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from landslides to debris flows, the controlling phys-
ics also changed. But if we consider these phenomena 
from scales of particles, the major difference would 
be the interactions between solids and fluid motion in 
the pore scale. 

From the continuum point of view, there are many 
theories used to interpreting the flowing properties of 
debris flow. An extensive review was given by Ancey 
(2007). Many theories are validated useful and practi-
cal in certain domains. However, most of these theo-
ries can be used either when bulk material is almost 
stationary (such a soil) or has large movement (such 
a debris flows and avalanches). Iverson et alii (1997) 
gave a review for models involving the effect of pore 
pressures and granular temperature in the mobilization 
of debris-flow. In the same paper, they assessed the re-
lationship between Coulomb failure and liquefaction, 
and considered the role of granular temperature and 
soil volume change in an infinite-slope formulation. 
Iverson(2000) also proposed multiple time-scales 
together with Richards’ equation to develop a math-
ematical model to evaluate effects of rainfall infiltra-
tion on landslide occurrence, depth, and acceleration. 
The model provided a tool to assess the possibility of 
landslide triggered by rainfall and post-failure motion. 
But this approach still used the continuum concept to 
model landslide process macroscopically.

As the continuum motion is actually the result 
from small scale motion, there should be a method to 
examine the small scale motion and then transfer mo-

ABSTRACT
We attempt to find the unified theory for the 

prediction of the initiation of debris-flow by using 
homogenization theory. In this study, we show the 
leading order solution, which is the first step of this 
derivation of unified theory. The derivation started 
in the microscopic scale in the soil. The representa-
tive elementary volume (REV) in the soil is set to be 
one order larger than the scale of porosity. Solids in 
the REV are assumed to be rigid and adhesion-less. 
The liquid velocity in the porosity is slow. By the no-
slip boundary condition and periodicity of REV, we 
could obtain the microscopic flow conditions. Using 
the assemble average with time dependence taken into 
account, we obtain the macroscopic relation of water 
content with the spatial and time variables from the 
microscopic flow conditions. This macroscopic equa-
tion could be validated by the Richards’ equation.
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INTRODUCTION
It is well accepted concept that landslide together 

with enough water can produce debris flows. But the 
mechanism for landslides and occurrence of debris 
flows are different. If we consider these as continuum, 
physics involved is different. Landslide is a bulky mo-
tion of a soil where particle displacement is important. 
However, debris flow is a flowing process where strain 
rate is important. This means as the motion change 
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scale in the pore level and under outer physical mech-
anism respectively. Using these two scales, we could 
define the small parameter as below.

where l and L are micro- and macro-scopic character-
istic length scales respectively. The volume in micro-
scale is called representative element volume (REV 
from here on). By this small parameter, we also define 
the multiple-scale spatial and temporary independent 
variables as

where x1i= εx0i ,x2i = x0i , ... and t1= εt0 , t2 =εt0 , ... and 
so on. The physical dependent variable Φ(xi ,t )rep-
resents velocity, pressure or other perturbed physical 
variables in later derivation. They are expanded by the 
small parameter in (1) as follow

In (3), for kth-order term, the (k+1)th or higher or-
der termspossess the property of periodicity in k-th 
order REV. A compatibility condition exists between 
equations of different order so as to assure the solu-
tions in different orders are independent. The condi-
tion (Auriault, 1991) is 

Substituting (2) and (3) into the governing equa-
tions of our problem, we could solve the micro-scopic 
solution with the boundary conditions and compat-
ibility condition. Then, we use the spatial assemble 
average in the REV to obtain the averaged physical 
variable representing the macro-scopic property. The 
assemble average is defined as

where |Ω(k )|is total volume of kth-order REV. Φ(k )is the 
assemble averaged of Φ(k) in the kth-order REV, rep-
resenting the (k+1)th-order property and becomes the 

tion of these small scale to that of continuum. In such 
small scale, one should be able to visualize how parti-
cles start from stationary and then change to collision 
based motion. As the first attempt, we shall use this 
approach to examine if the well known equation such 
as Richard’s equation which is based on experimental 
results can be derived theoretically.

Therefore, we propose a new way to study the 
initiation process. The initiation process starts from 
static solids and flowing liquid in the pore. Then 
gradually it develops to solid movement with strong 
interaction of soil and liquid in the pore scale as well 
as bulk motion of solid-liquid mixture. To study the 
phenomenon, two drastically different concepts must 
be used. Interaction between liquid and individual 
solids is usually considered with Lagrangian coor-
dinates and bulk motion is usually considered with 
Eulerian coordinates. In order to combine these two, 
there must be two or more different characteristic 
length scales involved in this initiation process. It is 
reasonable to believe that the initiation of appreci-
able solid velocity has something to do with effects 
from different scales. Homogenization theory (Auri-
ault, 1991) has been applied in this aspect and suc-
cessfully derived the flow condition of seepage in the 
pore under saturated and static soil. Therefore, we 
shall adopt similar approach to study the initiation 
process. In this study, we show the leading order so-
lution which is the first step towards our goal.

Without any assumption of constitutive law of 
the water-soil mixture, we begin to derive seepage 
flow condition in the representative element volume 
in the microscopic length scale -- the scale of the or-
der of pore. Then we use assemble average to obtain 
the averaged flow condition in the macroscopic scale 
-- the scale of total bulk soil-water mixture. In the 
end, we can obtain the same result as Richards’ equa-
tion (Richards, 1931).

FUNDAMENTALS OF HOMOGENIZA-
TION THEORY

Homogenization theory is a method to obtain a 
motion equation of interest by using a multiple-scale 
perturbation method together with assembled aver-
ages in smaller scales.

The first step for homogenization is to decide the 
two different characteristic length scales, micro- and 
macro-scale which represent the characteristic length 

(1)

(2)

(3)

(4)

(5)
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ui is periodicity in micro-scale

where Γ is the solid boundary in REV, h the free sur-
face of water in the unsaturated REV, that is h =, z- h( 
x, y, t ) ,δs the surfacetension coefficient ranging from 
0.019 at 0°C to 0 at 100°C (White, 2006). k is the 
curvature of the free surface. δ ij and eij are Kronecker 
delta the strain-rate tensor respectively. (8) is no-slip 
condition on the solid surface.. Boundary conditions, 
(9) and (10), would be only used in the unsaturated 
micro-scopic REV. (11) is the condition of periodicity 
in the saturated REV

From the definition, eq.(5), if we want to obtain 
the averaged seepage flow condition, u should be aver-
aged as in (5), so.

where Ωl(k ) is the liquid volume in kth-order REV. We 
also define the porosity η and water content θ in kth-
order as

where Ωs(k ) is the total solid volume in in kth-order 
REV, and η(k) and θ(k) are all the function of x(k +1)i , 
x(k +2)i ,...,t0 ,t1,... . If the kthorder REV is saturated, we 
could have the relation that |Ω(k )| = Ωl(k ) + Ωs(k ) . But 
in unsaturated REV, Ωl(k ) can vary in time. In most 
soil. Water content θ ranges from 0 to η , and the po-
rosity η ranges from 0.25 to 0.75 (Chow et alii, 1988)

NORMALIZATION
We define the microscopic characteristic length, 

l , is one order larger than the characteristic length of 
pores in soil; the macroscopic length, L , is the out-
er characteristic length of all bulk. Using these two 
scales, the small parameter ε = l /L can be defined. 
In our problem, the outer physical excitation in the 
microscopic REV is the macroscopic pressure gradi-

function of macroscopic (higher order) independent 
variables x(k +1)i , x(k +2)i ….etc. The volume Ω(k ) can 
also be a function of temporary independent variable 
in the unsaturated soil. Then the physical properties 
of the bulk solid-liquid mixture can be found using 
these averaged results with boundary conditions under 
marco-scopic scale.

GOVERNING EQUATIONS
In this study, our problem is to derive the seep-

age flow condition in unsaturated and static soil. We 
consider the pores in soil are large enough for water 
to form a free surface interface of airliquid (Fig. 1).

If solid structure is stationary, we only have the 
governing equations for pore water, which is the Na-
vier-Stokes equations

where ρ and μ are the density and dynamic viscosity of 
water. p = p'+ ρgz is pressure with p' being dynamic 
pressure. For boundary conditions, we need them for 
different scales. At microscopic scale, there are kin-
ematic boundary conditions at the air-liquid and solid-
liquid interface. There is dynamic boundary condition 
at free surface. At macroscopic scale, we use periodic-
ity of REV. These conditions are listed below.

(6)

(7)

(8)

(9)

Fig.1	 -	 The definition of free surface of water and solid 
boundary in the REV

(10)

(11)

(12)

(13)

(14)
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Eq (25a), (26a) and (27a) are continuity in differ-
ent orders of ε  (25b), (26b) and (27b) are momentum 
equations tensor. Besides, the boundary conditions of 
kth-order of ε in saturated soil are

uki is periodicity in micro-scale

ent. Due to the viscous effects dominate in the flow in 
pores, we assume that the viscous term in micro-scale 
is as important as the macro-scale pressure gradient. 
So all scales are defined.

Substituting all scales in (15) to equation (6) to 
(11), and omitting the primes, we obtain the dimen-
sionless equations as

With normalized boundary conditions.

ui is periodicity in micro-scale

Re is the Reynolds number of seepage flow in 
pores. From the expression it is of O(ε) in our prob-
lem; β is the ratio of the effect fo surface tension 
to shear stress at free surface in the pores within 
εunsaturated REV.

Using small parameter ε , we expand the velocity, 
pressure of water and free surface

Substituting (22) to (24) into eq. (16) to (21) and 
collecting terms of the same order, we obtain

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)
(23)
(24)

(25 a b)

(26 a b)

(28)

(29)

(30 a b)

(31 a b)

(32 a)

(32 b)

(32 c)
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Equations (36) to (39) are a boundary-value-prob-
lem for solving Kij and Aj in saturated REV. For spe-
cific sample of soil, it is possible to define Γ and then 
solve the whole set of equations.

However, it is difficult to define the solid bound-
ary Γ in the microscopic REV in general without any 
knowledge for the soil. Due to the complex composi-
tion of heterogeneous materials in nature, one often 
obtain Kij and Aj through experimental methods.

VERIFICATION WITH RICHARD’S 
EQUATION

In this paper, we do not need the detail of Kij and 
Aj to verify our theory. We shall show that our theory 
is equivalent to Richard’s equation with the same as-
sumption, i.e. isotropic and homogeneous

Substituting (35a) into (26a) and applying assem-
ble average in a saturated REV, we obtain

With periodic condition of u1i in 0th-order REV, 
we could eliminate the first term in LHS of (42). So

where Kij is averaged hydraulic conductivity in mi-
croscopic REV, and it can be regarded as the repre-
senting hydraulic conductivity in macro-scale. If the 
soil is isotropic and homogenous, we could simplify 
K i j t o       Kij , where K is a constant, and in this case. (43) 
becomes

By applying the macroscopic boundary conditions 
to (44), we get the pressure distribution p0 in saturated 
soil. Furthermore, taking this solved p0 back to (35a), 
we obtain velocity of seepage in the micro-scale. The 
result is the same as Mei & Auriault(1991).

Eq (25) to (32) are all the equations and boundary 
conditions in our problem. In the following, we begin 
to derive the flow condition in unsaturated soil.

DERIVATION OF UNSTEADY FLOW IN
UNSATURATED SOIL

In the bulk of solid-liquid mixture, there must ex-
ist saturated and unsaturated REV. We firstly derive 
the flow condition insaturated REV, and then continue 
to derive flow in unsaturated REV.From (25b), we find

This implies 0th-order pressure depends on macro-
scopic variables for 0th-order REV. To solve u0i , we 
combine (33) and (25b) to get

Due to the linearity of (34), the solution form of 
u0i and p1 are (Mei & Auriault, 1991)

where Kij and Aj are the 2nd and 1st-order tensors 
representing the geometrical properties in the 0th-or-
der REV. p1 is the function of x1i , x2i ,...,t , and is 
a constant representing outer physical excitation for 
0th-order pressure. Applying (35a,b) with (25a) and 
(36b), we obtain

and boundary conditions for water in saturated 
REV become

  is periodicity in micro-scale

For unsaturated REVs, the free surface boundary 
conditions become

(33)

(34)

(35 a b)

(36)

(37)

(38)

(40)

(41)

(42)

(43)

(44)
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For unsaturated REV, we apply assemble average 
to (25a)

With Divergence theorem, we obtain

where S is the interface of water in 0th-order REV. 
There are three different kinds of interfaces, water-
solid interface SΓ , water-air interface Sh , and water 
area on each surface of a REV SREV . Separate (46) 
for different kinds of interface, we obtain

where ni is an unit normal vector of each surface, and 
S0 is the element surface of 0th-order REV in integral. 
With no-slip condition, the last term on RHS of (46) 
is zero.

Dividing |vh0| from the free-surface kinematic 
boundary condition (40), we obtain

the subscript zero of the v0h0 means taking gradi-
ent with 0th-order spatial independent variables, x0, y0 

and z0 . In (47), the second term is just u0i - ni . So this 
is simply the normal flux at free surface of water.

Finally, the second term in RHS of (46) could be 
expressed by following equation.

where Sx , Sy and Sz are the areas of the surface normal 
to yz-, xz and zy-plane respectively of a REV. Taking 
(35a) into (50) together with each unit normal vectors 

of its surface of REV and rearranging it, we obtain

We define the terms in brackets in RHS of (51) 
as below.

where K j is the hydraulic conductivity of REV in each 
direction of x, y and z. Then, (51) could be changed 
into the form as below.

Finally, taking (52) and (49) into (46) to give

So far, we have obtained the averaged 0th-order 
continuity. Before continuing the derivation, we need 
to define water content first. As defined in (14), the 
water content is

where a = a(z ) is the area of water with z variation 
in a REV. Water content θ0 depends on x1i , x2i ,... , t , 
and it can be regarded as the averaged water content in 
macro-scale; and h0 is function of time in unsaturated 
soil. Differentiating (54) with respect to t0 once, we 
could obtain

where a ( h0 ) is the area at free surface of water in 
REV. Using (55) and substituting it into (53), we ob-
tain

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(52 b)

(53)

(54)

(55)

(56)
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together with the hydraulic conductivity, from the ex-
periments or other calibrated data, in each direction of 
soil, we could use (60) to obtain the water content in 
soil. (60) is the same as the Richards’ equation(1931).
CONCLUSION AND DISCUSSION

In the problem of the seepage flow in unsaturated 
static soil, without any constitutive assumption for 
solid-liquid mixture, we successfully use homog-
enization theory to obtain the equation governs wa-
ter content which is proved to be the same as Rich-
ards’ equation. From this result, we could conclude 
that homogenization theory is adequate to be used in 
the problem of unsteady and unsaturated solid-liquid 
mixtures. However, the result in this paper is only the 
leading order solution for fixed solid. We will con-
tinue using this theory in the problem of unsteady, 
unsaturated and movable solid of solid-liquid mixture 
to derive the macro-scopic motion of solid-liquid mix-
ture and study the process of debris-flow initiation.
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The inner product of unit normal vector on the 
surface of infinitesimal area, dS0 , together with the 
unit z-direction vector, ez= (0,0,1) , is

where θ is the angle between unit normal vector of 
free surface and z-direction vector. (see Fig. 2)

Therefore, the integrand inside the integral of 
LHS in (56) becomes

In (58), dS0 cosθ is the projection area of free 
surface of water on the z-plane. By using (58), (56) 
becomes

(59) is another form of averaged continuity of 0th-
order REV. In the micro-scopic REV, the projection 
area dS0 cosθ approaches the original area, a ( h 0) in 
the macroscopic point of view. Therefore, integral on 
LHS is very close to 1, and finally (59) becomes

ki could be regard as the REV-averaged hydraulic 
conductivity in x, y and z-direction respectively. And 
from (60), we could find that the time rate of change of 
water content in the macro-scale is proportional to the 
macroscopic pressure gradient in each direction. If we 
have the macroscopic boundary conditions of pressure 

(57)

Fig. 2	 -	 Unit normal of infinitesimal surface and ez

(58)

(59)

(60)
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