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Korosh Mahmoodi*, Paolo Grigolini*

SOCIAL BENEFITS
OF CRITICALITY-INDUCED
PSYCHOLOGICAL REWARD

Abstract: This article deals with the issue of evolutionary game theory by adopt-
ing the key ingredient of criticality borrowed from the field of phase transitions 
to establish the social benefit of altruism. The theoretical perspective that we 
propose rests on the dynamics of a Nash system modulated by the behavioral 
dynamics of the units of this system. The players of the network under study are 
naturally led to make the selfishness choice, but due to the imitation principle 
they may also make the altruism choice if some of their neighbors are altruist. 
We prove that if the imitation strength K is assigned a special value Kc a phase 
transition occurs to the emergence of altruism. This form of phase transition is 
similar to the phase transition processes of physics but it is significantly extend-
ed, due to the fact that the sociological system does not fit the thermodynamic 
limit condition. As a consequence at criticality the concentration of altruists is 
characterized by large fluctuations that have the effects of significantly enhanc-
ing the financial benefits generated by the psychological reward for altruism 
recently introduced by Gintis for a modified version of Nash game theory. We 
argue that the feedback of the financial level on the behavioral level will lead to a 
plausible explanation of the emergence of altruism in human societies.

Keywords: Nash game theory, criticality, emergence of altruism, temporal com-
plexity, psychological reward for altruism.

1. Introduction

A big revolution is taking place in Science (Laland, Wray, 
2014) leading biologists, psychologists, behavioral scientists and 
anthropologists to rethink the Darwinian concept of evolution by 
natural selection. In this article we shall illustrate what the con-
tribution of physicists to this ambitious interdisciplinary project 

*  University of North Texas, Denton, Texas.
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may be. The interesting discussion of Laland, Wray (2014) rests on 
the remarkable results of research work illustrated in the exem-
plary books (Pigliucci, Muller eds., 2010; Jablonka, Lamb, 2014). 
The book of Pigliucci, Muller eds. (2010) addresses the ambitious 
purpose of extending the modern synthesis, the theoretical in-
terpretation that has been used to define the evolutionary theo-
ry since the 1940s. This ambitious purpose is addressed also by 
Jablonka, Lamb (2014) using four dimensions to generate a new 
evolutionary theory: genetic, epigenetic, behavioral and symbolic. 
A key idea emerging from this discussion is that the survival of the 
fittest has not to be interpreted as a property of competing individ-
uals but as referring to communities struggling against unfavor-
able environmental conditions, thereby making cooperation rather 
than competition the key ingredient for survival and for evolution. 
This basic concept emerges also from the remarkable essay by 
Wade (2009), who illustrates the possible evolutionary origin of 
religion as a powerful tool to strengthen societal cooperation.

These observations lead us to go beyond the evolutionary game 
theory of Maynard Smith (1958) and the non-cooperative game 
theory of Nash (1950). In this paper we focus on an important 
condition that, in spite of its relevance, has not been properly 
considered by the researchers. The game played by the units of 
the currently theories suggests the existence of an organized so-
ciety. In fact, the players, either cooperators or defectors, are hu-
man beings and we cannot ignore the fact that they belong to 
an organized society. Physicists have studied for many years the 
transition from the state where the units, atoms and molecules in 
their cases, are virtually independent the ones from the others, to 
the state where they are closely correlated. This is the subject of 
phase transitions that generated a revolution in physics with the 
main achievements of renormalization group theory, eventually 
yielding the end of reductionism era, as the important direction 
to do science. It is reasonable to assume that a phase transition 
exists also for human society, with the plausible conjecture that 
the interaction between the players, which is apparently local, as 
in the traditional game theory, is actually influenced by the long-
range correlation emerging with phase transition.

How to combine societal organization and Nash game theory? 
How to explain the origin of cooperation? The main idea that is 
leading our investigation is based on the widely accepted convic-
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tion that cooperation increases the efficiency of an organized so-
ciety. We think that this has the effect of yielding an evolutionary 
process where the survival of the fittest has to be interpreted as 
the survival of the fittest community rather than the survival of a 
single individual.

This is a very ambitious goal going much beyond the results of 
this article. We limit ourselves to show the effect that criticality 
may have on the time evolution of Nash model, and we show that 
although altruism may emerge due to the imitation tendency of 
the network units, the financial benefit depends also on the psy-
chological reward for the choice of altruism. We adopt a version of 
the prisoner’s dilemma proposed by Gintis in his excellent Game 
Theory Evolving book (2000) to take into account the observation 
made by Kiyonary, Tamida and Yamagishi (2000) that people pre-
fer to cooperate if their partners are cooperators. Gintis used this 
observation to introduce the concept of psychic gain λA for Alice 
making the choice of cooperation. The main result of our article is 
that the psychic gain may generate significant societal benefits at 
criticality, as a result of the extension of phase transition theory 
to the realistic condition of a society with a non excessively large 
number of units.

In Section 2 we introduce the readers to sociological criticality 
using as an example the imitation-induced transition to altruism. 
In Section 3, to make this paper self-contained, we first concisely 
review the effect of psychological reward for the choice of cooper-
ation (Gintis, 2000) and then we evaluate the societal benefit on 
the basis of the model of the earlier Section in thermodynamic 
limit. In Section 4 we show the joint effect of criticality and psy-
chological reward for the choice of cooperation. Finally, we devote 
Section 5 to summarize the main results of this article and to 
illustrate the research directions that should be followed to move 
from the limited purpose of this paper to the more ambitious is-
sue of contributing to the emergence of cooperation as a result of 
an evolutionary process.

2. Two-state model in the all-to-all coupling case

In this section, we illustrate a very simple model generating im-
itation-induced phase transition. For simplicity we make the sim-
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plifying assumption that all the units interact with all the other 
units, All-To-All (ATA) coupling condition, but we do not make the 
traditional assumption that the number of units, N, is infinitely 
large.

2.1. Critical slowing down

Let us consider the case where the N units of a network have to 
make a decision on whether to select the state A, which contains 
the fraction q or the state B, which contains the fraction p =1 − q 
of the entire population. We assume that the choice of state B cor-
responds to the choice of altruism and that the state A represents 
shelfisness. The master equation for the time evolution of the two 
probabilities p and q is given by

	  

2
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ṗ = −γp+ ωq (1)

q̇ = −ωp+ γq, (2)

which are, of course, compatible with the condition p+ q = 1 at all times. The master equation is equivalent to the
single equation

ṗ = −(γ + ω)p+ ω, (3)

which is derived from Eq. (1) by replacing q with 1− p. In the absence of the natural tendency to imitation that we
hypothesize to characterize human beings [13], namely when ω = 0, a unit in the state A will remain there forever,
and a unit in the state B will jump to the state A with a finite transition rate γ. In this case all the units end in the
state A and altruism gets extinct.

We hypothesize that imitation is a typical property of the individuals of a human society. Consequently we assume
that the transition probability of a given unit from the state A to the state B does not vanish, but it is given by

ω = K
MB

M
, (4)

where M is the number of its neighbors and MB is the number of them in the state B.
In the All-To-All (ATA) case M coincides with N . In the ATA thermodynamic limit, N = ∞, we have

ω = Kp (5)

and the time evolution of p is given, according to Eq. (3) by

ṗ = (K − γ)p−Kp2. (6)

With some algebra it is possible to prove that the solution of this equation is:
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ṗ = −(γ + ω)p+ ω, (3)

which is derived from Eq. (1) by replacing q with 1− p. In the absence of the natural tendency to imitation that we
hypothesize to characterize human beings [13], namely when ω = 0, a unit in the state A will remain there forever,
and a unit in the state B will jump to the state A with a finite transition rate γ. In this case all the units end in the
state A and altruism gets extinct.

We hypothesize that imitation is a typical property of the individuals of a human society. Consequently we assume
that the transition probability of a given unit from the state A to the state B does not vanish, but it is given by

ω = K
MB

M
, (4)

where M is the number of its neighbors and MB is the number of them in the state B.
In the All-To-All (ATA) case M coincides with N . In the ATA thermodynamic limit, N = ∞, we have

ω = Kp (5)

and the time evolution of p is given, according to Eq. (3) by
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where M is the number of its neighbors and MB is the number of 
them in the state B.
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In the All-To-All (ATA) case M coincides with N. In the ATA ther-
modynamic limit, N = ∞, we have

	 	 (5)

and the time evolution of p is given, according to Eq. (3) by
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FIG. 1: A sketch representing the phase transition from the selfishness to the altruism condition, γ = 1.

p(t) =
p0 (K − γ)

(K − γ −Kp0) e−(K−γ)t +Kp0
. (7)

Although simple, this equation is a powerful description of the consequences of imitation. In fact, it shows that for
K < γ, when imitation is weak, the equilibrium is given by p = 0. This indicates that a few individuals in the state
B cannot attract a large part of population into this state and these individuals will jump to the state A before
attracting any of their neighbors to the state B. For K > γ, on the contrary, the fraction of individuals in the state
B is given by

p = 1− γ

K
. (8)

The individuals who may select for fortuitous reasons the state B may attract many other individuals and for K → ∞
the whole society ends into the state B.

Criticality emerges at

K = γ. (9)

In this condition the regression to equilibrium is given by

p(t) =
1

Kt+ 1
p0

, (10)

which in the long-time limit leads to p(t) ∝ 1/t. As a consequence, it takes an infinite time for the system to regress
to equilibrium and this phenomenon is well known as critical slowing down.

The surprising similarity with the second-order phase transitions in physics is clearly illustrated by Fig. (1) which
shows p as a function of K.

As earlier mentioned, in this article we interpret the states A and B as corresponding to selfishness and altruism,
respectively. We see that in the thermodynamical limit of N = ∞ this model generates the altruism extinction even
if the supercritical condition K > γ is adopted. In fact, p = 0 remains an equilibrium state of the model even when
K > γ and the stable equilibrium is given by Eq. (8). In practice, we need to set a special boundary condition at
p = 0 that in the case K > γ may prevent the altruism extinction and lead the system to the stable condition of Eq.
(8).

	 (7)
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where M is the number of its neighbors and MB is the number of them in the state B.
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and the time evolution of p is given, according to Eq. (3) by
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With some algebra it is possible to prove that the solution of this equation is:

Fig. 1 - A sketch representing the phase transition from the 
selfishness to the altruism condition, g = 1.
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FIG. 1: A sketch representing the phase transition from the selfishness to the altruism condition, γ = 1.

p(t) =
p0 (K − γ)

(K − γ −Kp0) e−(K−γ)t +Kp0
. (7)

Although simple, this equation is a powerful description of the consequences of imitation. In fact, it shows that for
K < γ, when imitation is weak, the equilibrium is given by p = 0. This indicates that a few individuals in the state
B cannot attract a large part of population into this state and these individuals will jump to the state A before
attracting any of their neighbors to the state B. For K > γ, on the contrary, the fraction of individuals in the state
B is given by

p = 1− γ

K
. (8)

The individuals who may select for fortuitous reasons the state B may attract many other individuals and for K → ∞
the whole society ends into the state B.

Criticality emerges at

K = γ. (9)

In this condition the regression to equilibrium is given by

p(t) =
1

Kt+ 1
p0

, (10)

which in the long-time limit leads to p(t) ∝ 1/t. As a consequence, it takes an infinite time for the system to regress
to equilibrium and this phenomenon is well known as critical slowing down.

The surprising similarity with the second-order phase transitions in physics is clearly illustrated by Fig. (1) which
shows p as a function of K.

As earlier mentioned, in this article we interpret the states A and B as corresponding to selfishness and altruism,
respectively. We see that in the thermodynamical limit of N = ∞ this model generates the altruism extinction even
if the supercritical condition K > γ is adopted. In fact, p = 0 remains an equilibrium state of the model even when
K > γ and the stable equilibrium is given by Eq. (8). In practice, we need to set a special boundary condition at
p = 0 that in the case K > γ may prevent the altruism extinction and lead the system to the stable condition of Eq.
(8).
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2.2. Temporal complexity

In the case of cooperative systems with a finite number of 
units, critical slowing down is associated to the important prop-
erty of temporal complexity (Turalska, West, Grigolini, 2011) that 
is of fundamental importance for the transfer of information from 
one to another complex network (Grigolini et al., 2015; Lukovic 
et al., 2014). To illustrate temporal complexity let us consider the 
model of Eq. (3) with ω given by Eq. (4) in the crucial case when 
the number of units is not infinitely large. The algorithm we use 
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to generate the time evolution of the network works with the fol-
lowing prescription. Let us assume that a given unit at time t is 
in the state A. We have to establish whether at the next time t + 1 
it is still in the state A or it jumps to the state B. The probability 
of jumping to the state B is given by ω of Eq. (4). In the case of a 
number of units that is not infinitely large ω reads
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B. Temporal complexity

In the case of cooperative systems with a finite number of units, critical slowing down is associated to the important
property of temporal complexity [9] that is of fundamental importance for the transfer of information from one to
another complex network [11, 12]. To illustrate temporal complexity let us consider the model of Eq. (3) with ω given
by Eq. (4) in the crucial case when the number of units is not infinitely large. The algorithm we use to generate the
time evolution of the network works with the following prescription. Let us assume that a given unit at time t is in
the state A. We have to establish whether at the next time t + 1 it is still in the state A or it jumps to the state
B. The probability of jumping to the state B is given by ω of Eq. (4). In the case of a number of units that is not
infinitely large ω reads

ω = K(p+ f), (11)

where f is a fluctuation of intensity proportional to 1/
√
N . In the case of a finite number of units, the process is

described by

d

dt
p = −(γ −K)p−Kp2 +Kf(1− p). (12)

We note that the condition p = 0, in the absence of stochastic force f would lead to the extinction of altruism. Thus,
the adoption of a condition far from the thermodynamic limit N = ∞ has the beneficial effect of preventing altruism
extinction because the stochastic force f will make the system depart from the unstable condition p = 0 when K > γ.
However, if we interpret p as being a stochastic variable, called x, the condition x < 0 is forbidden due to the fact
that x is a probability or a concentration of altruist. For this reason the numerical calculations of this article rest on
the non-linear Langevin equation

ẋ = − d

dx
V (x)− (γ −K)x−Kx2 +Kσξ(t)(1− x). (13)

The potential V (x) is assigned the form

V (x) =
2e−(

x
a )

2

a
√
π

(14)

with a so small as to make the minimum amin of the potential

Veff (x) = V (x) + (γ −K)
x2

2
+K

x3

3
(15)

extremely small. For the numerical calculations of this article we selected a = 0.001 yielding amin = 0.0054. The
variable ξ(t) is a dichotomous fluctuation with the values ξ = 1 and ξ = −1, equivalent to a fair coin tossing, and

σ =
1√
N

, (16)

so as to correspond to the fluctuation f(t), the intensity of which is indeed expected to be proportional to 1/
√
N .

As a result of the reflective barrier at x = 0 the variable x is kicked out of the extinction condition x = 0 and
gets positive values significantly larger than the minimum value a for extended times. Using the same theoretical
approach as that adopted in Ref. [10] we show that the time duration of these states with a significantly large number
of altruists is given by a waiting time distribution density ψ(τ), with the inverse power law µ = 1.5. More precisely,
the numerical calculations bases on the non-linear Langevin equation, as shown in Fig. 2, yield

ψ(τ) = 0.5
1

τ1.5
. (17)

In fact, in either the subcritical and supercritical condition the effective potential of Eq. (15) yields equilibrium
through a restoring force proportional to x that is as intense as the stochastic force when x gets the same order as
σ. At criticality, on the contrary, the restoring force is proportional to x2 thereby generating a restoring force of the
order of σ2, which is negligible compared to σ when σ � 1, as it happens in the case where N � 1. Thus the process
is a merely diffusional one, thereby leading, see Ref. [10], to the inverse power law of Eq. (17). The numerical result,
according to the fitting of Fig. (2), yields µ = 1.48, which is satisfactorily close to the theoretical prediction µ = 1.5.
This is the criticality-induced temporal complexity that the research work of our group finds to be of big importance
for the transfer of information from one to another network [11].
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extremely small. For the numerical calculations of this article we selected a = 0.001 yielding amin = 0.0054. The
variable ξ(t) is a dichotomous fluctuation with the values ξ = 1 and ξ = −1, equivalent to a fair coin tossing, and

σ =
1√
N

, (16)

so as to correspond to the fluctuation f(t), the intensity of which is indeed expected to be proportional to 1/
√
N .

As a result of the reflective barrier at x = 0 the variable x is kicked out of the extinction condition x = 0 and
gets positive values significantly larger than the minimum value a for extended times. Using the same theoretical
approach as that adopted in Ref. [10] we show that the time duration of these states with a significantly large number
of altruists is given by a waiting time distribution density ψ(τ), with the inverse power law µ = 1.5. More precisely,
the numerical calculations bases on the non-linear Langevin equation, as shown in Fig. 2, yield

ψ(τ) = 0.5
1

τ1.5
. (17)

In fact, in either the subcritical and supercritical condition the effective potential of Eq. (15) yields equilibrium
through a restoring force proportional to x that is as intense as the stochastic force when x gets the same order as
σ. At criticality, on the contrary, the restoring force is proportional to x2 thereby generating a restoring force of the
order of σ2, which is negligible compared to σ when σ � 1, as it happens in the case where N � 1. Thus the process
is a merely diffusional one, thereby leading, see Ref. [10], to the inverse power law of Eq. (17). The numerical result,
according to the fitting of Fig. (2), yields µ = 1.48, which is satisfactorily close to the theoretical prediction µ = 1.5.
This is the criticality-induced temporal complexity that the research work of our group finds to be of big importance
for the transfer of information from one to another network [11].
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B. Temporal complexity

In the case of cooperative systems with a finite number of units, critical slowing down is associated to the important
property of temporal complexity [9] that is of fundamental importance for the transfer of information from one to
another complex network [11, 12]. To illustrate temporal complexity let us consider the model of Eq. (3) with ω given
by Eq. (4) in the crucial case when the number of units is not infinitely large. The algorithm we use to generate the
time evolution of the network works with the following prescription. Let us assume that a given unit at time t is in
the state A. We have to establish whether at the next time t + 1 it is still in the state A or it jumps to the state
B. The probability of jumping to the state B is given by ω of Eq. (4). In the case of a number of units that is not
infinitely large ω reads
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where f is a fluctuation of intensity proportional to 1/
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In fact, in either the subcritical and supercritical condition the effective potential of Eq. (15) yields equilibrium
through a restoring force proportional to x that is as intense as the stochastic force when x gets the same order as
σ. At criticality, on the contrary, the restoring force is proportional to x2 thereby generating a restoring force of the
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In fact, in either the subcritical and supercritical condition the ef-
fective potential of Eq. (15) yields equilibrium through a restoring 
force proportional to x that is as intense as the stochastic force 
when x gets the same order as σ. At criticality, on the contrary, 
the restoring force is proportional to x2 thereby generating a re-
storing force of the order of σ2, which is negligible compared to σ 
when σ   1, as it happens in the case where N   1. Thus the pro-
cess is a merely diffusional one, thereby leading, see Being et al. 
(2015), to the inverse power law of Eq. (17). The numerical result, 
according to the fitting of Fig. (2), yields µ = 1.48, which is satis-
factorily close to the theoretical prediction µ = 1.5. This is the crit-
icality-induced temporal complexity that the research work of our 
group finds to be of big importance for the transfer of information 
from one to another network (Grigolini et al., 2015).

3. � Nash theory and psychological reward for the choice of 
cooperation

In this Section we review the Nash game theory with psycho-
logical reward for the choice of cooperation (Gintis, 2000) and we 
evaluate the societal financial benefit by assuming that the con-
centration of altruists p is established by the model of Section 2 
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the condition α = 0, β = 1 with π = 1 + t, with the statistical weight qp, identical to the earlier condition and the
defectors benefitting from the cooperators, α = 0, β = 0, yielding no society gain, with the statistical weight qq.

In conclusion the societal benefit is given by

π = N2(p2(1 + t+ λ) + p(1− p)(1 + t− s)). (21)

It is interesting to notice that this formula shows that the beneficial effects of psychological reward are negligible
at criticality, in the limiting case of an infinitely large number of units. In this condition the beneficial role of
psychological reward for altruism is perceived when p > 0.5. In fact, in this case the first term on the right hand side
of Eq. (21) becomes more important than the second, which is affected by the economical disadvantage generated by
the suckers.

To facilitate the reader’s understanding in Fig. 3 we illustrate the financial benefit as a function p for different
values of λA.

IV. JOINT ACTION OF CRITICALITY AND PSYCHOLOGICAL REWARD FOR ALTRUISM

In this Section we illustrate the central result of this article, namely, the important role of criticality and of the
criticality-induced temporal complexity, when N < ∞. To prove this import ant property, as done in the earlier
Section, we assume that the individuals in the state A are defectors and the individuals in the state B are cooperator.
However, since N < ∞ generates fluctuations, rather than adopting the prescription of Fig. 1, we evaluate the
concentration p that, in the case of strong fluctuations is replaced by the stochastic variable x(t). In other words, this
means that we run the non-linear Langevin equation of Eq. (13)

To make it easier for the readers to understand the joint role of criticality and psychological reward for the choice
of altruism-cooperation, we notice that to make the altruistic choice of Alice financially convenient, the concentration
of altruist p must be larger than the critical threshold value

Θ =
s

s+ λA
. (22)

If λA = 0, the threshold value become equal to 1, which is the maximal possible value of x, which, as the readers
should remember, is the stochastic probability p. It is then evident that the optimal value of λA is given by

λA = s

(
1

a
− 1

)
≈ s

a
. (23)
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in the thermodynamic limit N = ∞. It is known (Gintis, 2000) that 
the financial benefit for player 1, called Alice, interacting with 
player 2, called Bob, depends on whether the two players adopt 
the cooperator or the defector choice. If α and β denote the proba-
bilities of making the cooperator choice for Alice and Bob respec-
tively, the financial benefit for Alice is given by

	

5

FIG. 2: The waiting time distribution density ψ(τ) as a function of τ . τ is the time distance between two consecutive regressions
to the hard repulsive wall of the potential Veff of Eq. (15).

III. NASH THEORY AND PSYCHOLOGICAL REWARD FOR THE CHOICE OF COOPERATION

In this Section we review the Nash game theory with psychological reward for the choice of cooperation [7] and we
evaluate the societal financial benefit by assuming that the concentration of altruists p is established by the model of
Section II in the thermodynamic limit N = ∞. It is known [7] that the financial benefit for player 1, called Alice,
interacting with player 2, called Bob, depends on whether the two players adopt to cooperator or the defector choice.
If α and β denote the probabilities of making the cooperator choice for Alice and Bob respectively, the financial
benefit for Alice is given by

πA = β(1 + t)− α [s(1− β) + βt] , (18)

where t > 0 denotes the reward for defection and −s the penalty for a cooperator playing with a defector. Since
β < 1, the quantity between square brackets is positive, and the defector choice, α = 0, is the most convenient for
Alice. If the Nash game is played assigning the psychological reward λA > 0 to each player, the prediction of Eq. (18)
turns into

πA = β(1 + t)− α [s− β(s+ λA)], (19)

showing that if β > s/(s + λA), for Alice cooperation is more convenient than defection, thereby stressing the
importance of the psychological reward for the choice of altruism.

Let us proceed now to the evaluation of the societal benefit with the help of the model of Section II with N = ∞. We
make the assumption that an individual in the state A is a defector and an individual in the state B is a cooperator.
This leads us to establish that the fraction of cooperators is given by p = 0 for K < γ and by of Eq. (8) for K > γ.
We notice that the maximal benefit for society is reached when all the players are cooperators. In that case using Eq.
(19) we obtain

πmax = 1 + t+ λA. (20)

In the ideal case where λA � 1 we see that the financial benefit for society is linearly proportional to the psychological
reward for altruism. However, this ideal condition implies that the system is in the supercritical regime where all
the units are cooperators. The statistical weight of the condition α = 1 and β = 1 is p2. When p < 1 we have to
consider also the condition α = 1, β = 0, yielding economical disadvantage, π = −s, with the statistical weight pq,

,	 (18)
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Fig. 2 - The waiting time distribution density ψ(τ) as a function of τ. 
τ is the time distance between two consecutive regressions to the 
hard repulsive wall of the potential Veff of Eq. (15).

ANNALI DEL DIP. DI METODI ... 2015.indb   121 03/12/2015   14:06:27



122

showing that if β > s/(s + λA), for Alice cooperation is more con-
venient than defection, thereby stressing the importance of the 
psychological reward for the choice of altruism.

Let us proceed now to the evaluation of the societal benefit 
with the help of the model of Section 2 with N = ∞. We make the 
assumption that an individual in the state A is a defector and an 
individual in the state B is a cooperator. This leads us to establish 
that the fraction of cooperators is given by p = 0 for K <g and by of 
Eq. (8) for K >g. We notice that the maximal benefit for society is 
reached when all the players are cooperators. In that case using 
Eq. (19) we obtain

	 π max = 1 + t + λA .	 (20)

In the ideal case where λA   1 we see that the financial benefit 
for society is linearly proportional to the psychological reward for 
altruism. However, this ideal condition implies that the system 
is in the supercritical regime where all the units are cooperators. 
The statistical weight of the condition a = 1 and β = 1 is p2. When 
p <1 we have to consider also the condition a = 1, β = 0, yielding 
economical disadvantage, π = − s, with the statistical weight pq, 
the condition a = 0, β = 1 with π = 1 + t, with the statistical weight 

Fig. 3 - Financial benefit vs. p for three values of λA.
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qp, identical to the earlier condition and the defectors benefitting 
from the cooperators, a = 0, β = 0, yielding no society gain, with 
the statistical weight qq.

In conclusion the societal benefit is given by

	

6

FIG. 3: Financial benefit vs. p for three values of λA.

the condition α = 0, β = 1 with π = 1 + t, with the statistical weight qp, identical to the earlier condition and the
defectors benefitting from the cooperators, α = 0, β = 0, yielding no society gain, with the statistical weight qq.

In conclusion the societal benefit is given by

π = N2(p2(1 + t+ λ) + p(1− p)(1 + t− s)). (21)

It is interesting to notice that this formula shows that the beneficial effects of psychological reward are negligible
at criticality, in the limiting case of an infinitely large number of units. In this condition the beneficial role of
psychological reward for altruism is perceived when p > 0.5. In fact, in this case the first term on the right hand side
of Eq. (21) becomes more important than the second, which is affected by the economical disadvantage generated by
the suckers.

To facilitate the reader’s understanding in Fig. 3 we illustrate the financial benefit as a function p for different
values of λA.

IV. JOINT ACTION OF CRITICALITY AND PSYCHOLOGICAL REWARD FOR ALTRUISM

In this Section we illustrate the central result of this article, namely, the important role of criticality and of the
criticality-induced temporal complexity, when N < ∞. To prove this import ant property, as done in the earlier
Section, we assume that the individuals in the state A are defectors and the individuals in the state B are cooperator.
However, since N < ∞ generates fluctuations, rather than adopting the prescription of Fig. 1, we evaluate the
concentration p that, in the case of strong fluctuations is replaced by the stochastic variable x(t). In other words, this
means that we run the non-linear Langevin equation of Eq. (13)

To make it easier for the readers to understand the joint role of criticality and psychological reward for the choice
of altruism-cooperation, we notice that to make the altruistic choice of Alice financially convenient, the concentration
of altruist p must be larger than the critical threshold value

Θ =
s

s+ λA
. (22)

If λA = 0, the threshold value become equal to 1, which is the maximal possible value of x, which, as the readers
should remember, is the stochastic probability p. It is then evident that the optimal value of λA is given by
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However, since N < ∞ generates fluctuations, rather than adopting the prescription of Fig. 1, we evaluate the
concentration p that, in the case of strong fluctuations is replaced by the stochastic variable x(t). In other words, this
means that we run the non-linear Langevin equation of Eq. (13)

To make it easier for the readers to understand the joint role of criticality and psychological reward for the choice
of altruism-cooperation, we notice that to make the altruistic choice of Alice financially convenient, the concentration
of altruist p must be larger than the critical threshold value

Θ =
s

s+ λA
. (22)

If λA = 0, the threshold value become equal to 1, which is the maximal possible value of x, which, as the readers
should remember, is the stochastic probability p. It is then evident that the optimal value of λA is given by

λA = s

(
1

a
− 1

)
≈ s

a
. (23)

	 (22)

If λA = 0, the threshold value become equal to 1, which is the max-
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Fig.4 - K = γ = 0.5, a = 0.001, σ = 0.1, s = 2, t = 1, (a) : x, namely the 
number of altruists vs. time; (b): λA = 0; (c): λA = 100; (d): λA = 1000.

imal possible value of x, which, as the readers should remember, 
is the stochastic probability p. It is then evident that the optimal 
value of λA is given by

	

6

FIG. 3: Financial benefit vs. p for three values of λA.

the condition α = 0, β = 1 with π = 1 + t, with the statistical weight qp, identical to the earlier condition and the
defectors benefitting from the cooperators, α = 0, β = 0, yielding no society gain, with the statistical weight qq.

In conclusion the societal benefit is given by

π = N2(p2(1 + t+ λ) + p(1− p)(1 + t− s)). (21)

It is interesting to notice that this formula shows that the beneficial effects of psychological reward are negligible
at criticality, in the limiting case of an infinitely large number of units. In this condition the beneficial role of
psychological reward for altruism is perceived when p > 0.5. In fact, in this case the first term on the right hand side
of Eq. (21) becomes more important than the second, which is affected by the economical disadvantage generated by
the suckers.

To facilitate the reader’s understanding in Fig. 3 we illustrate the financial benefit as a function p for different
values of λA.

IV. JOINT ACTION OF CRITICALITY AND PSYCHOLOGICAL REWARD FOR ALTRUISM

In this Section we illustrate the central result of this article, namely, the important role of criticality and of the
criticality-induced temporal complexity, when N < ∞. To prove this import ant property, as done in the earlier
Section, we assume that the individuals in the state A are defectors and the individuals in the state B are cooperator.
However, since N < ∞ generates fluctuations, rather than adopting the prescription of Fig. 1, we evaluate the
concentration p that, in the case of strong fluctuations is replaced by the stochastic variable x(t). In other words, this
means that we run the non-linear Langevin equation of Eq. (13)

To make it easier for the readers to understand the joint role of criticality and psychological reward for the choice
of altruism-cooperation, we notice that to make the altruistic choice of Alice financially convenient, the concentration
of altruist p must be larger than the critical threshold value

Θ =
s

s+ λA
. (22)

If λA = 0, the threshold value become equal to 1, which is the maximal possible value of x, which, as the readers
should remember, is the stochastic probability p. It is then evident that the optimal value of λA is given by

λA = s

(
1

a
− 1

)
≈ s

a
. (23)	 (23)

We run Eq. (13) and at any time t we evaluate the financial 
benefit π(t) of Eq. (19) by considering all possible pairs of units. 
This is equivalent to evaluating Eq. (21) with p replaced by x(t). 
The results of this numerical work are illustrated in Fig. 4. Fig. 4 
is worth of an extended comment. It refers to K = g, which is the 
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criticality condition. In the thermodynamic limit N = ∞, p = x = 0. 
In the condition N < ∞ criticality generates big fluctuations, and 
consequently a significantly large number of altruists that in the 
Nash game theory play the role of cooperators. Yet, the benefit 
for society is reduced by the play between defectors and suck-
ers. The benefit π may also be negative, namely, the society may 
suffer financial loss as well as enjoying financial benefits. Fig. 4 
shows that increasing λA has the effect of reducing loss till to its 
total extinction when λA is so large as to make the threshold Θ of 
Eq. (22) very close to the minimal possible value of altruists so as 
to get the maximal possible benefit from the criticality-induced 
emergence of altruists. In conclusion, the crucial property of Fig. 
4 is that at criticality the adoption of λA of the order of Eq. (23) has 
the beneficial effect of canceling the losses produced by the action 
of the suckers playing with defectors.

5. Concluding remarks

It is important to stress that results of this article do not fully 
justify the ambitious title that we have adopted. We make the 
conjecture that further research work along these directions will 
allow us to fulfill the important goal of evolutionary game theory 
suggested by this title. In fact, in this article the Nash game the-
ory of Eq. (19) is modulated by the imitation model that, as we 
have seen in Section 2.2., yields Eq. (13). Although in the limiting 
case of N = ∞, the imitation-induced concentration of altruists 
vanishes, thereby annihilating the societal financial benefit, tem-
poral complexity generates so big fluctuations of p as to make it 
possible to make the psychic gain λA of Gintis (2000) annihilate 
the sucker-induced losses, as clearly illustrated by Fig. 4. In this 
article the dynamics of the behavioral level, namely the complex 
networks of individuals who have to choose either the state A 
or the state B drives the evolution of Nash game theory with no 
feedback. We expect that the addition of a feedback will favor the 
spontaneous evolution towards altruism, thereby making it possi-
ble for our theoretical approach to afford important contributions 
to the new field of evolutionary game theory.
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