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Carlo Drago*

EXPLORING THE COMMUNITY
STRUCTURE OF COMPLEX
NETWORKS

Abstract: Regarding complex networks, one of the most relevant problems is to
understand and to explore community structure. It is important to define in par-
ticular the network organization and the functions associated with the different
network partitions. In this paper, we consider an approach based on interval
data in order to represent the different relevant network components as commu-
nities. The method is also useful to represent the network community structure,
especially the network hierarchical structure. We apply the methodology on the
Italian interlocking directorship network.

Keywords: complex networks, community detection, communities, interval data,
interlocking directorates.

1. Introduction

The study of complex networks is very important today be-
cause the comprehension of modern systems can be considerably
enhanced by considering the different connections between indi-
viduals or objects.

The communities are groups of nodes in the networks, max-
imally connected to each other and weakly connected between
the different communities. The communities represent a very
important network feature (Fortunato, 2010; Newman, 2006): in
fact the community structure allows to understand the concrete
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functioning of real world systems. In this sense many phenomena
can be clarified by taking into account the structural information
related to the community. The community structure is typically
associated with the activities performed by a single subgroup of
nodes (Porter, Onnela, Mucha, 2009). Thus the main question
here is: in what way is it possible to measure the different network
characteristics and statistically exploit the different relationships
between the communities?

The aim of this work is to measure community characteristics
and analyse the relationships between different communities. So
the analysis is based not only on the nodes of the communities,
but also on the communities as different entities. In particular a
methodological way to do this is to consider a different approach
from that using classical data.

2. The statistical problem

Complex networks are typically characterized by deviations
from the random graph (the most simple structure studied among
graphs), by unobvious topological characteristics (Newman, 2003),
community structure or modularity (Newman, 2006) and finally
hierarchical structure (Barabasi et al., 2003). These structures are
ubiquitous and this fact represents an important reason that has
recently motivated the scientific community to study the mecha-
nisms which can have a relevant impact on the complex network
and in particular on their topology (Albert, Barabasi, 2002). In
this respect, it is important to take into account the modularity of
the complex networks (Newman, 2006). In fact, complex networks
are characterized also by multiple communities. It is very relevant
in network analysis to identify these communities so allowing one
to understand relevant functions inside the networks (Fortunato,
2010). In order to characterize the role of the different commu-
nities it is possible to consider the topological features and the
characteristics of the attributes for the nodes which are part of
the communities.

A fundamental aim in network analysis is to characterize the
community structure. Here, following Nishikawa, Motter (2011), it
is important, in the context of analysis of the network, to introduce
the concept of structural group of nodes. The structural group of

180



nodes is obtained by considering a specific community detection
method. In this way we are able to identify group of nodes which
are part of a same community. Then an analysis is carried out to
analyse the topological features of the groups obtained in the net-
work. This analysis is particularly relevant because the different
group of nodes belonging to the different communities which are
part of the network are related to some different function of the
network. So representing the characteristics of the communities
means being able to understand the role or the function of the
communities inside a network. Specifically, this means assigning
a measure to an entire community considered as an entire group
of nodes. In this way each characteristic of the nodes can be read
as a characteristic of the single node but considering all the nodes
we can consider a way to take into account the entire community.

However a specific problem exists: representing the different
communities with a specific value related to the different commu-
nity characteristics can lead to relevant information loss. In this
case a representation which preserves this information is required.
In this context the different communities are represented by inter-
vals or symbolic data in which we consider both the lower and the
upper bound for the values considered in the same community. In
this framework the topological features and the attributes of nodes
in the same community are represented as intervals, that is, in-
terval data can be considered a way to measure quantitatively the
network structures. In this way, a possible solution is to consider
intervals of values to represent the different communities and thus
be able to represent the network. The characterization of the com-
munities on the network can be very useful in allowing to predict
the future behaviour of the network as a whole.

3. Network representations

There has been an increasing interest in analytical techniques
which consider complex data, and in particular on data charac-
terized by specific internal variations. Particularly relevant contri-
butions in the field have been those by Billard, Diday (2003) and
Diday, Noirhomme-Fraiture (2008). Interval data (Billard, 2008),
in particular, can be very useful in order to measure the different
structural characteristics of the communities as a whole. In fact,
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communities are typically characterized by heterogeneous node
characteristics and this heterogeneity can be usefully represented
by interval data. These data types have their mathematical prop-
erties and appropriate statistical methods (Gioia, Lauro, 2005;
Brito, Duarte, 2012; Lauro; Palumbo, 2000 among others). In net-
work analysis this approach was also considered by Giordano,
Brito (2012) who measured and compared entire network using
histogram data.

In our work, we will consider the network communities with
the aim to characterize the community structure as a whole and
analyse the different roles of the single nodes in the community.
Interval data has been chosen as the approach because it allows
the measurement of the characteristics of the communities con-
sidered. At the same time the use of the interval data has been
preferred because the number of the nodes of the communities
are not so large and so an interval seems a reasonable way to
represent the characteristics of the group considered. Now we will
consider both the network and the different ways to represent the
network and the community structure. We start with an undirect-
ed graph: each node can be differently characterized by consider-
ing for example their centrality features.

An important characteristic of the networks is the modularity
which measures the degree of the possibility of dividing the net-
work into different modules. The modularity can be used to iden-
tify the different communities of the networks (Newman, 2006;
Reichardt, Bornholdt, 2006). In this sense the communities are
relevant characteristics of the networks and allow us to under-
stand the organization of the network as a whole (Porter, Onnela,
Mucha, 2009).

But there is not a unique specific definition of community.
We can consider the definition in Fortunato (2010). The different
communities are part of the community structure (Newman, Gir-
van, 2004). Various ways to detect communities are proposed in
literature (Fortunato, Lancichinetti, 2009; Lancichenetti, Fortu-
nato, 2012; Leskovec et al., 2010; Drago, Balzanella, 2014). The
aim is to represent the community structure in an adequate man-
ner in order to discover the latent information which is possible
to observe. In particular, it is very important to understand from
the data the role of the different communities on the whole net-
work. In order to perform this task we can consider interval data
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based on the single communities. In this way the communities
are represented by also considering interval data on the member
features of the communities.

4. The community structure representation

Each network can be studied by observing their communities
and a different community can be characterized by the topological
features related to the different node members of the community.
In particular we can consider the different members of the com-
munities and the different characteristics or features of the com-
munities. Interval data can be used to represent the different com-
munities. In fact when using the classical data we are not able to
represent adequately the variations of the features. In this respect
by using a mean we are losing information. In order to consider the
communities as a whole we can consider a related interval data for
each individual community. In that way the data matrix related to
each single community can be represented by the lower and upper
bounds of the communities. Then we can consider the obtained
intervals in the visualization process. So we have:

[YE] = [YS, Vil (1)

where k is the community considered and c is the feature consid-
ered (for example the Freeman degree, or the betweenness). We
can consider the single interval as the way to measure a single
characteristic for the entire community. Intervals can provide im-
portant information about the network structure (for example the
summary statistics of the intervals which can be obtained) and we
are able to obtain a data table to visualize the interval data. The
interval data for each community represents the upper bound and
the lower bound characterizing each community inside the net-
work. The different intervals can show not easily detectable struc-
tures. In order to represent the network communities, we first
of all detect the different communities by using the fast greedy
method (Clauset et al., 2004). Then we represent each community
by using an interval data. At this point we are able to visualize the
data by using an interval scatterplot (Bock, Diday, 2000) in order
to discover the community network structure.
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5. An application on real data

We will now consider a dataset related to interlocking direc-
torships in Italy (year 2012). The network community structure
allows us to determine the number of relevant communities in
a network and the different nodes which are part of the different
communities. Thereby we can obtain the different communities
and then we can represent them as communities. At this point
we decide to represent them as interval scatter plot. The differ-
ent community structure is represented on the interval scatter
plot diagram, especially where we expect to find a particular data
structure for the network.

It is important to consider the shape of the different observa-
tions on the scatter plot. If there is higher centralization we can
expect a particular network structure. In terms of the Freeman
degree and the betweenness we can have a higher value for some
statistical units. If there is a higher difference on the different
observations it means that the network as a community struc-
ture becomes more centralized. So by considering the different
structure of the intervals we are able to identify the centraliza-
tion level of the community structure. On observing the network
we can observe the general network structure which tends to be
characterized by a central structure. This structure seems to be
coherent with previous results in literature (Piccardi et al., 2010;
Bellenzier, Grassi, 2014; Drago et al., 2014, 2015). In particular
by considering the levels of betweenness and Freeman degree the
results seem to be coherent with previous results for each node.

In order to consider community detection we also use the fast
greedy algorithm which performs well with large networks. In this
case we observe that there are at least 17 communities (Table
1). These communities share different characteristics on between-
ness and Freeman degree. In particular we can observe that there
are three communities which are the most relevant. The first one
(community 4) is characterized by the highest values of between-
ness and Freeman degree. Community 5 shows a higher level than
community 6 of betwenness but lower levels on the Freeman de-
gree. This means that community S tends to be more globally than
locally centered. At the same time community 6 tends to be char-
acterized by a more local than global centrality. Both the commu-
nities have lower values of Freeman degree and betweenness than
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community 4. The community with a higher level of betweenness
and Freeman degree represents the most centralized companies
in Italian capitalism, this has also been observed in other studies.

The most relevant result is that the structure of the Italian in-
terlocking directorship network seems to be clearer by observing
the interval scatterplot diagram. In particular we are able to detect
three relevant communities (4, S and 6) whilst at the same time we
are able to detect the highest community (Table 1). The commu-
nities 5 and 6 show higher levels than other communities, which
in general reveals an equilibrium on the levels of the centrality
measures.

Tab. 1 - First twelve communities by betweenness and degree in-
terval values.

Community Min. Betw Max. Betw Min. Deg Max. Deg
1 0 1175.873 1 13
2 0 889.7801 1 6
3 0 1099.6 1 10
4 0 2076.065 1 20
5 0 1684.352 1 15
6 0 1590.881 1 19
7 0 243.9954 2 9
8 0 618.0377 1 5
9 0 345.6612 1

10 0 994.6088 1 12
11 0 622.6268 1 7
12 0 485 1 3

6. Conclusions

In this work we have proposed a new approach for analysing
complex networks. This approach consists in analysing the net-
work by decomposing it into different communities. The different
communities are characterized by considering interval data in or-
der to allow the variation existing between the different nodes. In
this way we are able to detect the structure of the network.

The results obtained are encouraging. In fact the network seems
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to be well represented by the intervals while using a mean seems
to reduce the information extracted from the networks and from
the different communities. The final conclusion of the application
is that this method allows us to identify the correct structure of
the network. For example, by considering the network of Italian
interlocking directorships, we are able to identify the structure of
the communities and in particular the different roles of the differ-
ent communities.
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Appendix: Companies belonging the first three communities
by betweenness and Freeman degree interval values

Community 4: A2A SPA, ADF SPA, ARNOLDO MONDADORI EDITORE
SPA, ATLANTIA SPA, AUTOGRILL SPA, BANCA POPOLARE DI MILA-
NO SCRL, CAMFIN SPA, CLASS EDITORI SPA, COBRA AUTOMOTIVE
TECHNOLOGIES SPA, COMPAGNIA IMMOBILIARE AZIONARIA - CIA
SPA, DADA SPA, EL.EN. SPA, ENGINEERING - INGEGNERIA INFOR-
MATICA - SPA, ERGYCAPITAL SPA, FIERA MILANO SPA, GEMINA SPA -
GENERALE MOBILIARE INTERESSENZE AZIONARIE, INTEK GROUP
SPA, INTESA SANPAOLO SPA, MAIRE TECNIMONT SPA, MEDIASET
SPA, MEDIOBANCA SPA, MEDIOLANUM SPA, MOLECULAR MEDICINE
SPA, PIRELLI & C. SPA, PRELIOS SPA, SALVATORE FERRAGAMO SPA,
SNAM SPA, TELECOM ITALIA SPA, VITTORIA ASSICURAZIONI SPA.

Community 5: ASTALDI SPA, BANCA PROFILO SPA, CEMBRE SPA, CIR
SPA - COMPAGNIE INDUSTRIALI RIUNITE, COFIDE - GRUPPO DE BEN-
EDETTI SPA, GEOX SPA, GRUPPO EDITORIALE L’ESPRESSO SPA, IM-
MSI SPA, M&C SPA, MEDIACONTECH SPA, PIAGGIO & C. SPA, PREMU-
DA SPA, SOGEFI SPA, TREVI - FINANZIARIA INDUSTRIALE SPA.

Community 6: BE THINK, SOLVE, EXECUTE SPA, BOLZONI SPA,
CREDITO EMILIANO SPA, DATALOGIC SPA DAVIDE CAMPARI - MILA-
NO SPA, DELCLIMA SPA, DE LONGHI SPA, ENEL SPA, GAS PLUS SPA,
INTERPUMP GROUP SPA, IREN SPA, ITALCEMENTI SPA FABBRICHE
RIUNITE CEMENTO, ITALMOBILIARE SPA, MITTEL SPA, NOEMAL-
IFE SPA, PRIMA INDUSTRIE SPA, PRYSMIAN SPA, RCS MEDIAGROUP
SPA, SOCIETA’ CATTOLICA DI ASSICURAZIONE SOCIETA’ COOPERA-
TIVA, SORIN SPA, TAMBURI INVESTMENT PARTNERS SPAUNIONE DI
BANCHE ITALIANE SCPA, ZIGNAGO VETRO SPA.
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