equality holding when ξ1 and ξ2 are independent. On the other hand, condi-
tioning increases divergence. Notice that equation (42) can be also used to derive conditional PC priors based on the
conditional relative entropy, as the latter is the difference between KLD(ξ1, ξ2) and KLD(ξ1) or KLD(ξ2).
Whenever it happens that KLD(ξ1, ξ2) = KLD(ξ1)+KLD(ξ2), the joint prior for the distance scales can be considered
with independent components. In this case, the construction of the joint PC prior for a vector of parameters assumes
orthogonality among the univariate distances and, as a consequence, among the marginal PC prior distributions. In
the latter case, the joint PC prior is simply the product of the marginal PC priors. This is equivalent to assume a
multivariate version of the exponential distribution, i.e. the product of independent exponential densities, over the
distance. Recall that, in the multivariate case, Simpson et al. (2017) still consider a univariate exponential distribution
to penalise the multi-parameters distance.
Let now (X,Y ) be a random vector with generic parameters ξ1 and ξ2, then for KLD(ξ1, ξ2) = KLD(ξ1)+KLD(ξ2),
the distance d(ξ1, ξ2) =

√
2KLD(ξ1, ξ2) turns out to be the norm of the vector resulting from the linear combination

of the basis vectors, in fact d(ξ1, ξ2) =
√
d(ξ1, 0)2 + d(0, ξ2)2. Notice also that d(ξ1, 0) = d(ξ1), i.e. the conditional

distance is equal to the marginal one, but not for instance if we consider a correlation structure in the joint density of
(X,Y ).
As an example, let us consider the base model of section 3.2

(
X

Y

)
∼ N2

[(
0

0

)
, I

]
,

and the more complex model given by (
X

Y

)
∼ N2

[(
µx

µy

)
, I

]
.
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Figure 4. Bivariate PC prior for the means of a bivariate Gaussian distribution. Both penalisation rates are equal to
one.

As we have already seen, the KLD(µx, µy) =
µ2
x+µ2

y

2 . It is also the sum of the KLDs between univariate standard
normals, i.e. KLD(N(µi, 1)‖N(0, 1)). This corroborates the assumption of independence among the components of
the random vector (µx, µy).
Therefore, the distance turns out to be orthogonal and as a consequence the joint PC prior over the mean vector is the
product of the marginal PC priors, namely double exponential priors.
In practice, we have d(µx, 0) = d(µx) = µx and d(0, µy) = d(µy) = µy , and given µx ⊥ µy

π(d(µx, µy)) = π(d(µx))π(d(µy)) =
λx

2

λy

2
e−λxµx−λyµy , (48)

since we give half an exponential to the positive part of each component. Here µi is meant to be positive (given that
the distance is positive) and λi is a rate parameter.
The corresponding joint PC prior for (µx, µy) is

πPC(µx, µy) = πPC(µx)π
PC(µy) =

1

4
λxλye

−λx|µx|−λy|µy|, (49)

where µx ∈ R, µy ∈ R. The prior is easily defined and we need only to elicit the rate parameters.
Figure 4 shows the bivariate PC prior over the random vector of the means. The prior is obtained assuming independent
components. So, when the KLD is additive, the independence assumption is a natural consequence.
Unfortunately, this rarely happens, indeed usually H(Ξ1,Ξ2) < H(Ξ1) +H(Ξ2). This is a consequence of the fact
that H(Ξ1|Ξ2) ≤ H(Ξ1). Notice that the inequality is true only on average. Specifically, H(Ξ1|Ξ2 = ξ2) may be
greater than or less than or equal to H(Ξ1), but on average H(Ξ1|Ξ2) =

∑
ξ2
p(ξ2)H(Ξ1|Ξ2 = ξ2) ≤ H(Ξ1). Here,

with abuse of notation, we have denoted the random variables, formerly denoted by ξ1 and ξ2, with their respective
capital letters.
Now, consider for instance the base model given by

(
X

Y

)
∼ N2

[(
0

0

)
,Σ

]
,
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where Σ =

(
1 ρ
ρ 1

)
is fixed and known.

Let us assume that in the more complex model the vector of the means has been added
(
X

Y

)
∼ N2

[(
µx

µy

)
,Σ

]
.

For the models above, the KLD turns out to be KLD(µx, µy) =
1

2(1−ρ2) (µ
2
x+µ2

y−2ρµxµy). From the KLD expression
we may notice how a ρ that is positive and close to one can mitigate the penalisation when µx = µy . Anyhow, this is
not true in general for µx �= µy . It is certainly true that negative values of ρ increase the KLD more than their positive
counterparts and as a consequence boost the penalisation.
Moreover, it is evident that the KLD does not equalize the sum of the KLDs over the marginal densities, namely

KLD(µx) =
µ2
x

2 and KLD(µy) =
µ2
y

2 . In this case it seems natural to add to the independence joint PC prior a further
component that is able to take into account for dependence. In practice, according to the Sklar’s theorem (Sklar, 1959),
we multiply the marginal PC prior distributions by a copula density function. Let us assume to use the Gaussian
copula, both for practical purposes and its ability to handle high dimensions. Notice that the example above is just an
illustration of how the additive decomposition of the KLD can be broken.
Then, the joint PC prior looks like

πPC(µx, µy) =
1

4
λxλye

−λx|µx|−λy|µy| · cψ(F (µx), G(µy);ψ), (50)

where F and G are the distribution functions of µx and µy respectively, ψ is the parameter of the Gaussian copula,
while the PC prior density functions are in practice Laplace distributions. However, we are aware that for this example
the correlation parameter ψ of the copula function should depend on the correlation ρ of the data, otherwise we would
have a joint PC prior where the copula component does not take into account for the correlation ρ. Equation (50)
is meant to be just an illustration. Anyhow, the construction above need a further refinement in order to allow the
parameter ψ to depend on ρ, therefore our aim for future developments is to derive a particular strategy in order to
write ψ(ρ). Furthermore, we would like to remark that the joint PC prior in (50) does not accomplish the obvious
requirements of dependence that come from the KLD expression above, i.e. different penalisations according to the
sign of ρ. For the sake of simplicity, we could even consider ψ = ρ, but in this case we would not consider the different
decay of the prior depending on the the sign of ρ.
Figure 5 shows the joint PC prior for the random vector of the means. It is obtained by the product of the marginal PC
prior densities, with rate parameters equal to one, times a Gaussian copula density function with positive correlation
parameter equal to 0.75, while Figure 6 shows the joint density where we consider a negative correlation parameter of
the Gaussian copula equal to −0.75.

5. Conclusions

In this paper, we have described two different constructions of the multivariate PC prior, the former based on the
Hammersley-Clifford theorem and the latter based on a copula representation.
Regarding the latter approach, the copula construction allows us to drop the assumption of penalising the multivari-
ate distance by means of a one-dimensional exponential distribution. In addition, the resulting multivariate PC prior
avoids the overfitting due to the prior mass absence at the base model. These two features are the main advantages
of such an approach. Among the positive aspects of the aforementioned construction there is also the possibility to
easily handle high-dimensional problems; it depends on the particular copula at hand, but for instance the Gaussian
copula can be used for large dimensions. In fact, the Gaussian copula is very easy to simulate from, and this renders
the copula approach more suitable from a computational point of view.
Furthermore, we can retrieve the orthogonality assumption by simply selecting the value of the copula parameter that
makes the two components independent; for instance, in the Gaussian copula, this occurs for ψ = 0.
Copulas are really flexible tools that allow us to build a joint distribution starting from the marginals and including
a function that accounts for dependence. Notice that the copula function can also take into account for skewness,
kurtosis, left or right-tail dependence, among the others.
A more interesting extension would be to define a particular criterion in order to elicit the copula parameter. In our
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Figure 5. Bivariate PC prior for the means of a bivariate Gaussian distribution. The joint distribution is obtained
through a Gaussian copula with correlation parameter equal to 0.75; both penalisation rates are equal to one.
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Figure 6. Bivariate PC prior for the means of a bivariate Gaussian distribution. The joint distribution is obtained
through a Gaussian copula with correlation parameter equal to −0.75; both penalisation rates are equal to one.
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opinion, this should be done for each model at hand by exploiting the information about the parameters of interest and
by translating it into the association parameter of the copula. For instance, let us consider situations where one has
some constraints over the dependence between the parameters of interest, and constraints are determined by the pa-
rameters of interest themselves. In this case, it would be natural to use a copula to connect the marginal distributions.
Finally, unlike the Hammersley-Clifford construction, the copula based approach requires the knowledge of the
marginal densities instead of the conditional ones.
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