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Extended abstract
Le mappe di suscettibilità da frana sono strumenti che quantificano la probabilità spaziale di innesco di frane tramite lo studio 

statistico della combinazione di vari fattori predisponenti. Negli ultimi anni, la ricerca in tema di analisi della suscettibilità da frana 
si è focalizzata più su aspetti di tipo matematico-informatico (realizzazione di algoritmi sempre più complessi e performanti) che su 
aspetti di tipo geomorfologico e geologico. In questo studio, una mappa di suscettibilità viene prodotta per la Toscana settentrionale 
(3100 km2) ricorrendo ad un algoritmo di machine learning detto Random Forest e, elemento di maggiore novità, affiancando ad un 
set di parametri predisponenti consolidati in letteratura un set di parametri innovativi derivati da carte tematiche ad alta risoluzione 
disponibili a scala nazionale: mappe di consumo di suolo e carte geologiche digitali in scala 1:10.000. 

Da questi dati di base è stata definita una serie di parametri originali, che sono stati utilizzati come variabili indipendenti per 
la modellazione della suscettibilità.

Utilizzando i dati nazionali di monitoraggio del consumo di suolo, è stato derivato un indicatore del grado di antropizzazione 
del territorio. Il consumo di suolo può essere definito come la rimozione del suolo o la sua occlusione mediante materiali artificiali 
(parzialmente) impermeabili. È un processo antropico con impatti ambientali notevoli e l’indice derivato è stato testato come 
possibile dato di input nella modellazione della suscettibilità per tenere conto dell’interferenza delle azioni antropiche nell’assetto 
idrologico e geomorfologico dei versanti.

È stato inoltre introdotto un approccio multi-parametrico per introdurre nella modellazione l’informazione di tipo geologico 
in modo più completo. Di solito, negli studi di suscettibilità la litologia è l’unica variabile geologica considerata; ciò non è 
sbagliato ma costituisce un’informazione parziale: la litologia è solo una delle tante informazioni che le mappe geologiche possono 
fornire e dunque il potenziale di tali mappe rimane in gran parte sottoutilizzato. Nel presente studio, la cartografia geologica 
regionale in scala 1:10.000 è stata riclassificata secondo cinque criteri diversi (litologico, genetico, strutturale, paleogeografico 
e cronologico), dando luogo ad altrettanti parametri che sono stati utilizzati nella modellazione della suscettibilità per definire in 
modo più compiuto le caratteristiche geologiche dell’area.

Per quanto riguarda i parametri di letteratura, sono stati utilizzati quota, rugosità del rilievo, pendenza, energia del rilievo, 
orientamento del versante, tre tipologie di curvatura diverse, indice TWI e TPI, area drenata, uso/copertura del suolo e due variabili 
meteoclimatiche basate sui tempi di ritorno delle piogge. Inoltre, sono state introdotte anche due variabili casuali con lo scopo 
di individuare (e, successivamente, scartare) eventuali variabili che mostrano capacità predittiva simile a quella fornita da una 
classificazione o da una serie di misure casuali (circostanza non verificatasi nel nostro caso di studio).

L’efficacia dei nuovi parametri presentati in questa ricerca è stata valutata in modo oggettivo tramite due indicatori di 
performance comunemente usati in letteratura. L’AUC (area under receiver-operator characteristic curve) è stata utilizzata per 
misurare l’affidabilità della mappa di suscettibilità rispetto ad un dataset di verifica indipendente da quello utilizzato per addestrare 
il modello. L’OOBE (out of bag error - errore che verrebbe commesso dal modello se venisse ignorata una variabile) ha consentito 
di avere una stima dell’importanza relativa e della capacità predittiva di ogni parametro utilizzato.

È stato possibile concludere che l’impego del parametro derivato dal consumo di suolo fornisce un contributo positivo alla 
modellazione e non è ridondante rispetto alle variabili derivate dal Corine Land Cover, perché i due tematismi di base hanno 
risoluzioni spaziali, accuratezze tematiche e obiettivi di mappatura completamente diversi. Inoltre le mappe di consumo di suolo 
vengono aggiornate annualmente. Per quanto riguarda i parametri derivati dalla carta geologica, i risultati mostrano che l’uso 
combinato di tutti i parametri è migliorativo e dà risultati più accurati, aprendo nuove prospettive per l’impiego del dato geologico 
negli studi sulla suscettibilità da frana.
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Abstract
Landslide susceptibility maps (LSM) define the spatial 

probability of landslide occurrence based on the spatial 
distribution of predisposing factors. In this work, a LSM is 
produced for Norther Tuscany (3100 km2) with a Random Forest 
algorithm. The element of novelty is the use, besides 15 state-of-
the-art parameters, of some newly proposed parameters.

Starting from the national soil sealing map updated yearly 
by ISPRA, we derived a parameter accounting for the degree of 
human interference on hillslope systems. Soil sealing is the most 
intense form of land take, and it can be defined as the destruction 
(or covering) of soil by completely or partly impermeable 
artificial material.

A multi-criteria approach was introduced to get a more 
complex and complete geological information into LSM. Usually, 
lithology is the only geological variable used, leaving the potential 
of geological maps largely unexploited. We used a 1:10,000 
geological map to define a set of parameters based on lithological, 
genetic, structural, paleogeographic and chronological criteria, 
and found that the joint use of all the geology-derived parameters 
improved the susceptibility assessment.

The outcomes of this study could be easily reproduced 
elsewhere in Italy, since the newly proposed parameters were 
generated from easily accessible datasets.

Keywords: landslide susceptibility, random forest, geology, soil sealing

Introduction
Landslide susceptibility maps (LSM) can be defined as the 

representation of the spatial probability of landslide occurrence 
over appropriate spatial units (Brabb, 1984). LSMs have been 
extensively used for land planning (Cascini 2008; Frattini et 
alii 2010) and hazard assessment (Corominas et alii, 2003); 
more recently they have been successfully integrated also in 
quantitative risk assessment (Chen et alii, 2016) and early 
warning systems (Segoni et alii, 2018: Tiranti et alii, 2019). 

In recent years, many advances have been proposed to 
increase the reliability of LSMs. As instance, new sophisticated 
machine learning algorithms are continuously proposed and 
applied to susceptibility mapping (Kavzoglu et alii, 2019), 
or existing models are hybridized to increase the predictive 
effectiveness of the susceptibility assessment (Thai Pham 
et alii, 2019; Li & Chen, 2020). Newly proposed and well-
established models are continuously compared (Yilmaz 
2009; Zizioli et alii, 2013; Kalantar et alii, 2018) and many 
attempts have been made to produce ensemble predictions by 
blending the different outputs coming from different models 
(Tien Bui et alii, 2019; Di Napoli et alii, 2020 and 2021). 
Another series of works, instead than on the models, focuses on 
their sensitivity to different methods used to apply them to real 

case studies, investigating e.g. model settings (Catani et alii, 
2013), sampling techniques (Kalantar et alii, 2018), mapping 
units (Erener & Uzgun 2012; Canavesi et alii 2020) and 
spatial resolution (Chen et alii, 2020). Other works introduce 
robust validation procedures to measure the reliability of the 
LSM and to explain their outcomes (Frattini et alii, 2010; 
Xiao et alii, 2020). Of course, beside model algorithms and 
model settings, the selection of the explanatory variables used 
in the susceptibility assessment has a strong influence on the 
final results, and new parameters are continuously proposed for 
LSM studies. The present work originates in this framework, 
with the objective of using for landslide susceptibility mapping 
two newly proposed sets of input parameters. The first one is 
the use of soil sealing maps, a monitoring product delivered 
every year at national scale for the whole Italy by ISPRA 
(Italian Institute of Environmental Protection and Research), to 
account for the ongoing anthropogenic process of urbanization 
and impermeabilization of the territory. The second is a multi-
parametrical approach to transfer geological information from 
detailed geological maps to landslide susceptibility models, 
accounting simultaneously for the lithology, paleoenvironment, 
tectonic history, genetic characteristics, and age of the mapped 
units. Some preliminary tests on the potentiality of these two 
sets of parameters have been recently published (Luti et alii, 
2020; Segoni et alii, 2020), but to our knowledge this is the 
first time they are integrated in a full model configuration to 
map landslide susceptibility. 

MATERIAL AND METHODS
Test site description

The test site (Fig. 1) is located in the Northern part of 
Tuscany and it is composed by the provinces of Lucca, Prato 
and Pistoia. This area has been selected for its heterogeneity, 
both from a morphological and a geological point of view and 
for the availability of a detailed landslide inventory. The area 
is also relatively small, about 3100 km2 wide, so it has been 
considered a good test-site to verify the hypotheses of work, 
since it allows low time-consuming simulations.

From the morphological point of view, the northern part is 
characterized by mountains (with altitudes up to 2000 m asl) 
and intermontane plains, while the central and southern parts 
are mainly hilly and plain areas, respectively. The geological 
setting of the area is the effect of the Apennines orogenesis, 
which resulted in the juxtaposition of several tectonic units, 
piled during the Tertiary under a compressive regime that was 
followed by extensional tectonics from the Upper Tortonian 
(Vai & Martini 2001). This process produced a sequence of 
horst-graben structures with a NW-SE alignment, that resulted 
in the emplacement of Neogene sedimentary basins, mainly of 
marine (to the West) and fluvio-lacustrine (to the East) origin.
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In the test site the bedrock is mainly composed of 
metamorphic rocks (marls, phyllite and schists) in the western 
part and of layered pelitic flysch formations in the northern part, 
while in the central and southern parts the bedrock consists 
mainly of massive arenaceous flysch, covered by alluvial 
deposits. Further details on the geological characteristics of the 
study area are reported in the subsequent section describing the 
geological parameterization of the test site. The mountainside 
is mantled by a 1.5–5m thick layer of colluvial soil overlying 
the bedrock (Segoni et alii 2018), which exhibits a marked 
contrast in geotechnical properties with respect to the bedrock 
(Tofani et alii, 2017).

The test site is widely affected by landslides (Battistini 
et alii, 2017), where the main types can be classified as slides 
(rotational, translational, and compound), slow earth flows, 
complex movements (mainly slides evolving into flows), and, 
to a lesser extent, debris flows (Fig. 1) (Rosi et alii, 2018; Luti 
et alii, 2020).

From the climatic point of view, the region is characterized 
by a Mediterranean climate, with warm and dry summers and 
mild and wet winters. Rainfall distribution is characterized 
by two peaks over the year, the main one is in Autumn 
(November is the rainiest month) and the secondary one is 

Fig. 1 - Elevation map and landslide distribution of the test site

in Springtime, while summer is the driest period of the year 
(Rapetti &Vittorini, 1994; Rosi et alii 2012), with sporadic 
and isolated rainstorm.

The mean annual rainfall ranges from 800 mm to 1500 mm 
(Maracchi et alii, 2005; Segoni et alii, 2014). Lower rainfall 
amounts are recorded in the plain areas of the southern part of 
the study area, while the mountainous northern part is usually 
characterized by a higher amount of rainfall. Being close to the 
sea and due to the presence of high relieves, the western part of 
the study area can be affected by orographic rainfalls, caused 
by cyclones moving westward from the sea, which can result in 
the triggering of landslides.

Random forest treebagger
The landslide susceptibility assessment was performed 

using the Random Forest algorithm (RF), a machine learning 
algorithm for non-parametric multivariate classification 
(Breiman, 2001), implemented in a Matlab software code 
(MathWorks, version R2020b) (Lagomarsino et alii, 2017). 
Random Forest relies on the construction of binary decision 
trees (or Bayesian trees) using the bootstrapping technique. 
Bootstrapping consists in a random sampling of a part of the 
variables, then those not included in the sampling, called “out-
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State-of-the-art explanatory variables
In the literature there is no consensus on the optimal 

number of variables to be used: this choice may be influenced 
by the landslide type, the physical features of the study area 
and the characteristics of the model. Since Random Forest is 
acknowledged to be capable of handling a large number of 
parameters and their multicollinearity (Brenning et alii, 2005; 
Catani et alii, 2013; Xiao et alii, 2020), 21 parameters were 
selected and prepared as raster with 100 m pixel size, since this 
mesoscale has been recognized as a good compromise in studies 
on landslide susceptibility on a regional scale (Catani et alii, 
2013; Chacón et alii, 2006).

Fifteen “basic parameters” were selected among those most 
used in literature (Reichenbach et alii, 2018; Catani et alii, 
2013) and among those that generated results with high predictive 
power in previous susceptibility assessments performed at this test 
site (Segoni et alii, 2016; 2018; 2020; Luti et alii, 2020). Some 
morphological and hydrological parameters were derived from a 
digital elevation model with 10 m cell size: elevation, roughness 
(defined as the standard deviation of elevation), slope gradient, 
standard deviation of slope gradient, aspect, total curvature, planar 
curvature, profile curvature, topographic wetness index (TWI), 
topographic position index (TPI), flow accumulation, stream 
power index (SPI). Land use/land cover was used as a variable as 
well, and it was derived by the most updated Corine Land Cover 
map (1:50.000 scale) available, referred to the year 2018. Another 
set of predisposing factors accounts for the climatological 
characteristics of the area and shows the attitude of the territory 
(expressed in terms of return time) to be affected by prolonged 
rainfalls or by exceptionally intense rainfalls. While the former 
are typically associated to landslide with a complex hydrological 
response (e.g. deep seated landslide in low permeability terrain), 
the latter are usually related to shallow landslides in terrains 
with a relatively higher permeability. Following the approach of 
Catani et alii, 2013, these characteristics were estimated by the 
parameters k_100_72 (representing the return time of a rainfall 
event with 72 hours duration and 100 mm total rainfall depth) 
and k_30_1 (representing the return time of a rainfall event of 
30 mm in one hour). These parameters were already defined by 
Catani et alii (2013) with a procedure composed by a statistical 
analysis carried out in the 332 rain gauges of the regional network 
and by a kriging interpolation to the whole Tuscany territory. 
In addition, two artificial control variables were created by 
generating two rasters of random values ranging from 0 to 1 (thus 
simulating a variable expressed as a percentage) and from 0 to 5 
(thus simulating a variable classified into 5 classes). The purpose 
of these control variables is to check the effectiveness and the 
significance of all the others, by identifying if some “weak” 
explanatory variable provides a contribution close to the one 
provided by a random field.

of-bag”, will be added into the process iteratively, to obtain 
a set of randomly generated decision trees. This technique 
allows to reduce predictive errors. In addition, a subset of data 
is excluded from sampling and is used in the validation phase 
as an independent dataset (Breiman, 2001).

Random Forest is an effective and widely used algorithm in 
landslide susceptibility studies (Trigila et alii, 2013; Xiao et 
alii, 2019). Among the advantages of using the RF algorithm, 
there is the possibility of using numerical and categorical 
variables at the same time, without assumption on the statistical 
distribution of their values. Furthermore, Random Forest 
is acknowledged to be capable of handling implicitly the 
multicollinearity of variables, identifying the uninfluential (or 
the pejorative) ones (Breiman, 2001; Brenning, 2005).

The Random Forest implementation used in this study also 
automatically performs a validation by building a Receiver 
Operating Characteristic Curve (ROC Curve) and calculating 
the relative area under the curve (AUC). AUC is widely used 
as a quantitative indicator for the predictive effectiveness 
of susceptibility models: it can range from 0.5 (completely 
random predictions) to 1.0. The implementation also calculates 
the OOBE (out of bag error) for each variable. This parameter 
measures the relative error that would be committed if a 
given variable is excluded from the random forest classifier. 
OOBE can be used to assess the relative importance of each 
independent variable, thus representing a powerful tool to 
interpret the results and to rank the variables according to their 
importance (Catani et alii, 2013).

INPUT DATA
Landslide data

The spatial distribution of landslides was derived from 
IFFI (Inventory of Landslides in Italy), an open access national 
scale inventory that has been credited to have a high degree of 
completeness and homogeneity (Trigila et alii, 2010; Herrera 
et alii, 2018). In the study area, 7799 landslides are mapped as 
polygons at the 1:10,000 scale. They have an areal extension 
ranging from 102 to 106 m2 and they are classified mainly as 
complex movements (55%) and rotational/translational slides 
(35%) (Fig. 1). Since the complex movements of the area consist 
of rotational slides that evolve into earth flows, the triggering 
mechanism and the predisposing factors can be considered 
similar and both classes of landslides can be included in the 
same susceptibility assessment (Segoni et alii, 2016, 2020). The 
remaining 10% of landslides is composed by debris flows (4%) and 
unknown movement typology (6%) and was excluded from the 
susceptibility assessment as in these cases the relationship linking 
triggering process – predisposing factors would be too different 
with respect to the abovementioned landslide types, preventing a 
proper statistical calibration of the susceptibility model.
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to the paleogeographic units they belong, thus accounting for 
different environment of deposition of sedimentary rocks and 
soils (Fig. 2e). The chronologic parameterization classifies the 
lithostratigraphic units according to their geological age (Fig. 2f).

MODEL APPLICATION
All explanatory variables were imported in a GIS system. 

For each landslide polygon, IFFI identifies a point located in the 
proximity of the scarp as the point of initiation of the instability. 
Those points were imported in the GIS system as well and 
were used to sample the environmental conditions associated 
to landslide triggering. To have a balanced prediction, an equal 
number of sample points was randomly generated outside the 
landslide polygons, to characterize the conditions associated with 
stable areas. The sample dataset contains 15598 points, evenly 
subdivided between landslide and no-landslide points. This 
dataset was randomly split in a model training dataset (70% of 
the points) and a model testing dataset (30% of the points), which 
both maintain the 50%-50% balance among landslide and no-
landslide points.

The sampled data were used as input for the Random Forest 
algorithm, configured with 500 trees and 100 iterations to select 
the classification tree with the highest predictive effectiveness 
according to the internal validation procedure performed in terms 
of AUC. The best prediction tree was then applied to the entire 
set of data to have a full susceptibility map of the area. At the 
same time, the out of bag error of each variable was calculated 
to identify the variables with little or no importance in the model, 
in order to remove them and run the model with a reduced 
configuration.

In addition, for comparison, a model run was also performed 
with a configuration that does not encompass the newly proposed 
variables (soil sealing and multiparametric geological variables).

RESULTS
A preliminary test of the model was performed using all the 

variables defined: 15 variables coming from the “core set”, 6 
newly proposed variables and the two random variables. This 
test was not used to map the susceptibility and was useful to 
compare the variables with respect to the randomly defined 
ones. An analysis of the OOBE values revealed that the random 
variables can be considered pejorative as they have values close 
to zero, and that all the other variables have a much greater and 
positive contribution to the modeling effectiveness (from 0.4 to 
2.6). As a consequence, to map landslide susceptibility, a “full 
configuration” run was performed by simply removing the random 
variables and using all of the “core” and “new” variables (totaling 
21 variables). The resulting map is shown in Fig. 3 and the 
validation statistics provided an AUC value of 0.77. A subsequent 
procedure of pruning (progressive iteration of the classification 

Newly proposed explanatory variables
Two innovative sets of variables were used in this study. The 

first one is the “soil sealing aggregation” (SSA), as it was named 
by Luti et alii (2020), who introduced it in a preliminary test for 
landslide susceptibility. Soil sealing is an extreme form of land 
take and is an anthropogenic process consisting in the destruction, 
removal or covering of soils by completely or partly impermeable 
artificial material (e.g. asphalt or concrete) (Prokop et alii, 2011). 
Italy is one of the European countries where the soil sealing 
process is more widespread, mainly because of the expansion of 
infrastructures and buildings (Munafò, 2019). ISPRA (Italian 
Institute for Environmental Protection and Research) monitors the 
spatio-temporal evolution of the soil sealing process and releases 
every year an updated national scale map. ISPRA soil sealing 
map consists of a high resolution (10m x 10m) raster conveying a 
binary information: pixels are classified either as “sealed soil” or 
as “non-sealed soil” (Munafò, 2019). To include this information 
in the susceptibility assessment, which is based on broader spatial 
units (100m x 100m pixels), we calculated the percentage of 
soil classified as sealed by the original ISPRA soil sealing map. 
Therefore, “soil sealing aggregation” values range from 0 (pixel 
composed by completely natural or semi-natural soil that fully 
retains his hydraulic and environmental properties) to 1 (pixel 
where the soil is completely artificialized). Intermediate values 
express different degrees of disturbance brought by artificial 
intervention to the soil, altering his hydrological features (Fig. 2a).

The second set of variables involves a multiparametric 
characterization of geological information. In the study area, 
a digital geological map produced by the Tuscany Region is 
available at the 1:10,000 scale (https://www.regione.toscana.
it/-/banche-dati-cartografia-geologica), which maps 194 
lithostratigraphic units. This very high thematic accuracy 
is impossible to be directly used for a statistical landslide 
susceptibility assessment at a regional scale, therefore the 
lithostratigraphic units should be grouped into broader classes 
with a specific geological meaning. The most used approach in 
the landslide susceptibility literature would be to group them into 
lithological units, as different lithologies usually have specific 
geotechnical properties and thus lithology could be considered 
a key feature in controlling the spatial distribution of landslides. 
Besides lithology (Fig. 2b), other parameterizations were 
created from the original lithostratigraphic map. The genetic 
parametrization considers the genetic process originating each 
formation and thus subdivides the areas into the following classes: 
clastic rocks, organogenic rocks, magmatic rocks, metamorphic 
rocks, soils (Fig. 2c). The structural parametrization accounts 
for the structural units in which the Apennine is traditionally 
subdivided according to its tectonic evolution (Fig. 2d). The 
paleogeographic parametrization is conceptually similar to the 
previous one, as it groups lithostratigraphic units according 
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Fig. 2 – 	 Newly proposed variables tested in this work: a) soil sealing aggregation; b) lithological units; c) genetic units; d) structural units; 
e) paleogeographic units; f) chronological units.
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importance of this modeling approach. Furthermore, the outcome 
that K_100_72 has a higher importance than K_30_1 allows to 
infer that the landslides typically affecting the study area are 
more sensitive to long and abundant rainfalls than to short and 
intense cloudbursts. This can be probably explained with the 
low-permeable residual soils mantling the bedrock (Tofani et al., 
2017) and is especially true for relatively deep rotational slides. 
It should be stressed that debris flows (accounting for 4% of 
the landslides mapped in the area), which are more sensitive to 
short and intense rainfalls, were excluded from the susceptibility 
analysis. Two other very important variables (4th and 7th, but 
with very similar OOBE values) are land cover and soil sealing. 
Both of them account for the anthropogenic or natural processes 
that shape the territory and cover the soil. These two variables 
have complimentary pros and cons: Corine Land Cover has a 
very high thematic accuracy but a coarse spatial resolution (the 
minimum mapping unit is 25 hectares), while the soil sealing map 
produced by ISPRA has a high spatial resolution (10 m pixels) 
but a low thematic accuracy, reporting a dichotomous subdivision 
between sealed soil and (semi)natural soil. The results of this 
application provide a strong evidence of the potential of using 
parameters derived from soil sealing in landslide susceptibility 
assessments: while Corine land cover may be used to account 
for different land uses and soil covers, soil sealing provides a 

removing the parameter identified as least important during the 
previous run) revealed that the full configuration is the one that 
produces the highest validation statistics. Indeed, the AUC value 
slowly decreases as the least important parameter is pruned out 
of the model configuration: e.g. AUC was 0.76 removing aspect 
and 0.75 removing aspect and roughness. In addition, a run was 
performed also with a “base” configuration, which does not 
include the newly proposed parameters (soil sealing aggregation 
and all the geological parameters other than lithology). The 
base configuration reported a lower effectiveness than the full 
configuration, with a 0.75 AUC: further insights on this difference 
will be discussed in the next section.

DISCUSSION
The out of bag error (Fig. 4) can be used as a proxy for the 

importance of each variable in the model, providing some insights 
on the landslide processes of the area. The most influential 
variables are elevation, return period of abundant rainfalls 
(K_100_72) and mean slope gradient. Concerning elevation and 
slope, this outcome is not surprising, as it is quite common to 
see in the literature these statistics ranked as the most important. 
Concerning rainfall, the use of a meteo-climatic parameter as a 
predisposing factor is not so common in landslide susceptibility 
studies and the second rank reported in this work stresses the 

Fig. 3 – 	 Landslide susceptibility map obtained with the full configuration of the model, encompassing soil sealing information and multiparametric cha-
racterization of geology.
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relatively low importance. Indeed, it should be stressed that the 
geological information has been included in this susceptibility 
model with five different parameters and all of them share the 
weight of training the machine learning algorithm to understand 
how geology is connected with landslide distribution. The 
use of five different geological parameters allows the model 
to provide a more complete description of the complex 
interactions between geological features and predisposition 
to landsliding. Traditional studies only account for lithology, 
which is obviously connected with landsliding, but it is only a 
partial information provided by geological maps and accounts 
only for one of the geological features that influence the 
landslide distribution. As instance, the same lithology could 
be found in two different structural units, which may have 
undergone completely different tectonic histories and stresses, 
thus leading to two different settings and resistance to failure. 
Paleogeographic units, accounting for the different environment 

high resolution information on the human disturbance on the 
hillslope system, thus the two parameters can be used together 
and complete each other. This especially true when the urban 
texture is sparse and scattered across the territory, like in the 
study area, because small villages, small infrastructures and 
isolated buildings are usually neglected by CLC. This brings 
about the risk of underestimating the role played by human 
activity in landsliding, while on the contrary the influence of land 
use changes and urbanization in predisposing slope instability is 
widely acknowledged (Persichillo et alii, 2017; Mendes et alii, 
2018; Martino et alii, 2019; Dikshit et alii, 2020): soil sealing 
maps can thus be regarded as an effective method to include the 
anthropic processes in landslide susceptibility studies.

In landslide susceptibility studies, geology is of course a very 
important element (Reichenbach et alii, 2018; Luti et alii, 2020). 
This is not in disagreement with the results reported in Fig.4, 
where the geological variables only apparently seem to have a 

Fig. 4 – 	 Explanatory variables used in the susceptibility assessment and their “out of bag error” (OOBE), which can be considered an indicator of the 
relative importance of each variable in contributing to the model results.
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by the ones of the full configuration. The resulting map shows 
the spatial distribution of the difference of the results produced 
by the two parameterizations (Fig. 5). Negative values are 
systematically found in the North-East sector and in the South 
sector. Both circumstances find a possible explanation with the 
multiparametric characterization of geological information. If 
the lithology alone is considered as in the basic configuration, 
the North-East sector is not differentiated by the rest of the 
stratified rocks dominating the largest part of the test site, 
while e.g. the structural parameterization allows differentiating 
the Tuscan Nappe structural unit from the Cervarola Unit and 
the Morello Unit (Fig. 2). This finer detail, if inserted into the 
susceptibility model with the full configuration, leads to refine 
the susceptibility map resulting in different susceptibility values 
in large sectors of the Cervarola and Morello units (Fig. 5).

A similar explanation can be found for the hotspots of 
negative differences in the South sector (Fig. 5): they are 
in correspondence of metamorphic rocks that outcrop more 

of sedimentation, could highlight differences in the chemical 
composition, in the texture of the parent material or in the 
stratigraphy, which may reflect in different predisposition to 
instability. Similarly, the chronological criterium may be useful 
to differentiate otherwise similar units that may differ for the age 
of deposition, in turn reflecting a different degree of weathering.

As a last test of the effectiveness of the parameterization 
used in this study, the result obtained with the full configuration 
were compared with those obtained by a base configuration 
that does not include the newly proposed parameters (soil 
sealing aggregation and all the geological parameters other 
than lithology). According to an approach recently introduced 
by Xiao et alii (2020), the difference is not expressed only 
in terms of AUC scores (the full configuration slightly 
outperforms the base configuration, as their AUC values are 
0.77 and 0.75, respectively), but the susceptibility values are 
compared on a pixel-by-pixel basis. Using a GIS software, the 
susceptibility values of the base configuration were subtracted 

Fig. 5 – 	 Map showing the difference in landslide susceptibility values calculated by the full configuration (21 parameters) and the basic configuration (15 
parameters)
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age), genetic units (according to the process that formed each 
unit), structural units and paleogeographic units. 

Results show that the full configuration of the model 
(using both state-of-the-art and newly proposed parameters) 
produces a more accurate spatial prediction of landslide 
susceptibility in terms of AUC values respect to the base 
configuration (using state-of-the-art and lithology as 
explanatory variables). 

In particular, the main differences in the mapped susceptibility 
values are located in portions of the area where the lithology is 
the same than in the surroundings, but other geological variables 
(mainly the ones derived by the structural, paleogeographic, or 
chronological criteria) highlight some differences in the bedrock 
composition. 

This can be considered as a further proof that susceptibility 
models may benefit from a multi-criteria parameterization of 
geological information, rather that relying only on lithological 
classifications, as commonly occurs in susceptibility 
studies. Regarding soil sealing parameter, its effect on the 
resulting map is less evident at first sight because of its 
scattered spatial distribution, but the high out of bag error 
values reveals that its contribution to the modeling is highly 
beneficial and not redundant respect to other parameters 
describing land cover (like Corine Land Cover derived maps), 
thus highlighting its capability to link the anthropogenic 
processes of transformation of the territory with the landslide 
susceptibility.

These findings open new interesting perspectives for 
landslide susceptibility studies in Italy, as the new variables 
tested in this study can be easily derived anywhere else in the 
national territory: an updated soil sealing map is provided for 
free at the nation scale every year by ISPRA, while detailed 
geological maps are available almost everywhere in Italy, 
since many regions have a 1:10,000 mapping of their territory 
and at national level Italy is covered by 1:100,000 maps which 
are being updated to a 1:50,000 scale. 

diffusely also in the West sector. The two sectors cannot be 
distinguished by lithology or genesis as they pertain to the 
same units (no-stratified rocks and metamorphic rocks). But if 
the structural units and the chronological units are taken into 
account, these two sectors can be considered as independent, 
because from a structural and chronological point of view the 
Ercinic basement is differentiated from the Mesozoic-Tertiary 
cycle and the Lower-middle-Triassic cycle. As a result, the 
multiparametric characterization of geology can better train 
the model to differentiate between the two areas. The positive 
differences in susceptibility value are less clustered, but a hotspot 
of high positive differences can be identified close to the South 
of the test area. Again, from a lithological point of view this site 
is not distinguished from the rest of the stratified rocks, but the 
structural and the paleogeographic parameterizations highlight 
some differences and specific features that are transferred to 
the full configuration susceptibility model. The higher AUC 
value resulting from the full configuration allows considering 
the resulting map as more reliable than the one derived from 
the base configuration; consequently, the multiparametric 
characterization of geology can be considered more reliable.

CONCLUSION
A Random Forest machine learning algorithm was applied 

in Northern Tuscany (provinces of Lucca, Pistoia and Prato) 
to map landslide susceptibility. Besides a core set of 15 state-
of-the-art predisposing factors, 6 newly proposed variables 
were used as input for the susceptibility model. The first of 
the new variables (soil sealing aggregation) was derived from 
the soil sealing map at 10 m resolution released yearly by 
ISPRA and accounts for the degree of human disturbance in 
the hillslope system. 

The other variables were derived from a detailed 
geological map of the Tuscany Region and serve as a multi-
criteria geological characterization: the area was subdivided 
into lithological units, chronological units (according to their 
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