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EXTENDED ABSTRACT
La perimetrazione delle aree potenzialmente inondabili e la conseguente redazione delle mappe di pericolosità, previste dalla Direttiva 

2007/60/CE del 23 ottobre 2007 del Parlamento Europeo, riguardante la valutazione e la gestione del rischio di alluvione, costituiscono materia 
complessa sulla quale possono essere trasferiti molti dei significativi progressi conseguiti dalla ricerca idraulica del settore.

Un primo aspetto riguarda certamente gli strumenti fisico-matematici per il calcolo delle correnti a superficie libera che si propagano in alvei 
naturali o in aree inondabili. Esse sono descritte matematicamente mediante le equazioni di moto vario, note come equazioni di De Saint Vénant 
o delle acque basse (Shallow Water Equations, SWE). Lo studio della corrente in moto vario conseguente al repentino crollo delle dighe murarie 
(dam break) ha rappresentato il più impegnativo campo di applicazione nel quale sono rifluite le modalità più innovative di integrazione numerica 
delle suddette equazioni e di trattazione del termine sorgente. La formulazione conservativa delle SWE e la loro integrazione mediante schemi 
shock capturing hanno consentito di inglobare la corretta simulazione delle discontinuità della corrente (onde a fronte ripido, propagazione 
del fronte in alvei asciutti) nonché i fenomeni idraulici localizzati e i cambi di regime di moto. Questi sono aspetti molto importanti anche per 
una valutazione accurata della pericolosità idraulica in correnti generate da esondazioni fluviali, anche in relazione all’interazione tra corrente 
e manufatti. Fino a qualche decennio fa, le SWE sono state utilizzate secondo una schematizzazione mono-dimensionale, per descrivere la 
propagazione della piena anche nelle aree golenali. Infatti l’uso delle equazioni bidimensionali era poco praticabile per due motivi: la mancanza 
di dati topografici di dettaglio, che ne potessero giustificare l’utilizzo, e l’eccessivo onere computazionale associato. Tuttavia, la schematizzazione 
1-D presenta delle limitazioni intrinseche che non sempre la rendono adeguata per la simulazione di fenomeni che avvengono fuori alveo. 
Questo è il motivo per cui oggi, sempre più frequentemente, i calcoli di propagazione sono eseguiti con modelli bidimensionali. Questi, però, 
ancora oggi non sono sempre basati sulle equazioni bidimensionali complete, ma implementano semplificazioni ottenute trascurando qualcuno 
dei termini delle equazioni complete. Pur se tali semplificazioni possono portare delle riduzioni degli oneri computazionali, esse non consentono 
di pervenire ad una corretta valutazione di dettaglio dei parametri che presiedono alla quantificazione della pericolosità idraulica. Come è noto, 
infatti, il grado di pericolosità di inondazione è associato principalmente alla velocità e alla profondità della corrente e l’affidabilità del loro 
calcolo dipende dal grado di dettaglio fisico-matematico insito nel modello utilizzato. Le differenze in gioco sono rese facilmente evidenti dal 
confronto dei risultati delle simulazioni ottenute dai modelli semplificati con quelli forniti dal modello completo. 

Il grado di dettaglio richiesto per l’analisi puntuale della pericolosità è oggi molto favorito dalle nuove tecniche di acquisizione dei dati 
topografici, quale la tecnica di tipo LiDAR, e dalla crescente potenza di calcolo. La crescente disponibilità di dati territoriali di tipo LiDAR e di 
tecniche di High Performance Computing stanno favorendo un crescente interesse verso l’applicazione dei modelli numerici basati sulle equazioni 
complete su larga scala. Quest’ultima considerazione apre il campo alla prospettiva di simulare su base idraulica i fenomeni di generazione e 
propagazione delle piene a scala di bacino mediante le SWE complete. Infatti è possibile trasferire a questo tipo di applicazione le strategie messe 
a punto in altri ambiti (dam break) per far fronte alle problematiche numeriche connesse alla trattazione delle celle asciutte-bagnate e ai termini 
sorgente. I risultati numerici, mostrati in questo articolo, appaiono del tutto incoraggianti. Le prime applicazioni pratiche di questo tipo di approccio 
potrebbero riguardare la simulazione delle piene impulsive (flash floods) che si verificano nei piccoli bacini. L’applicazione delle equazioni 
complete su un dominio di calcolo che coincide con l’intero bacino idrografico consente di inglobare in un fenomeno unitario sia gli scorrimenti 
superficiali (overland flow) sia i moti delle acque incanalate nel reticolo idrografico. Infine, tra le attività richieste dalla normativa Europea in 
materia di alluvioni, vi sono la comunicazione del rischio alle popolazioni esposte e il coinvolgimento attivo delle parti interessate ai processi di 
pianificazione e gestione del rischio di alluvione. Infatti occorre che la popolazione potenzialmente esposta al rischio acquisisca un adeguato livello 
di consapevolezza degli impatti di un’inondazione. Per tale ragione, una modalità innovativa di comunicazione può essere la visualizzazione delle 
classiche mappe mediante tecniche di realtà virtuale. Alcune applicazioni di tali tecniche sono mostrate per una potenziale alluvione del centro 
storico della città di Cosenza (Calabria, Italia). Obiettivo di questo articolo è fornire una review aggiornata sugli aspetti richiamati sopra, insieme a 
pratiche indicazioni e spunti di riflessione per la redazione delle mappe di pericolosità e per la comunicazione del rischio.
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ABSTRACT
From a hydraulic point of view, flood propagation in natural 

channels or in floodplains should be simulated using the fully-
dynamic shallow water equations (SWEs), although their 
kinematic or diffusive approximations are still commonly used in 
practical applications. Indeed, only the use of the fully dynamics 
equations, formulated in a conservative form, allows the correct 
treatment of localized hydraulic phenomena and regime changes, 
factors that are very important for risk assessment. Currents 
originated by dam break phenomena are a field of study where 
these localized phenomena arise in a preponderant way.

Until a few decades ago, the SWE were essentially 
developed following a one-dimensional approach, using 
various schematization and numerical tricks for describing 
the propagation in floodplain areas. The reasons why the 
1-D approach was the preferred one were twofold: the lack of 
high-resolution topographic data for the detailed description 
of the hydraulic processes across the section and the limited 
computational efforts. Nowadays, the importance of these aspects 
are dramatically reduced and the use of the two-dimensional 
SWEs starts to be considered as the reference approach for flood 
propagation studies.

Although the use of the fully dynamic wave equations 
may generate accurate results, the complexity of the associated 
numerical solvers and their computational times favored 
the development of simplified approach whose reliability is 
questionable especially for urban flood simulation. 

LiDAR data availability and the development of high 
performance computing technology allow the researchers to 
develop also flood simulations at the basin scale based on the 2D 
fully dynamic shallow water equations. In simulations like these, 
it is not very simple to achieve stable computations in presence of 
very shallow depths over abrupt changes of the bottom slopes and 
dry/wet interfaces. However, the significant improvements made 
in the river flows modeling, flood propagation and dam breaking 
flows allowed one to obtain stable results also in these complex 
situations.

So a lot of work has been carried out in the context of the 
hydraulic numerical simulations for flood mapping in order to 
fulfill the European Floods Directive. However, it should be 
born in mind that the Directive itself requires to take care of 
risk communication with the people involved, encouraging the 
active involvement of the interested parties in the development 
of flood management plans. The integration of the classic 2-D 
flood maps, obtained using the models mentioned before, with 
3-D representations of flood inundations using virtual reality 
techniques might allow non-expert public an adequate perception 
of the flooding impact.

Following all these considerations, the paper reviews 
the current state-of-the-art for hydraulic modelling of floods, 

focusing on the above-mentioned topics and providing practical 
suggestions for flood hazard assessment and communications.

Keywords: Shallow Water Equations, dam-break, 1-D and 2-D 
flood mapping, overland flow, 3-D virtual environment, flood risk 
communication

INTRODUCTION
The flood-prone areas delimitation and the consequent 

mapping of flood hazard required by the European Floods Directive 
(2007/60/CE), concerning the assessment and management of 
flood risk, are complex issues on which the scientific community 
has achieved significant results in recent years.

From a hydraulic point of view, flood propagation in natural 
channels or in floodplains should be simulated using the fully 
dynamic shallow water equations (SWEs), although their 
kinematic or diffusive approximations are still commonly used in 
practical applications. Indeed, only the use of the fully-dynamic 
equations, formulated in a conservative form, allows the treatment 
of localized hydraulic phenomena and regime changes, that are 
very important aspects to be correctly computed if we want to 
achieve an accurate assessment of the flood hazard. A field of 
study where these problems arise in a preponderant way are the 
currents originated by dam break phenomena. Dam break wave 
propagation studies represent the historical field of application 
of SWEs and several more and more reliable numerical models 
were proposed, in the last two or three decades, to simulate this 
phenomenon.

Until a few decades ago, the SWE were essentially 
developed following a one-dimensional approach, using 
various schematization and numerical tricks for describing 
the propagation in floodplain areas. The reasons why the 
1-D approach was the preferred one were twofold: the lack of 
high-resolution topographic data for the detailed description 
of the hydraulic processes across the section and the limited 
computational efforts. However, 1D numerical schematizations 
may suffer from inherent limitations, which do not always allow 
one to properly simulate the phenomena that take place in the 
riverside areas.

For these reasons, although the 1D approach still remains 
the most frequently used method, even in flat flood areas, the 
use of the two-dimensional SWEs starts to be considered as the 
reference approach for flood propagation studies.

Although the use of the fully dynamic wave equations 
may generate accurate results, the complexity of the associated 
numerical solvers and their computational times favored the 
development of simplified approach to reduce computation 
costs. However, performances and limitations of the simplified 
models, applied in urban flood simulation, have not been 
deeply investigated yet, even though some studies focused on 
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comparative analyses of flood propagation models. Furthermore, 
the suitability of the approximate shallow water equations to be 
used for pedestrians and vehicles hazard assessment in urban 
flooded areas has not yet been fully verified in the literature. The 
flood hazard degree, related to the flood conditions at which loss 
of stability might occur, is mainly related to relationships between 
velocity and water depth, whose accuracy depends on the physical-
mathematical aspects that characterize the model used.

Moreover, nowadays the methods for mapping flood-prone 
areas cannot ignore the new topographic surveying techniques, 
greatly enhanced by LiDAR-type techniques and the enormous 
increase in computing power. LiDAR data availability and the 
development of high performance computing technology allow to 
facilitate the application of fully dynamic shallow water equations 
on larger and larger areas, so that in the near future they could be 
commonly applied even at the basin scale.

Therefore, according the discussion presented so far, a lot 
of work has been carried out in the context of the hydraulic 
numerical simulations for flood mapping. However, it should 
be born in mind that the European Floods Directive requires 
to take care of risk communication with the people involved, 
encouraging the active involvement of the interested parties in 
the development of flood management plans. This is essentially 
due to the fact the general public is directly confronted with flood 
events and flood damages, and, for this reason, they should be 
increasingly involved in flood protection. For these reasons, it 
is increasingly recognized that the integration of the classic 2-D 
flood maps, obtained using the models mentioned before, with 
3-D representations of flood inundations using virtual reality 
techniques might allow non-expert public an adequate perception 
of the flooding impact. As highlighted by the emerging field of 
research related to visual risk mapping, the importance of virtual 
reality techniques for flood risk communication might represent a 
novel tool for emergency planning and risk management. 

Following all these considerations, the paper reviews 
the current state-of-the-art for hydraulic modelling of floods, 
focusing on the above-mentioned topics and providing practical 
suggestions for flood hazard assessment and communications.

MATHEMATICAL AND NUMERICAL MODELLING
The shallow water equations (SWEs) represent mass and 

momentum conservation and can be obtained by depth averaging 
the Navier–Stokes equations in the vertical direction, under the 
hypothesis that the wave length of the phenomenon is much higher 
than the depth of the water where the phenomenon takes place. 
From a mathematical point of view, the shallow water equations 
are a time-dependent system of nonlinear partial differential 
equations of hyperbolic type. The SWEs can be written in one and 
two dimensions. For the sake of brevity, only the two-dimensional 
model is described here. The two-dimensional shallow water 

equations in conservative form are:

	 (1)

where:

	 (2, 5)

in which t is time; x, y are the horizontal coordinates; h is the 
water depth; u, v are the depth-averaged flow velocity in x- and 
y- directions; g is the gravitational acceleration; S0x, S0y are the 
bed slopes in x- and y- directions; Sfx, Sfy are the friction slopes 
in x- and y- directions, that can be calculated from Strickler’s 
formula; q is the later inflow or the net rainfall to simulate an 
overland flow event.

Only in very special cases is it possible to derive analytical 
solutions to these equations and, therefore, numerical methods 
must be used to obtain solutions to solve practical problems which 
include discontinuities in the solution. Many authors proposed 
numerical schemes for the integration of the 1-D and 2-D SWEs. 
A complete review of numerical schemes is reported in Leveque 
(2002), in Hirsch (2007) and in Toro (2009). In particular, 
many shock capturing Finite Volume schemes have been widely 
implemented owing to their capacity to simulate various types 
of flow even in the presence of discontinuities. Considering the 
finite volume discretization, the equation (1) is integrated over an 
arbitrary control volume Wi and applying the divergence theorem 
to each component of the vectors f and g in order to obtain surface 
integrals, it becomes as (see e.g. Hirsch, 2007):

	 	 (6)

where ∂Wi being the boundary enclosing Wi, n is the unit vector 
normal and L is the length of each boundary.

Denoting by Ui the average value of the flow variables over 
the control volume Wi at a given time, the Equation (6) can be 
discretized as:

	 (7)

Specifically, for the evaluation of the numerical flux in 
Equation (7), two-dimensional Finite Volume schemes are 
being used more frequently, which allow analysis of the flood 
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propagation phenomena over complex and irregular topography 
(see for example: Bradford & Sanders, 2002; Brufau et alii, 
2002; Toro, 2009; Toro & García -Navarro, 2009; Costabile & 
Macchione, 2015).

Apart from the computation of numerical fluxes, the 
numerical integration of the SWEs in complex topographies 
requires further specific algorithms to the numerical treatment 
of the bottom slope, the friction slope and the wet-dry fronts. 
In particular, the treatment of source terms of the shallow water 
equations is a crucial topic for the numerical models (Murillo 
et alii, 2007; Valiani & Begnudelli, 2006; Murillo & García-
Navarro, 2010; Chertock et alii, 2015; Vacondio et alii, 2016; 
Costabile et alii, 2009; Costabile et alii, 2012a); Costabile 
et alii, 2013; Liang et alii, 2015; Xia et alii, 2017). Particular 
attention should be paid also to the treatment of the friction slope. 
The pointwise discretization of the terms leads to numerical 
instabilities. Therefore, an implicit or semi-implicit treatment 
of the friction source term (Brufau et alii, 2004; Costabile et 
alii, 2013; Liang et alii, 2007; Cea & Blade, 2015) is preferred. 
Finally, it is important to implement a robust wet-dry procedure 
(for further details one may refer to Costabile et alii, 2013).

FIELDS OF APPLICATION
Numerical modelling of dam-break wave propagation 

 Flood wave computation due to the collapse of a dam can 
be analytically solved only for some theoretical schematisations 
(Ritter, 1892; Dressler, 1952; Stoker, 1957). Since the inertial 
terms in the momentum equation play a fundamental role, this 
represents the typical situation for which the use of the fully 
dynamic wave equations are necessary. Therefore, several 
numerical models have been developed in this field and many 
experimental studies have been carried out in order to collect a 
number of test cases for models validation.

Starting from the early experimental studies (Chaudhry, 
1993; Braschi et alii, 1994; Bechteler et alii, 1992; Chervet 
& Dalléves, 1970; Bellos et alii, 1992; Fraccarollo & Toro, 
1995; Aureli et alii, 2000), some authors developed detailed 
experiments related to dam break wave propagation with obstacles 
or based on particular channel configuration, in order to reproduce 
two-dimensional effects, (Ozmen-Cagatay & Kocaman, 2011; 
LaRoque et alii, 2012; Elkholy et alii, 2016). Other experiments 
have been carried out in presence of erodible bottom or with 
granular material (Soares-Frazão et alii, 2007; Zech et alii, 2008; 
Sarno et alii, 2011; Martinez et alii, 2011; Soares-Frazão et alii, 
2012; Moraci et alii, 2015; Di Cristo et alii, 2017; Qian et alii, 
2017). Finally, some experiments have been carried out also in 
order to estimate the impact load exerted by a dam-break wave on 
an obstacle (Aureli et alii, 2015).

This large number of laboratory experiments allows the 
researcher to develop sophisticated numerical methods aimed at 

testing the performances of numerical methods for the solution of 
the SWEs. As mentioned in the previous section, unsteady flow 
equations should be expressed in a conservative form and shock-
capturing numerical schemes should be employed. Therefore, a 
lot of numerical schemes for the simulation of dam-break test 
cases are available in literature (Garcia & Kawhawita, 1986; 
Chaudhry, 1986; Bellos & Sakkas, 1987; Bellos et alii, 1992; 
Soulis, 1992; Alcrudo & García-Navarro, 1994; Jin & Fread, 
1997; Brufau & García-Navarro, 2000; Macchione & Morelli, 
2003; Zoppou & Roberts, 2003; Zhou et alii, 2004; Liang et alii, 
2006; Aureli et alii, 2008; Ying et alii, 2009; Liang & Borthwick, 
2009; Biscarini et alii, 2010; Singh et alii, 2011; Gupta & 
Singh, 2015; Kalita, 2016; Peng et alii, 2015 Cozzolino et alii, 
2017; Castro-Orgaz & Chanson, 2017). In this context, some 
comparative studies aimed at the evaluation of shock-capturing 
schemes in dam-break flood computations can be also found in 
the literature (see for example Macchione & Morelli, 2003).

In real world applications, computations must necessarily 
employ numerical approaches that take into account friction 
and irregular topography of the riverbed. Several studies related 
to dam-break simulations of real events can be found in the 
literature (Hervouet & Petitjean, 1999; Hervouet, 2000; Valiani 
et alii, 2002; Macchione & Viggiani, 2004; Yochum et alii, 2008; 
Petaccia et alii, 2008; Ying et alii, 2009; Gallegos et alii, 2009; 
Altinakar et alii, 2010; George, 2011; Singh et alii, 2011; 
Wang et alii, 2011; Pilotti et alii, 2011; Bosa & Petti, 2013; 
Gavardashvili, 2013; Petaccia & Natale, 2013b; Kim et alii, 
2014; Kim & Sanders, 2016; Haltas et alii, 2016).

It seems important to underline that the numerical solvers 
developed for dam break computations can be used also as flood 
routing module for the propagation of discharge hydrographs 
originated by the progressive erosion of an earth-fill dam, 
whose computation required specific methods (see for example 
Macchione, 2008; Macchione & Rino 2008, Macchione et alii, 
2016a). An example of this can be found in Macchione et alii 
(2016b), in which a two-dimensional shallow water model has 
been used for the numerical simulation of the Big Bay dam failure, 
whose hydrograph has been reconstructed using the Macchione 
(2008) model. In Fig. 1, the simulated maximum water depths (Fig. 
1a) and the flood evolution have been reported (Figs. 1b, 1c, 1d).

Flood mapping: advances and numerical approaches
Numerical modelling of flood wave propagation based on 

shallow water equations has rapidly developed in the last years, 
shifting from 1-D to 2-D models to simulate hydrologic floods 
events. The choice of the correct modelling approach is debated 
in the literature, as documented by several comparative studies 
(Horritt & Bates, 2002; Tayefi et alii, 2007; Alho & Aaltonen, 
2008; Bohorquez & Darby, 2008; Cook & Merwade, 2009; Neal 
et alii, 2012). In any case, the significant advances in the numerical 
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flood modelling, in computer technology and in the topographic 
surveying techniques has fostered the use of 2-D representations of 
flood-prone area, rainfall-runoff and debris flow propagation (Lin 
et alii, 2011; Tessitore et alii, 2011; Guan et alii, 2017). Moreover, 
as already mentioned about dam break simulations, the use of 
shock capturing schemes allows the management of discontinuities 
and changing in flow regime throughout the computational domain. 
These aspects, often neglected by several commercial software, are 
very important for reliable assessment of hazard hydrodynamic 
parameters within the flood area.

Paradoxically, all these considerable efforts produced to 
achieve more and more stable and accurate schemes, have raised 
worries in the literature because of the tendency of attributing 
excessive reliability to them. In fact, flood hazard assessments 
are affected by different sources of  uncertainty (hydrological 
data, the hydraulic parameters, calibration and validation data, 
the governing equations describing the physical processes, the 
way to take into account man-made structures interacting with 
the flow, etc..) which have significant consequences on the 
simulations reliability. For this reason, several studies are focused 
on assessments of uncertainty (among the most recent one see 
Merwade et alii, 2008; Di Baldassarre & Montanari, 2009; 
Bales & Wagner, 2009; Di Baldassarre et alii, 2010; Grimaldi 
et alii, 2013; Domeneghetti et alii; 2013; Jung & Merwade, 
2011), in many of them there is a tendency to overcome the 

deterministic approach by the development of probabilistic ones. 
In a probabilistic approach, a fully dynamic 2-D model is not 
necessarily required (see i.e. Di Baldassarre et alii, 2010). This 
is valid when the analysis is limited to the floodplain mapping and 
attention is focused on the probability of a given cell to be wet 
or dry (Horritt & Bates, 2001; Horritt & Bates, 2002; Falter 
et alii, 2013). However, accurate approach should be required 
when the hydraulic variables are used for hazard assessment 
throughout the flooded area. Flood wave propagation, velocities, 
water depths and time to peak are key-elements for emergency 
planners and the potential loss of life estimate (Jonkman et alii, 
2008; Xia et alii, 2011; Gómez et alii, 2011; Russo et alii, 2013).

Among the several issues that can be discussed within the 
topics related to flood mapping, this paper only highlights, for the 
sake of brevity, the predictive properties of the 2-D fully dynamic 
shallow water equations, underlining both the limitations of 
the 1-D modeling respect the 2-D approach, and some negative 
consequences related to the use of a simplified 2-D modeling.

Limitations of the 1-D modeling highlighted by the 2-D 
approach

One-dimensional models are still very popular due to their 
reduced computational time, their ease of implementation and 
the reduced need of topographic data if compared to 2-D models 
(Werner & Lambert, 2007; Castellarin et alii, 2009; Xu et 

Fig. 1	 -	 Maximum water depths (a) and flood propagation evolution simulated (b,c,d) for the Big Bay dam failure, using the Macchione (2008) model
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alii, 2017). However, the 1-D approach neglects the transversal 
variation of hydrodynamic parameters that may be important, 
especially in river with wide floodplains. In situations like these, 
momentum transfer mechanisms between the main channel 
and the floodplains have been considered in the literature, for 
both steady or uniform flow (Huthoff et alii, 2008; Proust et 
alii, 2009) and unsteady flow (Cao et alii, 2006; Costabile & 
Macchione, 2012). In particular, since the lateral distribution of 
the velocity is very far from uniform in this kind of sections, the 
classical approach (divided channel method), based on the use of 
the Manning law for computing flow velocity in each subsection, 
cannot be used anymore. Examples of one-dimensional models 
applications to real-world situations in unsteady state can be 

found in classical books (Mahmood & Yevjevich, 1975; Cunge 
et alii, 1980) or in literature where water courses of limited 
slope or almost prismatic channel are considered (Helmiö, 2005; 
Wright et alii, 2008). The applications to complex rivers with 
frequent transients through the critical state and in presence of 
hydraulic singularities are very few (Liu & Wu, 2011; Petaccia 
et alii, 2013).

1-D approaches can be considered good choices for river 
channel flow. In the case of out-of bank flow, in order to achieve 
results similar to those simulated by the 2-D modelling, it is 
essential to implement a channels network approach (Fig. 2a). 
This requires greater skill as well as considerable experience 
in hydraulic modeling (Costabile et alii, 2015a). Nevertheless, 

Fig. 2	 -	 Flooded areas (a) and flood hazard histogram predicted by 1-D and 2-D models (b)
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similar results obtained in flooded area delimitation do not 
necessarily mean comparable values in terms of hazard 
parameters within the computational domain (Costabile et alii, 
2015b), as deduced from the Fig. 2b.

Further drawbacks associated to the use of the 1-D modelling 
are represented by its intrinsic limitations in the description of 
the changing in the transversal flow regime. For example, it has 
been shown that even for a channelized flow with regular banks, 
significant flow regime variations can occur, as it can be seen by 
means of a 2-D simulations (Fig. 3). Moreover, the transversal 
water depths variation across the section are of particular 
interest in practical cases, as highlighted in Fig. 4 in the case of 
interaction with a bridge.

Drawbacks of 2-D simplified models
Although the reduction of the computational times 

associated to the use of 2-D fully dynamic modelling can be 
achieved using parallel computations or GPU programming 
(Vacondio et alii, 2017; Dazzi et alii, 2017), several techniques 
that can approximate the solutions provided by the two-
dimensional shallow water models with fewer computations 
were developed.

Recently, in literature these approximations consist in the 
integration of 1-D and 2-D approaches (Li & Wang, 2012; 
Morales-Hernández et alii, 2016), in porosity-based methods for 
representing sub-grid scale features in coarse resolution models 
(Costanzo & Macchione, 2006; Guinot & Soares-Frazão, 2006; 

Fig. 3	 -	 Plan view of the case study (a), water levels (b) and Froude number profiles (c) along two longitudinal axes (from Costabile et alii 2015b, modified)
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Yu & Lane, 2006; Sanders et alii, 2008; Guinot, 2012; Kim 
et alii, 2015; Bruwier et alii, 2017; Ferrari et alii,  2017), in 
models that consider inertia and diffusion but ignore advection 
(Aronica et alii, 1998; Bates et alii, 2010; Almeida & Bates, 
2013; Zhang et alii, 2014; Skinner et alii, 2015; Martins et 
alii, 2015), in diffusive models neglecting the inertial terms of 
the full SWE leading to a degradation of the original hyperbolic 
model to a parabolic one (Prestininzi & Fiori, 2006; Prestininzi, 
2008; Apel et alii, 2009; Dottori & Todini, 2013; Szymkiewicz 
& Gasiorowski, 2012). The latter approximation is traditionally 
justified by the fact that, in several cases, flooding over plain areas 
is characterized by a slow evolution. Moreover, models using a 
simplified set of equations might lead to faster computational 
times. However, diffusive models could be computationally less 
effective than dynamic models when high resolution meshes are 

used due to more restrictive stability criteria. In the literature, 
there are several studies related to the benchmarking of simplified 
two-dimensional shallow water models (Horritt et alii, 2007), 
focusing also on urban settings (Fewtrell et alii, 2011).

The application of 2-D numerical models based on the 
diffusive wave equations, mainly referred to inundations due 
to slow-varying floods, can be found in several works (see 
for example Aronica et alii, 2002; Bradbrook et alii, 2004). 
Hunter et alii, 2008 compared fully dynamic shallow water 
codes and diffusive models for an urban test site that highlighted 
some differences in both water depths and extent dynamics, 
due to the different schematization of the physical process and 
the numerical solvers used. Néelz & Pender (2012) analyzed 
several commercial models used for flood risk modelling in 
the UK in a number of numerical cases. Neal et alii (2012) 

Fig. 4	 -	 Total head and water elevations across a section simulated by the 2-D model (bridge scenario) (from Costabile et alii, 2015b)
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applied three two-dimensional models based, respectively, 
on diffusive, inertial or shallow water waves. They concluded 
that fully dynamic shallow water models may be unnecessarily 
complex because simpler schemes can perform just as well, in 
terms of both velocity and depths, but only for gradually varied 
flow. In fact, in situations characterized by low friction and 
supercritical flow, simplified models can produce large error in 
terms of mass balance and might become unstable. Prestininzi 
(2008) presented a diffusive model to simulate an impulsive 
wave propagation on a physical model. The author compared 
the results of the diffusive model with the experimental data and 
with other published numerical results associated to the use of a 
fully dynamic model. The proposed diffusive model gave a good 
description of the inundation arrival times and local peak values 
but failed in reproducing some local phenomena.

Costabile et alii (2017) analyzed the consequences of 
simplifications of the shallow water equations. In particular, a 
numerical diffusive-type model (DFW) have been compared 
with a fully dynamic wave equation model (FDW)  using as a 

reference the results of experimental test cases reproducing an 
urban district (Fig. 5).

The applications of the two models highlighted the intrinsic 
strong limitations of the DFW model applied to the urban 
flooding due to its poor prediction of the shock waves that might 
be induced by the interaction between the flood flow and the 
buildings. These effects are accurately described by the FDW 
approach but significantly underestimated by the DFW model 
whose performances become worse in more complex buildings 
arrangements and in situations characterized by impulsive flood 
hydrographs (see Figs. 6 and 7).

Therefore, the use of diffusive-type models can be 
questionable, especially for flood hazards assessment in urban 
districts, due to the poor simulations around the buildings that 
represent the elements for which the damages and the risk 
are particularly relevant. Moreover, as mentioned before, the 
computational times of the diffusive model are more or less 2.5-3 
times greater than those of the fully dynamic model.

Fig. 5	 -	 Water levels simulated by the FDW (a) and DFW (b) models, differences betweeen the models (c), flood hydrographs used as boundary conditions 
(d) (from Costabile et alii, 2017; modified)
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proposed ranging from linear concentrated models like black 
box to non-linear physically-based distributed models (Taskinen 
& Bruen, 2007; Alfieri et alii, 2012). As regards the latter 
family, many simplified hydrodynamic model like diffusive and 
kinematic wave models can be found in the literature (Lighthill 

FLOOD PROPAGATION AT CATCHMENT SCALE
Intense and localized precipitations cause local, sudden 

floods (often-called flash floods) in small basins. Overland flow 
is the dynamic component of the watershed reaction to the rain. 
To model rainfall runoff phenomena, several methods were 

Fig. 6	 -	 Comparison between models results and experimental data in 
the case of aligned arrangement (from Costabile et alii, 2017; 
modified)

Fig. 7	 -	 Comparison between models results and experimental data in 
the case of staggered arrangement and high hydrograph (from 
Costabile et alii, 2017; modified)
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topography is reduced to a flat surface and the hydraulic 
phenomena are very far from those occurring during flash floods 
real events. Indeed, the results coming from the numerical 
simulation of the experimental test regarding the run off in 
varying space but leaving constant in time the rainfall intensity 
over a cascade of three planes, in which the generation of a 
shock wave occurs, lead to mitigate that conclusion.

Finally, recently, there is an increasing interest in the coupling 
of soil erosion model and physically based overland flow models 
(Simpson & Castelltort 2006; Murillo et alii, 2008; Heng et 
alii, 2009; Heng et alii, 2011; Ali et alii, 2013; Kim et alii, 2013; 
Lu et alii, 2016; Tian et alii, 2017; Lin et alii, 2017; Fernández-
Pato et alii 2017).

Simpson & Castelltort (2006) present a coupled model 
of overland flow and sediment transport with morphological 
evolution, based on the SWEs for flow, conservation of sediment 
concentration and empirical functions for bed friction, substrate 
erosion and deposition. Fernández-Pato et alii (2017) proposed 
a two-dimensional hydraulic-erosive model based on the fully 
dynamic approach and on a sediment mass conservation equation 
combined with several parameters related with the soil erodibility, 
the catchment slopes and the canopy cover.

& Whitham, 1955; Govindaraju, 1988; Tayfur et alii, 1993; Di 
Giammarco et alii, 1996; Feng & Molz, 1997; Borah & Bera, 
2003; Liu et alii, 2004; Jain & Singh, 2005; Howes et alii, 2006; 
Kazezyilmaz-Alhan & Medina, 2007; Gottardi & Venutelli, 
2008; Venkata et alii 2009; Bates et alii, 2010; Lopez-Barrera 
et alii, 2012; Warnock et alii 2014). Also in this case, the 
development of these models have been proposed with the aim 
of overcoming the complexity of the full SWE, of facing the 
lack of high-resolution data and reducing the computational 
times. Nowadays, the importance of these issues is much less 
significant due to the progress has been built over the last decade. 
Parallel codes in shallow water 2-D are coming to be more and 
more usable in computer environments (i.e. Lacasta et alii, 
2015; Wittmann et alii, 2017; Liang et alii, 2017). As regards the 
numerical issues, the application of the methods developed for 
dam break simulations, proved to be reliable also in the context of 
overland flow simulation and, therefore, computational dry cells 
that become wet because of the rainfall input and subsequently 
dry out because of high bed slopes, the source term computation 
and the treatment of friction slope terms can now be managed 
without any problem. Starting from the pioneering models 
proposed by Esteves et alii (2000) and Fiedler & Ramirez 
(2000), several numerical studies on all these aspects can be 
found in the literature (Unami et alii, 2009; Cao et alii, 2010; Yeh 
et alii, 2010; Cea et alii, 2010; Mügler et alii, 2011; Kim et alii, 
2012; Caviedes-Voullième et alii, 2012; Berardi et alii, 2013; 
Kim & Seo, 2013; Costabile et alii, 2013; Yu & Duan, 2014; 
Simons et alii, 2014; Busaman et alii, 2015; Cea & Blade, 2015; 
Singh et alii, 2015; Rousseau et alii, 2015; Huang et alii, 2015; 
Liang et alii, 2015; Bellos & Tsakiris, 2016; Fernández-Pato 
et alii, 2016; Xia et alii, 2017; Bermudez et alii, 2017). These 
studies show applications not only in experimental test cases but 
also in real catchments. An example of these can be found in 
Costabile et alii (2013) in which a numerical model has been 
applied to simulate a real event, which occurred in a sub-basin 
or Reno river in Italy (see Fig. 8a). Using net rains, as input for 
the numerical model, the numerical results show a satisfactory 
agreement between observed and simulated hydrographs, 
reproducing not only the peak discharge but also the shape of the 
observed hydrograph (see Fig. 8b).

The good results obtained by the authors who applied 
2-D fully dynamic shallow water equations in overland flow 
simulations confirm the fact that it can be considered the most 
advanced physically based approach to deal with these kind 
of phenomena on large areas (Borah, 2011). In this context, 
Costabile et alii (2009; 2012a) presented a comparative 
analysis of different overland flow models based on the shallow 
water equations and relative approximations (diffusive and 
kinematic models). Numerical results showed that the models 
performances are similar in very simplified tests where the 

Fig. 8	 -	 Pracchia river basin (a) and comparison between observed 
and simulated hydrographs (b) (from Costabile et alii, 2012; 
modified)
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represented for the Cosenza old town (Calabria, Italy).
Though technicians and experts in flood risk can easily 

analyse the 2-D maps, these do not allow a non-scientific 
audience an immediate understanding of flooding impacts. 
This last aspect is not of secondary importance because the 
flood Directive precisely formulated the demand for risk 
communication with the people at risk. The importance of 
active involvement of stakeholders in flood risk management 
has been highlighted in several papers (Voinov & Bousquet, 
2010; Arciniegas et alii, 2013; Barnaud et alii, 2013; Leskens 

CONNECTION BETWEEN 2-D FLOOD 
SIMULATIONS AND 3-D VISUALIZATION 
TECHNIQUES FOR FLOOD HAZARD 
COMMUNICATION

The use of the 2-D fully dynamic modelling has proved to be 
a reliable approach for obtaining flood hazard maps prescribed by 
the Directive 2007/60/EC as a key tool for risk management. An 
example of this has been reported in Fig. 9a in which the flood-
prone areas, resulting from two-dimensional numerical modelling, 
outlined by chromatic shading or contour based method, are 

Fig. 9	 -	 2-D flood map (a) and 3-D representation of a specific aerea without (b) and with (c) simulated water surfaces
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CONCLUSIVE CONSIDERATIONS
In this paper, attention has been devoted to the importance of 

the 2D SWEs for the numerical simulation of flood events and 
hazard mapping. For this reason, typical fields of applications of 
the fully dynamic modelling have been presented, in order to give 
a reference framework useful not only for researchers but also for 
technicians working on this area.

The first aspect analysed is related to dam break simulations. 
Beside the technical interest in that kind of simulation, dam break 
numerical modelling represented the reference field of research in 
which the most reliable numerical schemes have been developed, 
analysed and compared.

Then attention has been focused on the key role played by the 
fully dynamic shallow water modelling for flood hazard mapping. 
Two main aspects have been underlined. The first one concerned 
the limitations of the one-dimensional modelling highlighted 
by comparing the results with those obtained by using the two-
dimensional approach. The second one dealt with the drawbacks 
associated to the use of simplified two-dimensional modelling.

The last modelling issue analysed in this work dealt with 
the application of the 2D fully dynamic modelling at a basin 
scale, which represents a relatively novel topic in the literature. 
In fact, due to the increasing availability of LIDAR data and 
the development of more and more efficient parallel-codes, the 
application of that modelling seems to be the best choice to 
achieve reliable results.

Finally, the connection between 2-D flood simulations 
and 3-D visualizations of the results in the context of flood risk 
communication has been highlighted. In particular, it has been 
mentioned the usefulness of virtual-reality scenarios to strengthen 
people’s risk awareness in order to encourage the population at 
risk to implement preventive actions and to be prepared for an 
emergency.

et alii, 2014; Hewitt et alii, 2014; Maskrey et alii, 2016). 
Since communication to the public assumes a crucial role 

in the flood risk management, a basic expertise in this topic 
should characterize the professional training of hydraulic 
engineers working on flood hazards. Environmental modellers 
and technicians working on this field usually neglect this 
aspect (McInerny et alii, 2014, Grainger et alii, 2016). So, 
there is the need of research aimed at finding suitable options to 
communicate the main results coming from 2-D hydrodynamic 
simulations by means of specific visualization able to increase 
flood hazard perception and to influence behaviour of people in 
emergency and raise risk awareness (Charrière et alii, 2012),

Virtual-Reality visualization of 3-D scenarios could 
allow users to view complex data in a more intuitive and 
comprehensible way and offers help in communication of 
scientific knowledge to potentially interested non-expert 
communities (Saggio & Ferrari, 2012). In this contest, 
Macchione et alii (2016c; 2019) carry out the development of 
an intentionally simple workflow for the representation of 2-D 
hydraulic simulations within a 3-D virtual reality environment, 
using texture-mapping technique. The main goal of this 
research is to represent realistic flood scenarios with minimum 
standard formats in virtual environments. Figures 9 b,c shows a 
3-D environment without and with flooding. The image without 
flooding have been taken from Google Earth, in the 3-D view.  
The results highlight a realistic representation of water depths 
at neighbourhood’s scale by adding more information about 
interaction between flood and public/private goods, compared 
to a classic 2-D flood map. Furthermore, this kind of visual 
risk communication facilitates the emergency planning and 
preparation, flood damage estimation because the image is 
vivid and realistic and consequences associated to the flood 
evolution is easier to perceive.
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