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ExTENDED ABSTRACT
Nelle regioni tettonicamente attive, le frane sono uno dei più importanti processi di modellazione del paesaggio. A seconda della 

tipologia e della cinematica di frana, questi processi possono evolvere con velocità variabili, interessare materiali diversi e mobilitare 
volumi differenti. In generale, la topografia (pendenza, esposizione, energia di rilievo, curvatura, ecc.) e la litologia sono considerati 
fattori condizionanti (preparatori e predisponenti), mentre le precipitazioni, gli eventi sismici ed il contributo antropico sono noti come 
fattori scatenanti.

In questo senso, le frane costituiscono gravi rischi ambientali con impatti sociali, economici e naturali su larga scala e le mappe di 
suscettibilità sono strumenti chiave per la pianificazione, la gestione e la mitigazione del rischio. La suscettibilità da frana è definita 
come la probabilità spaziale del verificarsi di una frana, basata sulle condizioni locali del terreno. Essa valuta la relazione quantitativa 
tra più fattori di controllo e il verificarsi del fenomeno. La previsione spaziale delle frane sotto forma di studi di valutazione della 
suscettibilità è stata applicata negli ultimi 30 anni e nuove tecniche vengono continuamente sviluppate e aggiornate. 

L’approccio statistico Bayesiano nello studio di suscettibilità da frana, come il Frequency Ratio (FR) oggetto del presente 
lavoro, è riconosciuto come metodo consono alla zonazione regionale, fornendo in prima istanza il contributo di ciascun fattore di 
condizionamento. 

I monti Zagros (Iran) sono rinomati tra gli esempi più spettacolari di evoluzione del paesaggio adattata all’erodibilità dei litotipi 
affioranti in risposta alla crescita delle strutture a pieghe come fattori predisponenti per i movimenti gravitativi. In questo contesto 
geomorfologico, anche l’intensa sismicità associata all’attività delle principali faglie regionali (per esempio Main Zagros Reverse Fault, 
High Zagros Fault, Balarud Fault e Mountain Front Fault) costituisce un possibile innesco di movimenti gravitativi. Ciononostante, non 
è presente un inventario di frane per la catena degli Zagros, tanto meno per la regione del Lorestan, dove la frana più grande sulla terra 
emersa (44 km3), è avvenuta circa 10.000 anni fa.

A questo proposito, l’obiettivo del presente lavoro è stato uno studio conoscitivo preliminare della suscettibilità bivariata da frana 
calcolata alla scala del pixel del digital elevation model (DEM) utilizzato nelle analisi (SRTM a 30 m). Nello specifico, l’analisi è stata 
realizzata basandosi su un inventario inedito delle frane nella regione del Lorestan. L’analisi di suscettibilità è stata eseguita solo sulle 
categorie a) “Crolli” (323) e b) “Scorrimenti” (297) il cui numero è stato ritenuto consistente, a differenza delle altre categorie. È stata 
quindi quantificata la sensibilità delle tipologie di frane a un insieme di parametri predisponenti riconducibili a 2 macrocategorie: a) 
fattori statici, di natura morfologica, idraulica e geologica e b) fattori pseudo-dinamici o potenzialmente innescanti in termini medi 
sul lungo periodo che cumula, dunque, gli effetti delle forze tettoniche transienti dei singoli eventi sismici in riferimento agli effetti 
morfotettonici sul sistema versante-fondovalle.

La significatività statistica dei fattori pseudo-dinamici è stata dimostrata dapprima tramite la regressione logistica univariata ad un 
insieme di punti “stabili” e “instabili” generato casualmente. Quindi sono stati costruiti i modelli di suscettibilità ed è stata determinata 
l’importanza di ogni fattore di condizionamento calcolando il contributo dei fattori nel determinare il valore medio dell’indice di 
suscettibilità frana nelle frane reali, e la percentuale di casi di frana in cui il rapporto di frequenza relativo a ciascuna variabile è 
maggiore di 1.

per quanto riguarda la categoria “Crolli”, il modello evidenzia molto bene come suscettibili le zone con angolo di inclinazione maggiore 
di 38°, associate ad un’energia di rilievo (calcolata per un raggio di 5000 m) di 1100-1550 m una distanza di faglia mediana di circa 10 km. Il 
modello di suscettibilità ottenuto per la categoria “Scorrimenti” mostra invece una forte propensione al dissesto con valori di angolo di pendenza 
compresi tra 18°-35°, con l’affioramento dei litotipi più resistenti come il calcare e il calcare marnoso, in particolare in corrispondenza di 
morfologie come i “flat irons”. L’accuratezza del modello risultante, convalidata con la curva del tasso di predizione su un set di dati campione 
non utilizzato nell’analisi di suscettibilità, è 0,94 per i “Crolli” e 0,77 per gli “Scorrimenti”, indicando una buona accuratezza della previsione. 
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ABSTRACT
Landslide susceptibility analysis based on the assessment of 

a quantitative relationship between multiple controlling factors 
and landslide occurrence is a consolidated approach for land-use 
planning in risk mitigation. The Zagros Mountain range (Iran) 
is one of the most spectacular examples of a landscape whose 
evolution has been controlled by the erosion of rock outcrops 
and the growth of thrust-fold structures (predisposing factors for 
gravity-driven deformations). 

This paper covers a preliminary study on the landslide 
susceptibility of the Lorestan region of the Zagros Mountains. Use 
was made of a bivariate Frequency Ratio, computed on a 30 m pixel 
size Shuttle Radar Topography Mission Digital Elevation Model. 
In particular, reliance was made on an unpublished inventory 
of landslides in the Lorestan Arc. Landslide susceptibility was 
assessed in the “Falls” (323) and “Slides” (297) categories, the 
numbers of which (unlike those of other categories) were regarded 
as suitable for robust modelling. A multi-parametric analysis 
was carried out to determine the susceptibility of each type of 
landslide to a set of contributing factors. These factors, most of 
which are commonly used in the literature, can be grouped in two 
main categories: a) static, including morphological, hydraulic, and 
geological factors, and b) pseudo-dynamic, including distance 
from active faults and steepness index (ksn), a morphometric 
tectonic uplift proxy computed along stream networks. The latter 
were considered as potentially landslide-triggering factors in 
the medium-long term, combining both the effects of transient 
tectonic forces of individual seismic events and morphotectonic 
effects on the slope-valley system. The statistical significance of 
these pseudo-dynamic factors was initially demonstrated via a 
univariate logistic regression with a randomly generated set of 
“stable” and “unstable” points. Then, models were built, and the 
importance of each conditioning factor was assessed by calculating 
the contribution of the factors in determining the mean landslide 
susceptibility index value in actual landslides, and the percentage 
of landslide cases in which the frequency ratio relative to each 
variable was above 1. 

With regard to the “Falls” category, the model showed (with 
a high reliability) that susceptible areas were those with a slope 
angle greater than 38°, associated with a 5000 m radius relief 
energy of about 1100-1550 m and a median fault distance of 
about 10 km. Conversely, the susceptibility model obtained for 
the “Slides” category showed that highly susceptible areas were 
those with slope angle values of 18°-35° and featuring outcrops 
of the most resistant lithotypes, such as limestone and marly 
limestone, especially close to flatiron landforms. The resulting 
model accuracy (validated with the prediction rate curve method 
on a sample dataset not used in the susceptibility analysis), was 
equal to 0.94 for “Falls” and 0.77 for “Slides”, indicating a good 
prediction accuracy. 

Keywords: Frequency Ratio, landslide susceptibility, bivariate analysis, 
steepness index, Zagros Mountains

 INTRODUCTION
Landslides are one of the most important land-shaping 

processes that affect tectonically active regions in response 
to gravitational instabilities of hillslopes (Montgomery & 
Brandon, 2002; Agliardi et alii, 2009; Korup et alii, 2010; 
Larsen & Montgomery, 2012). Depending on the type of 
landslide and the slope failure kinematics, these processes can 
evolve with different velocities, affect different materials, and 
mobilise variable volumes (e.g., Hungr et alii, 2014). In general, 
topography (slope, aspect, relief, curvature, etc.) and lithology 
are considered as conditioning (preparatory and predisposing) 
factors, while rainfall, earthquakes, and anthropogenic elements 
are known as triggering factors (e.g. pourghasemi et alii, 2018).

However, landslides constitute severe environmental hazards 
with large-scale social, economic, and natural impacts (Guzzetti 
et alii, 1999; parise & Jibson, 2000; pourghasemi et alii, 2018), 
and susceptibility maps are key tools for land-use planning, 
management, and risk mitigation (e.g. Trigila, 2013). 

Landslide susceptibility is defined as the spatial probability 
of landslide occurrence, based on local terrain conditions (e.g. 
Guzzetti et alii, 1999; Mergili et alii, 2014). Spatial prediction 
of landslides in the form of susceptibility assessment studies 
has been applied for the past 30 years, and new techniques 
are continuously being developed and updated (Hussin et alii, 
2016; Reichenbach et alii, 2018). Landslide susceptibility can 
be determined by using statistical and physically based models 
(Guzzetti et alii, 1999; Van Westen, 2000; Guzzetti, 2006, 
Van Westen et alii, 2006).

Among data-driven methods, statistically based techniques 
for landslide susceptibility evaluation have been preferred so 
far (Reichenbach et alii, 2018; Samia et alii, 2020). Among 
the wide array of available  statistical methods, ranging from 
simple bivariate to sophisticated multivariate and machine 
learning approaches, the choice should be based on the scale of 
the study, the input data accuracy and, above all, the final aim 
of the analysis. With regard to analyses concerning large areas 
and involving zoning at the regional scale, basic zoning methods 
and preliminary zoning levels are recommended (Cascini, 
2008). In recent years, many landslide susceptibility maps have 
been produced by using GIS-based statistical approaches, e.g. 
Frequency Ratio (FR) and Weights of Evidence (WoE) models 
(e.g. Mersha & Meten, 2020). The results from these models 
show good performance with high accuracy; these models, 
which are easy to use, can also provide the contribution of each 
conditioning factor to landslide occurrence (e.g. Lee & pradhan, 
2007; Vakhshoori & Zare, 2016).

The Zagros Mountain range (Iran) is one of the most 
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spectacular examples of a landscape whose evolution has been 
determined by the erosion of rock outcrops and the growth 
of thrust-fold structures (Ramsey et alii, 2008), representing 
predisposing factors for gravity-driven deformations (Rouhi et 
alii, 2019; Delchiaro et alii 2019 a, b, 2020 a, b). However, 
no landslide inventory is available for this mountain range, 
which includes the Lorestan region, in which the giant Seymareh 
landslide  - the largest landslide (44 km3) on the Earth’s surface 
- occurred about 10,000 years ago (Roberts & Evans, 2013; 
Rouhi et alii, 2019; Delchiaro et alii, 2019 a, b, 2020a). In this 
geomorphological setting, intense seismicity associated with the 
activity of the main regional faults (i.e. Main Zagros Reverse 
Fault, High Zagros Fault, Balarud Fault, and Mountain Front 
Fault) can also trigger slope instabilities. 

The study reported in this paper relied on an unpublished 
inventory of landslides in the Lorestan Arc that we set up as part 
of a previous, more extensive investigation. The purpose of our 
study was to evaluate the possible role of some “unconventional” 
controlling factors - whose relevance for large-scale gravitational 
processes had already been demonstrated - in landslide 
susceptibility. In the early stage of the study, susceptibility 
assessment was based on the Frequency Ratio method, a simple but 
reliable technique, at least for first-level screening. This bivariate 
statistical method consists of comparing the spatial distribution 
of landslides with conditioning factors, taken individually, in 
the study area. The Frequency Ratio, which assesses the relative 
importance of each factor in landslide processes (Trigila et alii, 
2015), requires discrete reclassification of continuous variables. 
The novelty of this study is that it takes into consideration both 
static factors (slope, aspect, relief, wetness index, and lithology) 
and pseudo-dynamic elements as potentially triggering elements 
(distance from active faults and stream steepness index, a proxy 
of tectonic uplift) in the analysis. In particular, potentially 
triggering factors were taken to be both time-averaged transient 
forcing effects and predisposing factors damaging the rock mass 
over time. Indeed, they combine the effects of transient tectonic 
forces of individual seismic events and morphotectonic effects on 
the slope-valley system.

REGIONAL GEOLOGICAL SETTING AND 
STRATIGRAPHY OF LORESTAN

The Zagros Mountain range is part of the Alpine-Himalayan 
orogenic system that originates from the Late Cretaceous-
Cenozoic convergence between Africa and Arabia-Eurasia 
(e.g. Mouthereau et alii, 2012). The Zagros orogen has been 
traditionally classified, based on distinctive lithological units and 
structural styles, into four NW-trending tectono-metamorphic and 
magmatic belts (Figure 1). The latter are bounded by structural 
features of a regional scale, such as the Main Zagros Reverse 
Fault (MZRT), High Zagros Fault (HZF), and Mountain Front 

Fault (MFF) (Agard et alii, 2005, and references therein). These 
tectonic units are as follows (from the inner to the outer sectors of 
the belt): 1) the Urumieh Dokhtar volcanic arc, 2) the Sanandaj-
Sirjan Zone, 3) the Imbricate Zone, 4) the Zagros (or Simply) 
folded belt, and 5) the continental Mesopotamian Foreland. 

The Lorestan region, on which this study is focused, lies in 
the latter tectonic domain and extends between the HZF to the 
NE and the MFF to the SW. The Simply Folded Belt involves, 
in spectacular folds, the 12–14 km thick sedimentary rocks of 
the Arabian margin succession covering the continental basement 
(e.g. McQuarrie, 2004). The irregular geometry of the MFF 
that bounds the Simply Folded Belt south of the Mesopotamian 
foreland basin, describes salients and reentrants (McQuarrie, 
2004; Sepehr & Cosgrove, 2004): from NW to SE, the 
Lorestan, the Dezful Embayment, the Izeh Zone, and the Fars 
Arc, respectively (Figure 1). 

In a representative balanced cross-section of the Dezful 
embayment, Blanc et alii (2003) measured a ~49 km of 
shortening across the Simple Folded Zone. Homke et alii (2004) 
provided dates of 8.1 and 7.2 Ma for the onset of the deformation 
in the front of the pusht-e Kuh Arc (related to the base of the 
growth strata observed on the northeastern side of the Changuleh 
syncline) that lasted until 2.5 Ma, around the pliocene–pleistocene 
boundary. A long-term shortening rate of ~10 mm y-1 was 
derived for the deformation in the Simple Folded Zone, which is 
the same as the present-day one derived from GpS measurements 
(Tatar et alii, 2002). In the Lorestan area, instrumental seismicity 
(U.S. Geological Survey, 2020) in the 2006-2020 period was 
distributed over a wide 200-300 km2 area of the Zagros Mountain 
range (Hatzfeld et alii, 2010; paul et alii, 2010; Rajabi et alii, 
2011), with a sharp cut from the HZF to the MFF in the NW 
and SE, MZRF in the NE (e.g. Yamini-Fard et alii, 2006), with 
recurrent earthquakes of Mw 5-6 and exceptional earthquakes 
of higher magnitude, i.e. of up to Mw 6-8 (Figure 1) indicating 
that HZF,MFF and BF are still active. The two active areas are 
associated with transferring zones, which border the Lorestan 
salient and the Dezful and Kirkuk reentrants. 

The 12-14 km thick sedimentary succession is composed 
of both the passive margin sequence, lasting from the Upper 
paleozoic to the Late Cretaceous, as well as of the foreland 
sequence, occurring from the Late Cretaceous to the present 
(James & Wynd, 1965; Casciello et alii, 2009; Verges et alii, 
2011). The Mesozoic succession testifies that the region was 
dominated by large carbonate platforms with associated shallow 
basins filled with marls, shales, and marly limestones interbedded 
with episodic plugs of evaporites, typical of a passive margin. 
It includes the carbonates of the Bangestan Group (Garau, 
Sarvak, Ilam-Surgah Formations), one of the largest reservoirs of 
hydrocarbons in Iran, as well as the Gurpi Formation. Afterwards, 
two clastic wedges developed, separated by the Early-Middle 
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Miocene carbonate of the Asmari Formation (Casciello et alii, 
2009; Verges et alii, 2011): the proto-Zagros foreland sequence 
(paleocene-Early Eocene) and the Mesopotamian foreland 
succession (Miocene-Early pleistocene). 

The proto-Zagros sequence (Emam Hassan Member, pabdeh-
Gurpi, Amiran, Taleh Zang, and pabdeh Formations) consists of 
an alternation of contrasting lithotypes, from marls to limestones, 

while evaporites, sandstones, and conglomerates characterise 
the foreland succession (Gachsaran, Agha Jari, and Bakhtiari 
Formations).

Generally, the anticlines in the Simply Folded Belt are well 
exposed in the resistant Oligo-Miocene limestones of the Asmari 
Formation and the Cretaceous group of Bangestan, which are 
often more than 100 km long (Ramsey et alii, 2008). The folding 
mechanisms appear to be influenced by stratigraphy, depth, and 
regional tectonic setting (Burberry et alii, 2008, 2010).

In this regard, the drainage network adapted to the growth 
of the thrust-fold structures (Ramsey et alii, 2008) and to the 
erodibility of the outcropping formations (Oberlander, 1985). 
Oberlander (1968) suggested that the drainage network in 
the NW Zagros was superimposed on structurally conformable 
younger horizons. In his model, the breaking of hard geological 
units of the antiformal ridges followed a phase of river cutting 
and expansion of the fold axial basins through the softer 
overlying units. On Oberlander’s (1968) assumption, it was the 
pabdeh and Gurpi marls that facilitated the creation of a low-
relief landscape across the anticline crests, thus contributing to 
landscape shaping. 

MATERIALS AND METHODS
Landslide Inventory

Landslide susceptibility was assessed on the basis of an 
unprecedented inventory of landslides in the Lorestan Arc. 

The inventory was built by relying on the Google Earth 
satellite imagery (2019 Landsat Imagery) and on the geological 
maps provided by the National Iranian Oil Company (NIOC) at a 
scale of 1:100,000 (Figure 2). In particular, use was made of the 
following sheets: Balarud (Sahabi & Macleod, 1969), Dalpari 
(Setudehnia & O’b perry, 1977), Dehluran (Llewellyn, 1973), 
Kabir-kuh (Macleod, 1970), Khorramabad (Fakhari, 1985), 
Kuh-e-Anaran (Setudehnia, 1967), Kuh-e-Varzarin (Macleod 
& Roohi, 1970), Mehran (Macleod & Roohi, 1972), Naft 
(Macleod & Fozoonmayeh, 1971), pul and Dukthar (Takin & 
Macleod, 1970), and palganeh (Llewellyn, 1974). 

We classified gravitational movements according to the 
classification of Hungr et alii (2014), distinguishing: 55 rock 
avalanches, 16 ongoing mass rock creep deformations, 10 flexural 
topplings, 323 “Falls”, 34 flows, 297 “Slides”, and 11 lateral 
spreads (Figure 2). Based on similarities in terms of kinematic and 
failure mechanisms, the “Falls” category includes both “Falls” and 
topples, while “Slides” include both rotational and translational 
movements. In particular, to evaluate the conditioning factors 
for the above-mentioned movements, we mapped only the 
detachment area or deforming zone in a GIS environment. 
Susceptibility analysis was carried out only on the “Falls” and 
“Slides” categories, the numbers of which were considered to be 
statistically robust, unlike those of other categories (Figure 2).

Fig. 1   -  a) Regional sketch of the Zagros Mountains, showing the region 
of interest and the instrumental seismicity (U.S. GEOLOGICAL 
SURVEY, 2020) of the area in the 2006-2020 period. MFF: 
Mountain Front Fault, HZF: High Zagros Fault, MZRF: Main 
Zagros Reverse Fault, BF: Balarud Fault. The coordinate sy-
stem is WGS84 EPSG: 4326. b) Stratigraphic column and c) ge-
ological map of the Lorestan Arc (coordinates are WGS84-38N, 
EPSG: 32638). The trace and kinematics of the active faults are 
taken from the GEM Global Active Fault database (STYRON 
& PAGANI, 2020). The map colour scale indicates elevation, 
which is derived from the 30 m SRTM (Farr et alii, 2007)
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Susceptibility Analysis
Susceptibility was assessed by applying the Frequency 

Ratio method. The computation was carried out on the Shuttle 
Radar Topography Mission (SRTM, Farr et alii, 2007) Digital 
Elevation Model (DEM) provided by NASA JpL at a resolution 
of 1 arc-second (30 m). 

Frequency Ratio is a quantitative technique for landslide 
susceptibility assessment using GIS techniques and spatial 
data (e.g. Bonham-Carter, 1994, and Lee & Talib, 2005). 
It is based on a quantified association between the landslide 
inventory and conditioning factors (including static and pseudo-
dynamic or triggering elements) (e.g. Reis et alii, 2012). To 
obtain the Frequency Ratio (FR) for each class of conditioning 
factors, a combination was  established between the landslide 
inventory map and each factor map using Eq. (1) (e.g. Mondal 
& Maiti, 2013). Let L and F stand for a landslide and a certain 
landslide-related factor, respectively. Given that the factor 
F is categorised into n types or subdivided into n classes, the 
frequency ratio (FR) for the ith type or the ith class of factor F 
(Fi) can be written as: 

           (1)

A 

frequency ratio FRi above 1 indicates that “the landslide frequency 
or probability in the Fi area” (PLi) is larger than “the Fi area 
frequency or probability” (PFi) and further indicates that the 
ith type or the ith class of factor F (Fi) promotes the occurrence 
of land“Slides”. On the contrary, a frequency ratio FRi below 1 
indicates that Fi does not promote the occurrence of land“Slides”.  

Consider an arbitrary landslide-related factor F(j) (j = 1, 2, 
3, …, m); its frequency ratios regarding different types or classes, 
namely FRi (j) (i = 1, 2, 3, …, n; j = 1, 2, 3, …, m), can be 
calculated according to Eq. (1). If the type or class of F(j) at a 
certain location is Fi (j), the frequency ratio of this factor at this 
location FR(j) will be FRi (j). Thus, the landslide susceptibility 
index (LSI) at this location will be the summation of the frequency 
ratios of different landslide-related factors at this location (e.g. 
Lee & pradhan, 2007):

         (2)

The resulting susceptibility scale unit is 30 m pixel sized.
The conditioning factors considered in the FR analysis were 

distinguished into static and pseudo-dynamic. 
Static factors included:

• slope angle (°) - steepest downward numerical gradient of a 
DEM using an 8-connected neighbourhood;

• aspect (°) - slope direction of each cell in a DEM;
• relief (m) – local topography, such as the elevation range 

within a specific radius (5000 m);
• topographic Wetness Index (TWI) – predictor of potential 

soil moisture and, thus, of sensitivity to hydraulic triggers. It 
is defined by the following equation: 

            (3)

• where A is the contributing upslope area and tanβ is the local 
slope (Moore et alii, 1991); 

• lithology-lithological units obtained from the geological 
map of Iran 1:100,000.

We considered pseudo-dynamic factors as a proxy of tectonic 
activity cumulating the effects of the transient triggering forces of 
individual tectonic events, including:
• distance from Active Faults-DAF (m) – orthogonal distance 

to the nearest faults. This index is also an indirect measure 
of the damage of rock masses, which is expected to be more 
intense in the proximity of a fault and to decrease with 
distance. The trace and kinematics of the active faults were 
taken from the GEM Global Active Fault database (Styron 
& pagani, 2020). 

• steepness index (ksn) – channel steepness index, a measure 
of channel gradient normalised for downstream increases of 

Fig. 2   -  Landslide inventory map of the Lorestan Arc, showing the 
train and test movement datasets (1 and 2, respectively) and 
the landslide category histograms (coordinates are WGS84-
38N, EPSG: 32638). The map colour scale indicates eleva-
tion, which is derived from the 30-m SRTM (Farr et alii, 2007)
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the drainage area that is a proxy of regional tectonic uplift. 
Under the Stream power Law (SpL) approach, the evolution 

of a river profile is described as the change in elevation z of a 
channel point x through time t (Howard & Kerby, 1983), which 
relates to the competition between erosion (E) and uplift (U):

        (4)

In a steady-state condition, the difference between E and U 
is equal to 0 and the fluvial erosion E or uplift U is computed as:

        (5)

The powers m and n are positive constants controlling the 
erosion mechanism. Specifically, m depends on the climatic 
conditions and hydraulic properties of discharge, and n is a 
function of other erosional thresholds (Whipple & Tucker, 
1999; Di Biase & Whipple, 2011). The erodibility, K, accounts 
for lithology, climatic conditions, and channel geometry. In 
general, K may change in space and time, but here it is taken as 
a constant. 

A power-law relationship between the local channel slope (S) 
and the upstream drainage area (A) reveals the steady-state river 
profile:

        (6)

and 

        (7)

where ksn is known as the steepness index, and the m/n ratio 
or θ is defined as a concavity index.

The computation of the steepness index was carried out 
along river profiles and extracted by setting a flow accumulation 
threshold according to that proposed for the fluvial domain 
(10−1 km2) by Montgomery & Foufoula-Georgiu (1993) 
with MATLAB using the Topo Toolbox suite of functions 
(Schwanghart & Scherler, 2014). The steepness index was 
computed at the outcropping area of the carbonate carapace 
belonging to the Bangestan Group and the Asmari Formation. In 
this way, the signal recorded by the ksn with the same lithology 
can be considered as a direct proxy of tectonic uplift. Mapping 
interpolation was performed with the Inverse Weighted Distance 
(IWD) algorithm in a GIS environment.

Before passing to susceptibility analysis proper, we first 
explored the existence of a significant relation between the two 
pseudo-dynamic factors and the presence/absence of landslides. 
For this purpose, we analysed the results of a univariate logistic 
regression performed by randomly sampling, for each type of 

instability, the ksn and DAF values at 2774 and 2529 stable points 
(i.e. located within landslide polygons) for “Falls” and “Slides”, 
respectively, and 3407 unstable points (assuming the values “0” 
and “1”, respectively) for both types of landslide, the latter  being 
located at a sufficient distance from landslide areas. The logistic 
regression used the open access software JASp 0.14.1 (JASp 
Team, 2020).

Validation Analysis
As a diagnostic test for evaluating accuracy of the 

susceptibility model and significance of the selected pseudo-
dynamic factors for each type of landslide, the complete dataset 
of source areas was randomly split in two subsets, containing 
80% and 20% of the original dataset, respectively. After checking 
the consistency of the two subsets in terms of distribution of the 
values of variables (Figures 3 and 4), the larger one was used to 
train the susceptibility function and the smaller one for validation 
purposes. In particular, we sampled the predicted susceptibility 
values in the location of the actual landslides contained in the 
validation. This allowed us to generate prediction rate curves   
where the portion of areas predicted as a hazard was plotted 
against the portion of the actually occurred landslide (Chung 
& Fabbri, 2003). prediction accuracy is generally measured by 
the Area Under the Curve (AUC). The prediction rate provides 
a validation of the prediction regardless of the prediction model 
used. 

RESULTS
Multi-parametric analysis and delineation of variable 
classes

Susceptibility analysis was initially based on a multi-
parametric statistical approach, considering dependent variables 
or landslide classes susceptible to independent variables, e.g. the 
conditioning factors mentioned in the previous section.

Figure 3 shows the box plots of all the pixels belonging to 
the “Falls” and “Slides” for slope angle, relief, distance from 
active faults, ksn, and TWI factors, as well as the rose plot of 
all the pixels belonging to the “Falls” and “Slides” areas for the 
aspect factor. In each box, the central mark indicates the median, 
whereas the bottom and top edges of the box indicate the 25th 
and 75th percentiles, respectively. The pie plots in Figure 4 
show the fraction of the entire landslide (“Falls” and “Slides”) 
area falling under each category of lithology. With a view to 
classifying continuous variables (as required by the Frequency 
Ratio method), we first analysed the value distribution in the 
landslide source areas for each variable (and separately for each 
type of landslide). 

The multi-parametric analysis enabled us to define the 
thresholds necessary for reclassifying each factor. In this regard, 
we decided to define three classes, equally spaced between the 
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25th and 75th quantiles, alternatively the 2nd and 3rd quartiles 
(edges of the box), another two for the 1st and 4th quartiles, and, 
if necessary, another one covering the outlier range values. Then, 
to ensure a correct application of the results of the training to the 
test datasets, we checked the mutual consistency of the randomly 
split datasets in terms of similarity of distribution of the values 
of variables. A comparison of the boxplots, bar diagrams, and 
rosette plots of Figures 3 and 4 (for continuous, categorical, and 
circular-scale variables, respectively) shows a good consistency 
between the training and test datasets.

With regard to slope angle values, the distribution for “Falls” 
is concentrated between 38° and 60°, while that for “Slides” shows 
a lower value range between 18° and 35°. Conversely, the aspect 
values show a strong correspondence between the distributions 
of each type of instability, and they are concentrated towards 
SW and NE. The aspect classes were delineated as follows: 1) 
flat surfaces; 2) 0°-22.5° N; 3) 22.5°-67.5° N; 4) 67.5°-112.5° 
N; 5) 112.4°-157.5° N; 6) 157.5°-202.5° N; 7) 202.5°-247.5° 
N; 8) 247.5°-292.5° N; 9) 292.5°-337.5° N; 337.5°-360° N. As 
for relief energy (with a 5000 m radius), its values are generally 
higher for “Falls” (1100-1550 m) than for “Slides” (1000-1400 
m). The steepness index distribution shows a significant  presence 
of outliers in all the classes that can be connected with unbalanced 

values of the DEM along the drainage courses, especially near 
gorges. The values of “Falls” appear to be slightly higher than 
those of “Slides”. In general, most of the values of the types of 
instability are lower than 100. The Distance from Active Fault 
(DAF) factor also shows a similarity between the median values 
relating to all types of landslide. Generally, the distance is around 
10 km for “Falls” and 15 km for “Slides”, especially near the 
MFF, HZF, and BF. As regards the TWI, the median values for 
all the types of landslide  range between 3 and 5. Finally, the 
lithological factor (Figure 4) highlights that the lithotypes most 
involved in “Falls” and “Slides” are limestones (>50% for both 
categories) and marly limestones (10-25% for both categories). 
For “Falls”, also the fraction of calcirudites and marls (10-15%) 
is considerable. 

Susceptibility models
Figure 5 presents the model summary and the performance 

diagnostics of the univariate logistic regression between the 
pseudo-dynamic factors and a randomly generated set of  “stable” 

Fig. 3   -  Box plots of all the pixels belonging to all “Falls” and “Sli 
des” areas (AF-All “Falls”; AS-All “Slides”), training “Fal-
ls” and “Slides” areas (TrF-Training “Falls”; TrS-Training 
“Slides”), and test “Falls”, and “Slides” areas (TeF-Test 
“Falls”; TeS-Test “Slides”) are shown for slope, relief, DAF 
(Distance from Active Fault), ksn, and TWI (Topographic Wet-
ness Index) factors. The rose plot is shown for the aspect factor

Fig. 4  –  Bar plots for “Falls” (a) and “Slides” (b) of all 
the pixels belonging to all landslides; training and 
test areas are shown for each category of lithology
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(0) and “unstable” (1) points. The model statistics, reported in 
the summary (Figure 5 a, b, c, and d), demonstrate the statistical 
significance of the relationship between pseudo-dynamic factors 
and landslide presence or absence. 

Moreover, the confusion matrix indicates that the steepness 
index is a good discriminatory factor for both “stable” and 
“unstable” points, in contrast to the Distance from Active Fault. 
However, the AUC metric related to the factors highlights 
the significance of the pseudo-dynamic factors in landslide 
occurrence. These results are regarded as exploratory of the 
statistical significance of pseudo-dynamic variables.

To compute the landslide susceptibility index (LSI) by 
summing the frequency ratios of each conditioning factor and 
using Eq. (1), we first reclassified (in a GIS environment) the 
independent variables according to the quartile distributions 
obtained from the multi-parametric analysis of the test dataset of 
each type of landslide. 

By combining the reclassified layers with the dependent 
variables, such as “Falls” and “Slides” training categories, a 
unique output value was assigned to each unique combination 
of input values. The frequency ratio was therefore calculated 
for each class of each factor; subsequently, we reclassified the 
previously identified classes based on the frequency ratio values 
obtained (Figure 6). By calculating the frequency ratios for each 

Fig. 5  –  Model summary (a, b, c, and d) and performance diagnostics 
(e, f, g, and h) - including confusion matrix and performance 
metrics (AUC) - of the univariate logistic regression of the DAF 
factor for “Falls” landslides (a and e), steepness index factor 
for “Falls” landslides (b and f), DAF for “Slides” landslides 
(c and g), and steepness index factor for “Slides” landslides (d 
and h). The analysis was carried out by using the open access 
software JASP 0.14.1 (JASP Team, 2020) on a randomly gener-
ated set of “stable” (0) and “unstable” (1) points

Fig. 6   –  Bar plots of the partial frequency ratios distinguished by classes relative to each factor for “Falls” and “Slides”. The classes were delineated by 
using the distribution of variables shown in Figure 3 (detailed procedure described in the text). The frequency ratio line equal to 1 is plotted on 
all the bar plots to indicate the importance of each class in landslide susceptibility. The geology legend is included
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decisive role in susceptibility to “Slides”. 
The susceptibility maps (Figures 7 and 8) are the result of 

the summation of the frequency ratios of each conditioning factor 
using Eq. (1).

In more detail, Figure 7 shows the susceptibility map 
obtained for the “Falls” type of landslide. The model highlights 
very well that areas with slope angles greater than 40° are prone 
to detachment. These areas are associated with both high relief 
energy and low TWI values while, from a tectonic point of view, 
susceptibility increases with increasing ksn and decreasing fault 
distance. In this sense, triggering elements appear to play a very 
significant role in the development of this kind of instability. As 
can be seen in the bottom part of Figure 8,  susceptible areas are 
associated with outcrops of the most resistant lithotypes, such as 
limestone and marly limestone belonging to the Bangestan Group 
and Asmari Formation. Specifically, the “Falls” instabilities are 
associated very well with the creation of landforms, such as 
tangs, wind gaps, and water gaps by the drainage network. The 
top part of Figure 8, in contrast, shows the susceptibility map 
relating to the landslide class. 

The maps show that highly susceptible areas are those 
having slope values of 20° to  35°, outcrops of the most resistant 
lithotypes  - e.g. limestone and marly limestone belonging 
to the Asmari and pabdeh Formations and the Bangestan 
Group -, and low TWI values. Erosional morphologies, 
such as flatirons, are highlighted as very susceptible to 
slide detachment. Furthermore, local relief plays an active 
role in landslide predisposition, showing higher frequency 
ratios in association with value classes between 1000 m and 
1500 m. From a tectonic point of view, in this instance, too, 
susceptibility increases with increasing ksn and decreasing 
fault distance. 

To assess the importance of variables more carefully, 
we decided to use our actual units of analysis (i.e. landslide 
polygons) rather than the prediction rate curve, which is based on 
mapping units (i.e. pixel by pixel), regardless of the uniqueness 
of landslide scars. In particular, we computed the mean LSI value 
within each source area and compared it with the mean FR value 
of each variable in the same area, thus quantifying the actual 
contribution of controlling factors from another perspective. As 
shown in Table 1, the most significant contribution of conditioning 
variables in determining the mean LSI is given by slope (70.04%) 
and TWI (8.59%) for “Falls” and by lithology (20.94%) and slope 
(18.27%) for “Slides”.

class of investigated variable, we could assess the importance of 
the variables on a preliminary basis.  

Indeed, Figure 6 shows the frequency ratio line to be 
equal to 1, indicating the importance of each class in landslide 
susceptibility. Slope and TWI appear to be crucial elements in 
terms of susceptibility to “Falls”, whereas “Geology” plays a 

Fig. 7  - “Falls” susceptibility map based on frequency ratios (coordi-
nates are WGS84-38N, EPSG: 32638) and enlargement of an 
example area to better observe the result

Fig. 8   –  Landslide susceptibility map based on frequency ratios (coor-
dinates are WGS84-38N, EPSG: 32638) and enlargement of an 
example area to better observe the result

Tab. 1  – Contribution of the factors in determining the mean landslide 
susceptibility index value in actual landslides for both types of 
landslide



62

M. DELCHIARO, J. ROUHI, M. VALIANTE, M. DELLA SETA, C. ESPOSITO & S. MARTINO

Italian Journal of Engineering Geology and Environment, 1 (2021) © Sapienza Università Editrice www.ijege.uniroma1.it    

CONCLUDING REMARKS
Landslides represent one of the most impacting natural hazards 

worldwide, and their assessment has often been attempted over the 
years via statistical susceptibility analyses (Reichenbach et alii, 
2018). This paper deals with the preliminary results of a bivariate 
susceptibility analysis, which was carried out on two landslide 
classes deriving from an unpublished inventory for the Lorestan 
region (Zagros Mountains, Iran): “Falls” (323 cases) and “Slides” 
(297 cases). In particular, use was made of the Frequency Ratio 
(FR) method, which consists of combining the spatial distribution 
of landslides with conditioning factors (Trigila et alii, 2015). 
Among more traditional morphological (slope, aspect, relief), 
hydraulic (TWI), and geological (fault distance, lithology) factors, 
we introduced pseudo-dynamic factors. We regarded the latter as 
potentially triggering factors over the medium-long term and thus 
combining both the effects of the transient tectonic forces arising 
from individual seismic events and morphotectonic effects on 
the slope-valley system. In this new class of factors, we tested a 
new tectonic and structural factor, which was interpolated with an 
IDW algorithm obtained from a map of the steepness index ksn of 
longitudinal stream profiles (Whipple & Tucker, 1999; Di Biase 
& Whipple, 2011). As shown in Eq. (7), this index, which can 
be appropriately isolated from the lithological influence of the 
erodibility K (exposure of resistant Oligo-Miocene limestones 
belonging to the Asmari Formation and the Cretaceous group of 
Bangestan along the anticlines of the arc), can be considered as 
a direct proxy of tectonic uplift. Univariate logistic regression 
applied to pseudo-dynamic factors (Distance from Active Fault 
and steepness index) demonstrated their statistical significance. 

Susceptibility models were built for 261 “Falls” and 237 
“Slides”. They were then tested by using a dataset test sample of 
the 65 “Falls” and 59 “Slides” resulting from the random splitting 

In Figure 9 the percentage of landslide cases in which the 
frequency ratio relative to each conditioning factor is greater 
than 1, is reported. In “Falls” category, frequency ratios of 
TWI, slope and lithology are greater than 1 in the 97.1%, 93.6% 
and 89.4% of the landslide cases, while in “Slides”, the most 
important conditioning factors are slope and lithology whose 
frequency ratio is greater than 1 in 98% and 90% of the cases, 
respectively.

Validation results
Landslide susceptibility analysis results were tested using a 

dataset test sample of the 65 “Falls” and 59 “Slides” resulting 
from the random splitting of the original dataset into train (80%) 
and test (20%) subsets. 

Validation results are shown in Figure 10 for both “Falls” and 
“Slides”. The prediction rate curve, based on the classification 
of the LSI into 10 classes according to Jenks’ natural breaks 
criterion, shows a very good performance for “Falls” (AUC = 
0.94) and a satisfactory outcome for “Slides” (AUC = 0.77).  
The better performance for “Falls” than for “Slides” can be 
attributed to the intrinsic nature of the process and the related 
sensitivity to a narrower range of parameters (especially 
lithology and slope), as well as to potential incompleteness of 
the inventory.

Fig. 10 – Prediction rate curves of “Falls” and “Slides” susceptibility 
models

Fig. 9  –  Funnel charts for “Falls” (a) and “Slides” (b) with percent-
ages of landslides in which the frequency ratio relative to each 
variable was above 1, evidencing the importance of variables 
in landslide susceptibility
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• the median ksn values lie between 50 and 100; ksn values 
were only recorded above the outcropping  carbonate 
carapace belonging to the Bangestan Group and the Asmari 
Formation, indicating that (in the absence of lithological 
control) the highest ksn values correspond to the most 
uplifted areas along the main fold structures of the Lorestan 
Arc, especially in the southeastern zone.

The validation of the prediction rate curve for our 
susceptibility models yielded a landslide prediction accuracy of 
94% and 77% for “Falls” and “Slides”, respectively. The better 
performance for “Falls” than for “Slides” can be ascribed to the 
intrinsic nature of the process and the related sensitivity to a 
narrower range of parameters (especially lithology and slope), 
as well as to potential incompleteness of the inventory. 

To assess the importance of variables more carefully, 
we computed the contribution of conditioning factors in 
determining the mean landslide susceptibility index value in 
actual landslides, as well as the percentage of landslide cases 
in which the frequency ratio relative to each variable was above 
1. This process indicated that the most important factors were 
TWI, slope and lithology for “Falls”, and slope and lithology for 
“Slides”. In spite of this, the DAF and ksn showed a significant 
correlation with landslides. If the former is a proxy of both 
inherited rock mass damage and severity of seismic shaking 
(thus difficult to be univocally interpreted), the latter is a more 
unconventional parameter that has a precise meaning and 
contributes to landslide proneness significantly. This evidence 
stresses the importance of morphostructural evolution and the 
need for placing landslide processes within a temporally wider 
morphoevolutionary framework.

The study covered by this paper also represents one of the 
first bivariate susceptibility analyses conducted in Lorestan, 
where the Seymareh rock avalanche, the largest subaerial 
landslide in the world, occurred (Roberts & Evans, 2013; 
Rouhi et alii, 2019; Delchiaro et alii 2019 a, b, 2020a). 

of the original dataset into train (80%) and test (20%) subsets.
With a view to classifying continuous variables (as 

required by the Frequency Ratio method), we initially analysed 
the distribution of values in the landslide source areas for 
each variable (and separately for each type of landslide).  A 
multi-parametric analysis enabled us to define the thresholds 
necessary for reclassifying each factor. Moreover, to ensure a 
correct application of training results to the test datasets, we 
checked the mutual consistency of the randomly split datasets 
in terms of similarity of distribution of the values of variables.

In the Lorestan region, there exist similar environmental, 
morphological, and geological factors for both kinds of 
gravitational instability: 
• contrasting rheological behaviour in terms of stratigraphy 

(limestones, marly limestones, marls; calcirudites and 
marls); 

•  moderate to high slope angle (between 18° and 35° for 
“Slides”, and between 38° and 60° for “Falls”); 

• high relief energy (“Falls” around 1100-1550 m and 
“Slides” 1000-1400 m); 

• the aspect variable highlights that slopes are dominantly 
SW- and NE-oriented, which suggests a possible 
correlation with the tectonic direction of the Zagros belt 
(SW vergence); 

• low TWI values indicate areas with low flow accumulation 
and high slopes characterised by low potential soil 
moisture. 

The analysis of the sensitivity of landslide classes to pseudo-
dynamic or potentially triggering and structural factors inferred 
a strong correlation between the occurrence of gravitational 
movements and the activity and distance of the main active tectonic 
features (MFF, BF, HZ). In particular, for both landslide classes:
• the median distance from the active fault is 10 km for 

“Falls” and 15 km for “Slides”, in the proximity of  the 
MFF, HZF, and BF;
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