

FULLY-HYDRODYNAMIC MODELLING SUPPORTING FLOOD HAZARD ASSESSMENT AND COMMUNICATION: A REFERENCE FRAMEWORK

FRANCESCO MACCHIONE, PIERFRANCO COSTABILE, CARMELINA COSTANZO & ROSA DE SANTIS

University of Calabria - Department of Environmental and Chemical Engineering

Laboratorio di Modellistica numerica per la Protezione Idraulica del Territorio (LAMPIT) - via P. Bucci, cubo 42/B - 87036 Rende (CS), Italy

Corresponding author: francesco.macchione@unical.it

EXTENDED ABSTRACT

La perimetrazione delle aree potenzialmente inondabili e la conseguente redazione delle mappe di pericolosità, previste dalla Direttiva 2007/60/CE del 23 ottobre 2007 del Parlamento Europeo, riguardante la valutazione e la gestione del rischio di alluvione, costituiscono materia complessa sulla quale possono essere trasferiti molti dei significativi progressi conseguiti dalla ricerca idraulica del settore.

Un primo aspetto riguarda certamente gli strumenti fisico-matematici per il calcolo delle correnti a superficie libera che si propagano in alvei naturali o in aree inondabili. Esse sono descritte matematicamente mediante le equazioni di moto vario, note come equazioni di De Saint Venant o delle acque basse (*Shallow Water Equations*, SWE). Lo studio della corrente in moto vario conseguente al repentino crollo delle dighe murarie (*dam break*) ha rappresentato il più impegnativo campo di applicazione nel quale sono rifiuite le modalità più innovative di integrazione numerica delle suddette equazioni e di trattazione del termine sorgente. La formulazione conservativa delle SWE e la loro integrazione mediante schemi shock capturing hanno consentito di inglobare la corretta simulazione delle discontinuità della corrente (onde a fronte ripido, propagazione del fronte in alvei asciutti) nonché i fenomeni idraulici localizzati e i cambi di regime di moto. Questi sono aspetti molto importanti anche per una valutazione accurata della pericolosità idraulica in correnti generate da esondazioni fluviali, anche in relazione all'interazione tra corrente e manufatti. Fino a qualche decennio fa, le SWE sono state utilizzate secondo una schematizzazione mono-dimensionale, per descrivere la propagazione della piena anche nelle aree golenali. Infatti l'uso delle equazioni bidimensionali era poco praticabile per due motivi: la mancanza di dati topografici di dettaglio, che ne potessero giustificare l'utilizzo, e l'eccessivo onere computazionale associato. Tuttavia, la schematizzazione 1-D presenta delle limitazioni intrinseche che non sempre la rendono adeguata per la simulazione di fenomeni che avvengono fuori alveo. Questo è il motivo per cui oggi, sempre più frequentemente, i calcoli di propagazione sono eseguiti con modelli bidimensionali. Questi, però, ancora oggi non sono sempre basati sulle equazioni bidimensionali complete, ma implementano semplificazioni ottenute trascurando qualcuno dei termini delle equazioni complete. Pur se tali semplificazioni possono portare delle riduzioni degli oneri computazionali, esse non consentono di pervenire ad una corretta valutazione di dettaglio dei parametri che presiedono alla quantificazione della pericolosità idraulica. Come è noto, infatti, il grado di pericolosità di inondazione è associato principalmente alla velocità e alla profondità della corrente e l'affidabilità del loro calcolo dipende dal grado di dettaglio fisico-matematico insito nel modello utilizzato. Le differenze in gioco sono rese facilmente evidenti dal confronto dei risultati delle simulazioni ottenute dai modelli semplificati con quelli forniti dal modello completo.

Il grado di dettaglio richiesto per l'analisi puntuale della pericolosità è oggi molto favorito dalle nuove tecniche di acquisizione dei dati topografici, quale la tecnica di tipo LiDAR, e dalla crescente potenza di calcolo. La crescente disponibilità di dati territoriali di tipo LiDAR e di tecniche di *High Performance Computing* stanno favorendo un crescente interesse verso l'applicazione dei modelli numerici basati sulle equazioni complete su larga scala. Quest'ultima considerazione apre il campo alla prospettiva di simulare su base idraulica i fenomeni di generazione e propagazione delle piene a scala di bacino mediante le SWE complete. Infatti è possibile trasferire a questo tipo di applicazione le strategie messe a punto in altri ambiti (*dam break*) per far fronte alle problematiche numeriche connesse alla trattazione delle celle asciutte-bagnate e ai termini sorgente. I risultati numerici, mostrati in questo articolo, appaiono del tutto incoraggianti. Le prime applicazioni pratiche di questo tipo di approccio potrebbero riguardare la simulazione delle piene impulsive (*flash floods*) che si verificano nei piccoli bacini. L'applicazione delle equazioni complete su un dominio di calcolo che coincide con l'intero bacino idrografico consente di inglobare in un fenomeno unitario sia gli scorrimenti superficiali (*overland flow*) sia i moti delle acque incanalate nel reticolato idrografico. Infine, tra le attività richieste dalla normativa Europea in materia di alluvioni, vi sono la comunicazione del rischio alle popolazioni esposte e il coinvolgimento attivo delle parti interessate ai processi di pianificazione e gestione del rischio di alluvione. Infatti occorre che la popolazione potenzialmente esposta al rischio acquisisca un adeguato livello di consapevolezza degli impatti di un'inondazione. Per tale ragione, una modalità innovativa di comunicazione può essere la visualizzazione delle classiche mappe mediante tecniche di realtà virtuale. Alcune applicazioni di tali tecniche sono mostrate per una potenziale alluvione del centro storico della città di Cosenza (Calabria, Italia). Obiettivo di questo articolo è fornire una review aggiornata sugli aspetti richiamati sopra, insieme a pratiche indicazioni e spunti di riflessione per la redazione delle mappe di pericolosità e per la comunicazione del rischio.

ABSTRACT

From a hydraulic point of view, flood propagation in natural channels or in floodplains should be simulated using the fully-dynamic shallow water equations (SWEs), although their kinematic or diffusive approximations are still commonly used in practical applications. Indeed, only the use of the fully-dynamic equations, formulated in a conservative form, allows the correct treatment of localized hydraulic phenomena and regime changes, factors that are very important for risk assessment. Currents originated by dam break phenomena are a field of study where these localized phenomena arise in a preponderant way.

Until a few decades ago, the SWEs were essentially developed following a one-dimensional approach, using various schematizations and numerical tricks for describing the propagation in floodplain areas. The reasons why the 1-D approach was the preferred one were twofold: the lack of high-resolution topographic data for the detailed description of the hydraulic processes across the section and the limited computational efforts. Nowadays, the importance of these aspects are dramatically reduced and the use of the two-dimensional SWEs starts to be considered as the reference approach for flood propagation studies.

Although the use of the fully dynamic wave equations may generate accurate results, the complexity of the associated numerical solvers and their computational times favored the development of simplified approach whose reliability is questionable especially for urban flood simulation.

LiDAR data availability and the development of high performance computing technology allow the researchers to develop also flood simulations at the basin scale based on the 2D fully dynamic shallow water equations. In simulations like these, it is not very simple to achieve stable computations in presence of very shallow depths over abrupt changes of the bottom slopes and dry/wet interfaces. However, the significant improvements made in the river flows modeling, flood propagation and dam breaking flows allowed one to obtain stable results also in these complex situations.

So a lot of work has been carried out in the context of the hydraulic numerical simulations for flood mapping in order to fulfill the European Floods Directive. However, it should be born in mind that the Directive itself requires to take care of risk communication with the people involved, encouraging the active involvement of the interested parties in the development of flood management plans. The integration of the classic 2-D flood maps, obtained using the models mentioned before, with 3-D representations of flood inundations using virtual reality techniques might allow non-expert public an adequate perception of the flooding impact.

Following all these considerations, the paper reviews the current state-of-the-art for hydraulic modelling of floods,

focusing on the above-mentioned topics and providing practical suggestions for flood hazard assessment and communications.

KEYWORDS: *Shallow Water Equations, dam-break, 1-D and 2-D flood mapping, overland flow, 3-D virtual environment, flood risk communication*

INTRODUCTION

The flood-prone areas delimitation and the consequent mapping of flood hazard required by the European Floods Directive (2007/60/CE), concerning the assessment and management of flood risk, are complex issues on which the scientific community has achieved significant results in recent years.

From a hydraulic point of view, flood propagation in natural channels or in floodplains should be simulated using the fully dynamic shallow water equations (SWEs), although their kinematic or diffusive approximations are still commonly used in practical applications. Indeed, only the use of the fully-dynamic equations, formulated in a conservative form, allows the treatment of localized hydraulic phenomena and regime changes, that are very important aspects to be correctly computed if we want to achieve an accurate assessment of the flood hazard. A field of study where these problems arise in a preponderant way are the currents originated by dam break phenomena. Dam break wave propagation studies represent the historical field of application of SWEs and several more and more reliable numerical models were proposed, in the last two or three decades, to simulate this phenomenon.

Until a few decades ago, the SWEs were essentially developed following a one-dimensional approach, using various schematizations and numerical tricks for describing the propagation in floodplain areas. The reasons why the 1-D approach was the preferred one were twofold: the lack of high-resolution topographic data for the detailed description of the hydraulic processes across the section and the limited computational efforts. However, 1D numerical schematizations may suffer from inherent limitations, which do not always allow one to properly simulate the phenomena that take place in the riverside areas.

For these reasons, although the 1D approach still remains the most frequently used method, even in flat flood areas, the use of the two-dimensional SWEs starts to be considered as the reference approach for flood propagation studies.

Although the use of the fully dynamic wave equations may generate accurate results, the complexity of the associated numerical solvers and their computational times favored the development of simplified approach to reduce computation costs. However, performances and limitations of the simplified models, applied in urban flood simulation, have not been deeply investigated yet, even though some studies focused on

comparative analyses of flood propagation models. Furthermore, the suitability of the approximate shallow water equations to be used for pedestrians and vehicles hazard assessment in urban flooded areas has not yet been fully verified in the literature. The flood hazard degree, related to the flood conditions at which loss of stability might occur, is mainly related to relationships between velocity and water depth, whose accuracy depends on the physical-mathematical aspects that characterize the model used.

Moreover, nowadays the methods for mapping flood-prone areas cannot ignore the new topographic surveying techniques, greatly enhanced by LiDAR-type techniques and the enormous increase in computing power. LiDAR data availability and the development of high performance computing technology allow to facilitate the application of fully dynamic shallow water equations on larger and larger areas, so that in the near future they could be commonly applied even at the basin scale.

Therefore, according the discussion presented so far, a lot of work has been carried out in the context of the hydraulic numerical simulations for flood mapping. However, it should be born in mind that the European Floods Directive requires to take care of risk communication with the people involved, encouraging the active involvement of the interested parties in the development of flood management plans. This is essentially due to the fact the general public is directly confronted with flood events and flood damages, and, for this reason, they should be increasingly involved in flood protection. For these reasons, it is increasingly recognized that the integration of the classic 2-D flood maps, obtained using the models mentioned before, with 3-D representations of flood inundations using virtual reality techniques might allow non-expert public an adequate perception of the flooding impact. As highlighted by the emerging field of research related to visual risk mapping, the importance of virtual reality techniques for flood risk communication might represent a novel tool for emergency planning and risk management.

Following all these considerations, the paper reviews the current state-of-the-art for hydraulic modelling of floods, focusing on the above-mentioned topics and providing practical suggestions for flood hazard assessment and communications.

MATHEMATICAL AND NUMERICAL MODELLING

The shallow water equations (SWEs) represent mass and momentum conservation and can be obtained by depth averaging the Navier-Stokes equations in the vertical direction, under the hypothesis that the wave length of the phenomenon is much higher than the depth of the water where the phenomenon takes place. From a mathematical point of view, the shallow water equations are a time-dependent system of nonlinear partial differential equations of hyperbolic type. The SWEs can be written in one and two dimensions. For the sake of brevity, only the two-dimensional model is described here. The two-dimensional shallow water

equations in conservative form are:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{f}}{\partial x} + \frac{\partial \mathbf{g}}{\partial y} = \mathbf{S} \quad (1)$$

where:

$$\mathbf{U} = \begin{pmatrix} h \\ hu \\ hv \end{pmatrix}; \quad \mathbf{f} = \begin{pmatrix} hu \\ hu^2 + gh^2/2 \\ huv \end{pmatrix} \quad (2, 5)$$

$$\mathbf{g} = \begin{pmatrix} hv \\ huv \\ hv^2 + gh^2/2 \end{pmatrix}; \quad \mathbf{S} = \begin{pmatrix} q \\ gh(S_{0x} - S_{fx}) \\ gh(S_{0y} - S_{fy}) \end{pmatrix}$$

in which t is time; x, y are the horizontal coordinates; h is the water depth; u, v are the depth-averaged flow velocity in x - and y - directions; g is the gravitational acceleration; S_{0x}, S_{0y} are the bed slopes in x - and y - directions; S_{fx}, S_{fy} are the friction slopes in x - and y - directions, that can be calculated from Strickler's formula; q is the later inflow or the net rainfall to simulate an overland flow event.

Only in very special cases is it possible to derive analytical solutions to these equations and, therefore, numerical methods must be used to obtain solutions to solve practical problems which include discontinuities in the solution. Many authors proposed numerical schemes for the integration of the 1-D and 2-D SWEs. A complete review of numerical schemes is reported in LEVEQUE (2002), in HIRSCH (2007) and in TORO (2009). In particular, many shock capturing Finite Volume schemes have been widely implemented owing to their capacity to simulate various types of flow even in the presence of discontinuities. Considering the finite volume discretization, the equation (1) is integrated over an arbitrary control volume Ω_i and applying the divergence theorem to each component of the vectors \mathbf{f} and \mathbf{g} in order to obtain surface integrals, it becomes as (see e.g. HIRSCH, 2007):

$$\frac{\partial}{\partial t} \int_{\Omega_i} \mathbf{U} d\Omega + \iint_{\partial\Omega_i} [\mathbf{f}, \mathbf{g}] \cdot \mathbf{n} dL = \int_{\Omega_i} \mathbf{S} d\Omega \quad (6)$$

where $\partial\Omega_i$ being the boundary enclosing Ω_i , \mathbf{n} is the unit vector normal and L is the length of each boundary.

Denoting by \mathbf{U}_i the average value of the flow variables over the control volume Ω_i at a given time, the Equation (6) can be discretized as:

$$\mathbf{U}_i^{n+1} = \mathbf{U}_i^n - \frac{\Delta t}{\Omega_i} \sum_{r=1}^3 [\mathbf{f}, \mathbf{g}]_r^n \cdot \mathbf{n}_r \Delta L_r + \Delta t \mathbf{S}_i^n \quad (7)$$

Specifically, for the evaluation of the numerical flux in Equation (7), two-dimensional Finite Volume schemes are being used more frequently, which allow analysis of the flood

propagation phenomena over complex and irregular topography (see for example: BRADFORD & SANDERS, 2002; BRUFAU *et alii*, 2002; TORO, 2009; TORO & GARCÍA-NAVARRO, 2009; COSTABILE & MACCHIONE, 2015).

Apart from the computation of numerical fluxes, the numerical integration of the SWEs in complex topographies requires further specific algorithms to the numerical treatment of the bottom slope, the friction slope and the wet-dry fronts. In particular, the treatment of source terms of the shallow water equations is a crucial topic for the numerical models (MURILLO *et alii*, 2007; VALIANI & BEGNUDELLI, 2006; MURILLO & GARCÍA-NAVARRO, 2010; CHERTOCK *et alii*, 2015; VACONDIO *et alii*, 2016; COSTABILE *et alii*, 2009; COSTABILE *et alii*, 2012a); COSTABILE *et alii*, 2013; LIANG *et alii*, 2015; XIA *et alii*, 2017). Particular attention should be paid also to the treatment of the friction slope. The pointwise discretization of the terms leads to numerical instabilities. Therefore, an implicit or semi-implicit treatment of the friction source term (BRUFAU *et alii*, 2004; COSTABILE *et alii*, 2013; LIANG *et alii*, 2007; CEA & BLADE, 2015) is preferred. Finally, it is important to implement a robust wet-dry procedure (for further details one may refer to COSTABILE *et alii*, 2013).

FIELDS OF APPLICATION

Numerical modelling of dam-break wave propagation

Flood wave computation due to the collapse of a dam can be analytically solved only for some theoretical schematisations (RITTER, 1892; DRESSLER, 1952; STOKER, 1957). Since the inertial terms in the momentum equation play a fundamental role, this represents the typical situation for which the use of the fully dynamic wave equations are necessary. Therefore, several numerical models have been developed in this field and many experimental studies have been carried out in order to collect a number of test cases for models validation.

Starting from the early experimental studies (CHAUDHRY, 1993; BRASCHI *et alii*, 1994; BECHTELER *et alii*, 1992; CHERVET & DALLÉVES, 1970; BELLOS *et alii*, 1992; FRACCAROLLO & TORO, 1995; AURELI *et alii*, 2000), some authors developed detailed experiments related to dam break wave propagation with obstacles or based on particular channel configuration, in order to reproduce two-dimensional effects, (OZMEN-CAGATAY & KOCAMAN, 2011; LAROCHE *et alii*, 2012; ELKHOLY *et alii*, 2016). Other experiments have been carried out in presence of erodible bottom or with granular material (SOARES-FRAZÃO *et alii*, 2007; ZECH *et alii*, 2008; SARNO *et alii*, 2011; MARTINEZ *et alii*, 2011; SOARES-FRAZÃO *et alii*, 2012; MORACI *et alii*, 2015; DI CRISTO *et alii*, 2017; QIAN *et alii*, 2017). Finally, some experiments have been carried out also in order to estimate the impact load exerted by a dam-break wave on an obstacle (AURELI *et alii*, 2015).

This large number of laboratory experiments allows the researcher to develop sophisticated numerical methods aimed at

testing the performances of numerical methods for the solution of the SWEs. As mentioned in the previous section, unsteady flow equations should be expressed in a conservative form and shock-capturing numerical schemes should be employed. Therefore, a lot of numerical schemes for the simulation of dam-break test cases are available in literature (GARCIA & KAWAHITA, 1986; CHAUDHRY, 1986; BELLOS & SAKKAS, 1987; BELLOS *et alii*, 1992; SOULIS, 1992; ALCRUDO & GARCÍA-NAVARRO, 1994; JIN & FREAD, 1997; BRUFAU & GARCÍA-NAVARRO, 2000; MACCHIONE & MORELLI, 2003; ZOPPOU & ROBERTS, 2003; ZHOU *et alii*, 2004; LIANG *et alii*, 2006; AURELI *et alii*, 2008; YING *et alii*, 2009; LIANG & BORTHWICK, 2009; BISCARINI *et alii*, 2010; SINGH *et alii*, 2011; GUPTA & SINGH, 2015; KALITA, 2016; PENG *et alii*, 2015; COZZOLINO *et alii*, 2017; CASTRO-ORGAZ & CHANSON, 2017). In this context, some comparative studies aimed at the evaluation of shock-capturing schemes in dam-break flood computations can be also found in the literature (see for example MACCHIONE & MORELLI, 2003).

In real world applications, computations must necessarily employ numerical approaches that take into account friction and irregular topography of the riverbed. Several studies related to dam-break simulations of real events can be found in the literature (HERVOUET & PETITJEAN, 1999; HERVOUET, 2000; VALIANI *et alii*, 2002; MACCHIONE & VIGGIANI, 2004; YOCHUM *et alii*, 2008; PETACCIA *et alii*, 2008; YING *et alii*, 2009; GALLEGOS *et alii*, 2009; ALTINAKAR *et alii*, 2010; GEORGE, 2011; SINGH *et alii*, 2011; WANG *et alii*, 2011; PILOTTI *et alii*, 2011; BOSA & PETTI, 2013; GAVARDASHVILI, 2013; PETACCIA & NATALE, 2013b; KIM *et alii*, 2014; KIM & SANDERS, 2016; HALTAS *et alii*, 2016).

It seems important to underline that the numerical solvers developed for dam break computations can be used also as flood routing module for the propagation of discharge hydrographs originated by the progressive erosion of an earth-fill dam, whose computation required specific methods (see for example MACCHIONE, 2008; MACCHIONE & RINO 2008, MACCHIONE *et alii*, 2016a). An example of this can be found in MACCHIONE *et alii* (2016b), in which a two-dimensional shallow water model has been used for the numerical simulation of the Big Bay dam failure, whose hydrograph has been reconstructed using the MACCHIONE (2008) model. In Fig. 1, the simulated maximum water depths (Fig. 1a) and the flood evolution have been reported (Figs. 1b, 1c, 1d).

Flood mapping: advances and numerical approaches

Numerical modelling of flood wave propagation based on shallow water equations has rapidly developed in the last years, shifting from 1-D to 2-D models to simulate hydrologic floods events. The choice of the correct modelling approach is debated in the literature, as documented by several comparative studies (HORRITT & BATES, 2002; TAYEFLI *et alii*, 2007; ALHO & AALTONEN, 2008; BOHORQUEZ & DARBY, 2008; COOK & MERWADE, 2009; NEAL *et alii*, 2012). In any case, the significant advances in the numerical

flood modelling, in computer technology and in the topographic surveying techniques has fostered the use of 2-D representations of flood-prone area, rainfall-runoff and debris flow propagation (LIN *et alii*, 2011; TESSITORE *et alii*, 2011; GUAN *et alii*, 2017). Moreover, as already mentioned about dam break simulations, the use of shock capturing schemes allows the management of discontinuities and changing in flow regime throughout the computational domain. These aspects, often neglected by several commercial software, are very important for reliable assessment of hazard hydrodynamic parameters within the flood area.

Paradoxically, all these considerable efforts produced to achieve more and more stable and accurate schemes, have raised worries in the literature because of the tendency of attributing excessive reliability to them. In fact, flood hazard assessments are affected by different sources of uncertainty (hydrological data, the hydraulic parameters, calibration and validation data, the governing equations describing the physical processes, the way to take into account man-made structures interacting with the flow, etc..) which have significant consequences on the simulations reliability. For this reason, several studies are focused on assessments of uncertainty (among the most recent one see MERWADE *et alii*, 2008; DI BALDASSARRE & MONTANARI, 2009; BALES & WAGNER, 2009; DI BALDASSARRE *et alii*, 2010; GRIMALDI *et alii*, 2013; DOMENEGHETTI *et alii*, 2013; JUNG & MERWADE, 2011), in many of them there is a tendency to overcome the

deterministic approach by the development of probabilistic ones. In a probabilistic approach, a fully dynamic 2-D model is not necessarily required (see i.e. DI BALDASSARRE *et alii*, 2010). This is valid when the analysis is limited to the floodplain mapping and attention is focused on the probability of a given cell to be wet or dry (HORRITT & BATES, 2001; HORRITT & BATES, 2002; FALTER *et alii*, 2013). However, accurate approach should be required when the hydraulic variables are used for hazard assessment throughout the flooded area. Flood wave propagation, velocities, water depths and time to peak are key-elements for emergency planners and the potential loss of life estimate (JONKMAN *et alii*, 2008; XIA *et alii*, 2011; GÓMEZ *et alii*, 2011; RUSSO *et alii*, 2013).

Among the several issues that can be discussed within the topics related to flood mapping, this paper only highlights, for the sake of brevity, the predictive properties of the 2-D fully dynamic shallow water equations, underlining both the limitations of the 1-D modeling respect the 2-D approach, and some negative consequences related to the use of a simplified 2-D modeling.

Limitations of the 1-D modeling highlighted by the 2-D approach

One-dimensional models are still very popular due to their reduced computational time, their ease of implementation and the reduced need of topographic data if compared to 2-D models (WERNER & LAMBERT, 2007; CASTELLARIN *et alii*, 2009; XU *et*

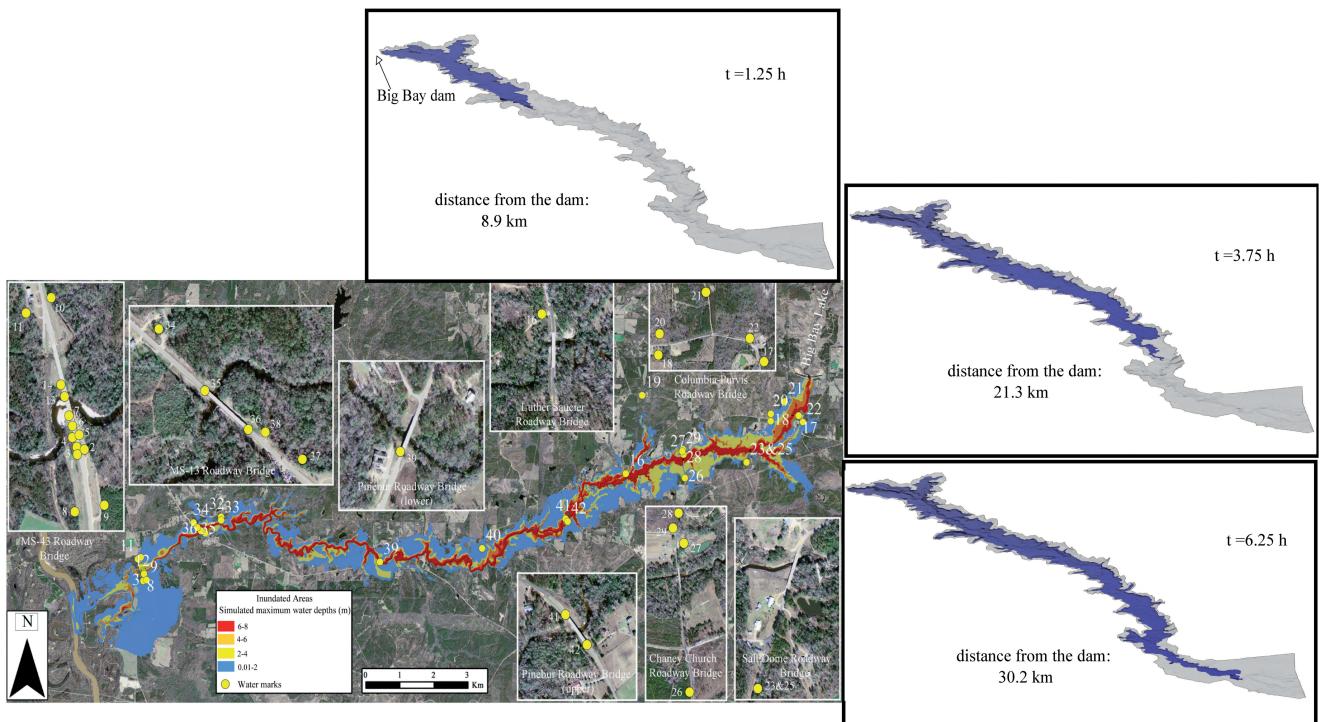


Fig. 1 - Maximum water depths (a) and flood propagation evolution simulated (b,c,d) for the Big Bay dam failure, using the MACCHIONE (2008) model

et alii, 2017). However, the 1-D approach neglects the transversal variation of hydrodynamic parameters that may be important, especially in river with wide floodplains. In situations like these, momentum transfer mechanisms between the main channel and the floodplains have been considered in the literature, for both steady or uniform flow (HUTHOFF *et alii*, 2008; PROUST *et alii*, 2009) and unsteady flow (CAO *et alii*, 2006; COSTABILE & MACCHIONE, 2012). In particular, since the lateral distribution of the velocity is very far from uniform in this kind of sections, the classical approach (divided channel method), based on the use of the Manning law for computing flow velocity in each subsection, cannot be used anymore. Examples of one-dimensional models applications to real-world situations in unsteady state can be

found in classical books (MAHMOOD & YEVJEVICH, 1975; CUNGE *et alii*, 1980) or in literature where water courses of limited slope or almost prismatic channel are considered (HELMIÖ, 2005; WRIGHT *et alii*, 2008). The applications to complex rivers with frequent transients through the critical state and in presence of hydraulic singularities are very few (LIU & WU, 2011; PETACCIA *et alii*, 2013).

1-D approaches can be considered good choices for river channel flow. In the case of out-of bank flow, in order to achieve results similar to those simulated by the 2-D modelling, it is essential to implement a channels network approach (Fig. 2a). This requires greater skill as well as considerable experience in hydraulic modeling (COSTABILE *et alii*, 2015a). Nevertheless,

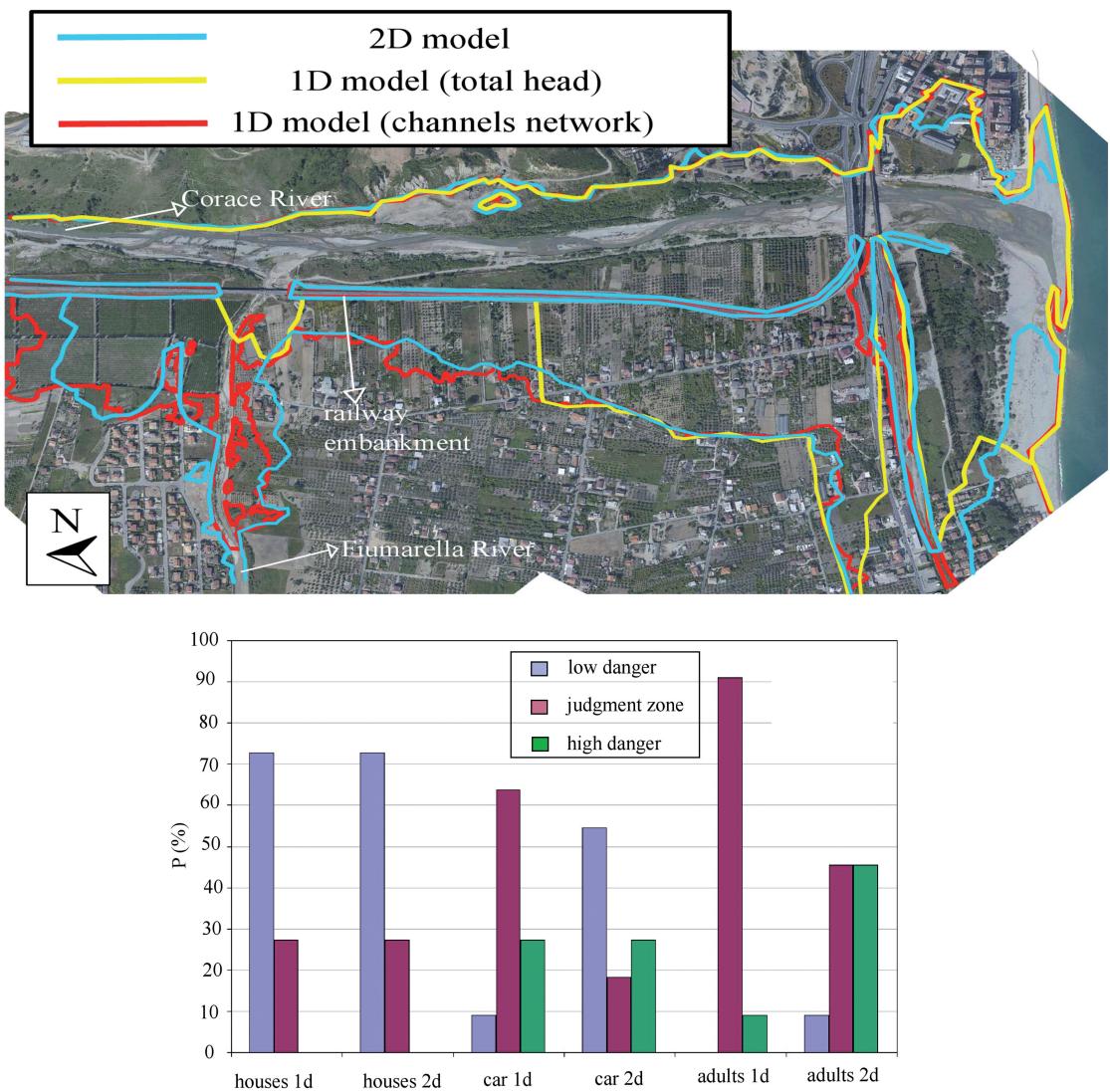


Fig. 2 - Flooded areas (a) and flood hazard histogram predicted by 1-D and 2-D models (b)

similar results obtained in flooded area delimitation do not necessarily mean comparable values in terms of hazard parameters within the computational domain (COSTABILE *et alii*, 2015b), as deduced from the Fig. 2b.

Further drawbacks associated to the use of the 1-D modelling are represented by its intrinsic limitations in the description of the changing in the transversal flow regime. For example, it has been shown that even for a channelized flow with regular banks, significant flow regime variations can occur, as it can be seen by means of a 2-D simulations (Fig. 3). Moreover, the transversal water depths variation across the section are of particular interest in practical cases, as highlighted in Fig. 4 in the case of interaction with a bridge.

Drawbacks of 2-D simplified models

Although the reduction of the computational times associated to the use of 2-D fully dynamic modelling can be achieved using parallel computations or GPU programming (VACONDIO *et alii*, 2017; DAZZI *et alii*, 2017), several techniques that can approximate the solutions provided by the two-dimensional shallow water models with fewer computations were developed.

Recently, in literature these approximations consist in the integration of 1-D and 2-D approaches (LI & WANG, 2012; MORALES-HERNÁNDEZ *et alii*, 2016), in porosity-based methods for representing sub-grid scale features in coarse resolution models (COSTANZO & MACCHIONE, 2006; GUINOT & SOARES-FRAZÃO, 2006;

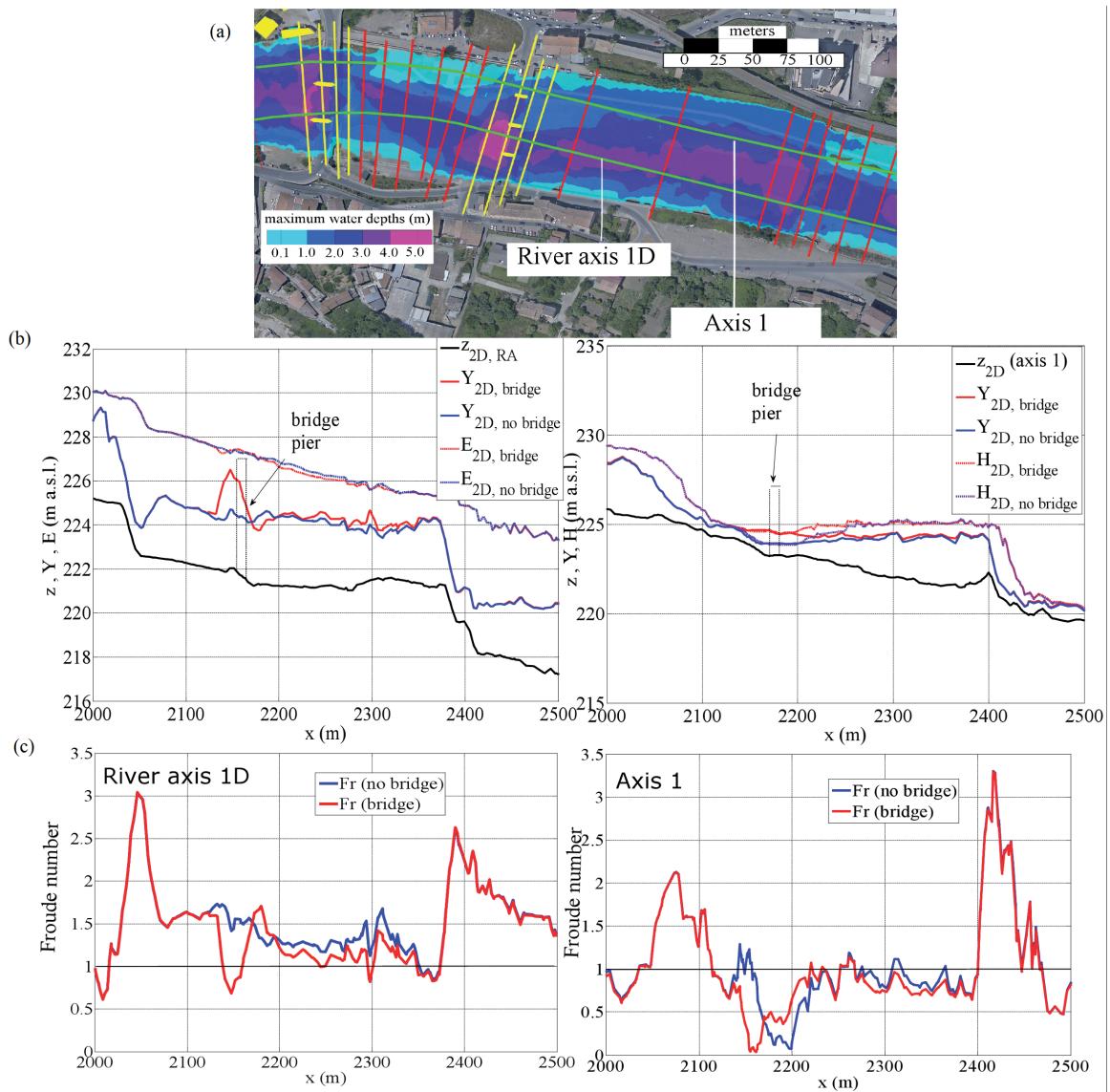


Fig. 3 - Plan view of the case study (a), water levels (b) and Froude number profiles (c) along two longitudinal axes (from COSTABILE *et alii* 2015b, modified)

YU & LANE, 2006; SANDERS *et alii*, 2008; GUINOT, 2012; KIM *et alii*, 2015; BRUWIER *et alii*, 2017; FERRARI *et alii*, 2017), in models that consider inertia and diffusion but ignore advection (ARONICA *et alii*, 1998; BATES *et alii*, 2010; ALMEIDA & BATES, 2013; ZHANG *et alii*, 2014; SKINNER *et alii*, 2015; MARTINS *et alii*, 2015), in diffusive models neglecting the inertial terms of the full SWE leading to a degradation of the original hyperbolic model to a parabolic one (PRESTININZI & FIORI, 2006; PRESTININZI, 2008; APEL *et alii*, 2009; DOTTORI & TODINI, 2013; SZYMKIEWICZ & GASIOROWSKI, 2012). The latter approximation is traditionally justified by the fact that, in several cases, flooding over plain areas is characterized by a slow evolution. Moreover, models using a simplified set of equations might lead to faster computational times. However, diffusive models could be computationally less effective than dynamic models when high resolution meshes are

used due to more restrictive stability criteria. In the literature, there are several studies related to the benchmarking of simplified two-dimensional shallow water models (HORRITT *et alii*, 2007), focusing also on urban settings (FEWTRELL *et alii*, 2011).

The application of 2-D numerical models based on the diffusive wave equations, mainly referred to inundations due to slow-varying floods, can be found in several works (see for example ARONICA *et alii*, 2002; BRADBROOK *et alii*, 2004). HUNTER *et alii*, 2008 compared fully dynamic shallow water codes and diffusive models for an urban test site that highlighted some differences in both water depths and extent dynamics, due to the different schematization of the physical process and the numerical solvers used. NÉELZ & PENDER (2012) analyzed several commercial models used for flood risk modelling in the UK in a number of numerical cases. NEAL *et alii* (2012)

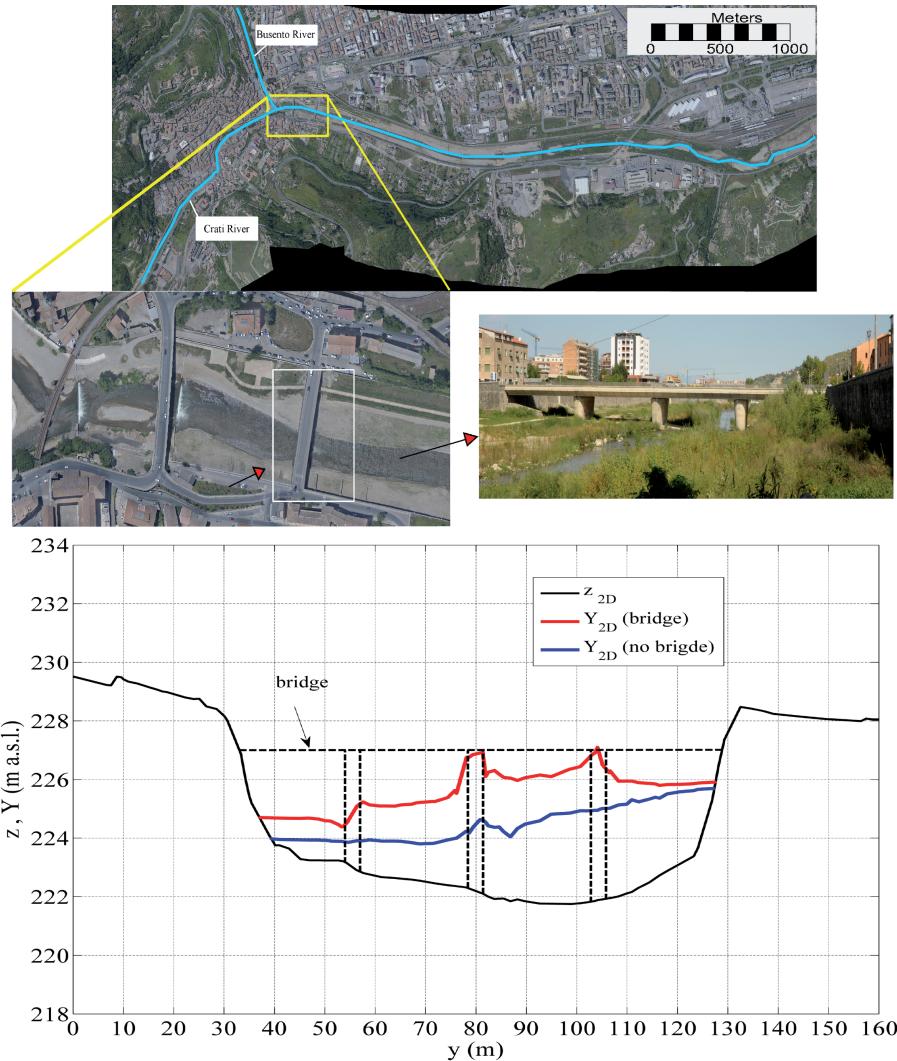


Fig. 4 - Total head and water elevations across a section simulated by the 2-D model (bridge scenario) (from COSTABILE *et alii*, 2015b)

applied three two-dimensional models based, respectively, on diffusive, inertial or shallow water waves. They concluded that fully dynamic shallow water models may be unnecessarily complex because simpler schemes can perform just as well, in terms of both velocity and depths, but only for gradually varied flow. In fact, in situations characterized by low friction and supercritical flow, simplified models can produce large error in terms of mass balance and might become unstable. PRESTINIZI (2008) presented a diffusive model to simulate an impulsive wave propagation on a physical model. The author compared the results of the diffusive model with the experimental data and with other published numerical results associated to the use of a fully dynamic model. The proposed diffusive model gave a good description of the inundation arrival times and local peak values but failed in reproducing some local phenomena.

COSTABILE *et alii* (2017) analyzed the consequences of simplifications of the shallow water equations. In particular, a numerical diffusive-type model (DFW) have been compared with a fully dynamic wave equation model (FDW) using as a

reference the results of experimental test cases reproducing an urban district (Fig. 5).

The applications of the two models highlighted the intrinsic strong limitations of the DFW model applied to the urban flooding due to its poor prediction of the shock waves that might be induced by the interaction between the flood flow and the buildings. These effects are accurately described by the FDW approach but significantly underestimated by the DFW model whose performances become worse in more complex buildings arrangements and in situations characterized by impulsive flood hydrographs (see Figs. 6 and 7).

Therefore, the use of diffusive-type models can be questionable, especially for flood hazards assessment in urban districts, due to the poor simulations around the buildings that represent the elements for which the damages and the risk are particularly relevant. Moreover, as mentioned before, the computational times of the diffusive model are more or less 2.5-3 times greater than those of the fully dynamic model.

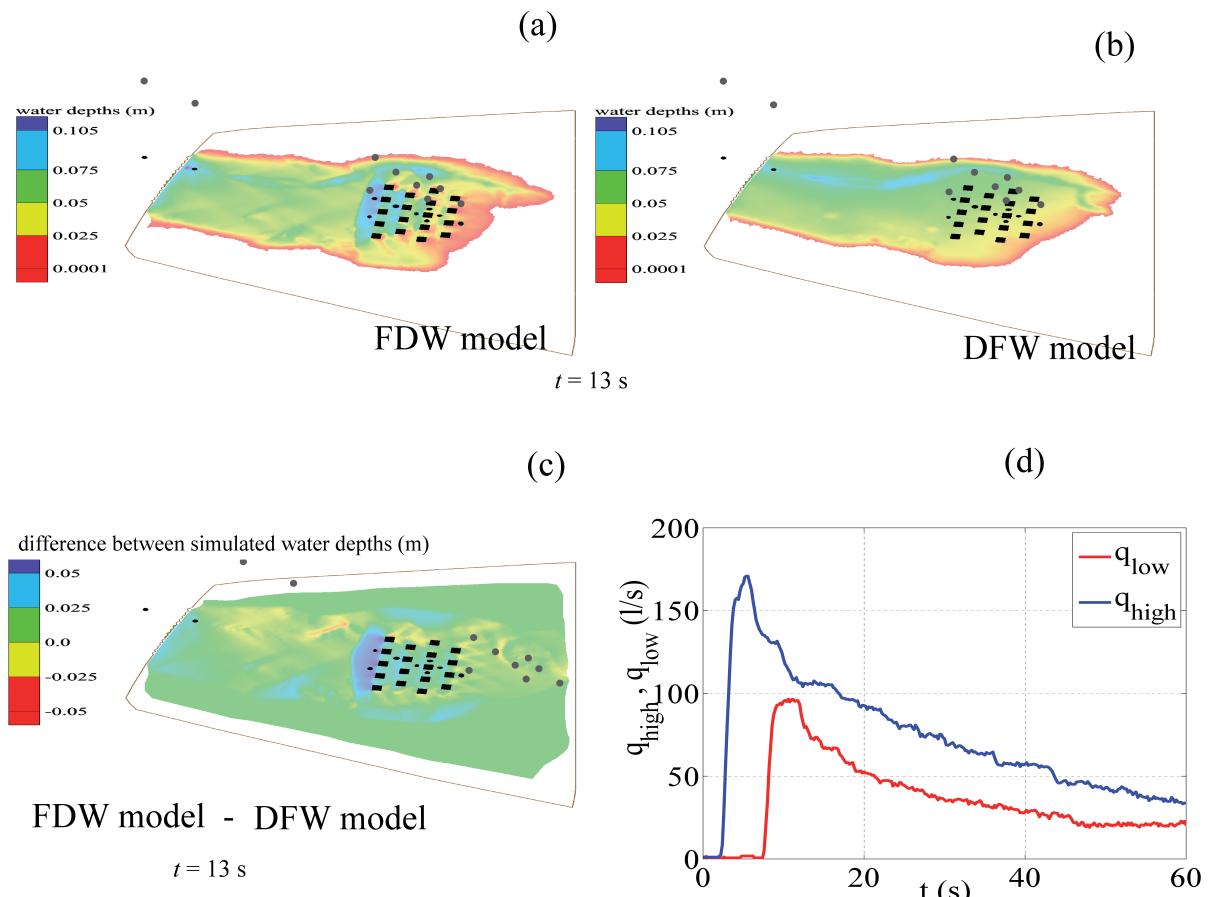


Fig. 5 - Water levels simulated by the FDW (a) and DFW (b) models, differences between the models (c), flood hydrographs used as boundary conditions (d) (from COSTABILE *et alii*, 2017; modified)

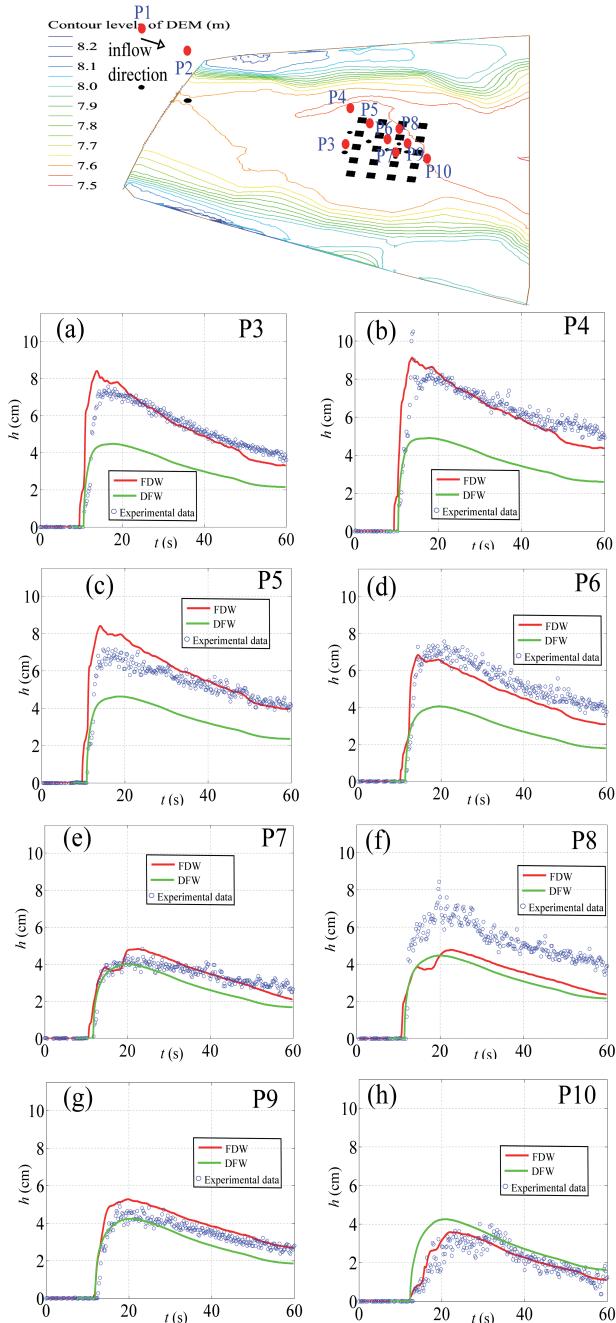


Fig. 6 - Comparison between models results and experimental data in the case of aligned arrangement (from COSTABILE *et alii*, 2017; modified)

FLOOD PROPAGATION AT CATCHMENT SCALE

Intense and localized precipitations cause local, sudden floods (often-called flash floods) in small basins. Overland flow is the dynamic component of the watershed reaction to the rain. To model rainfall runoff phenomena, several methods were

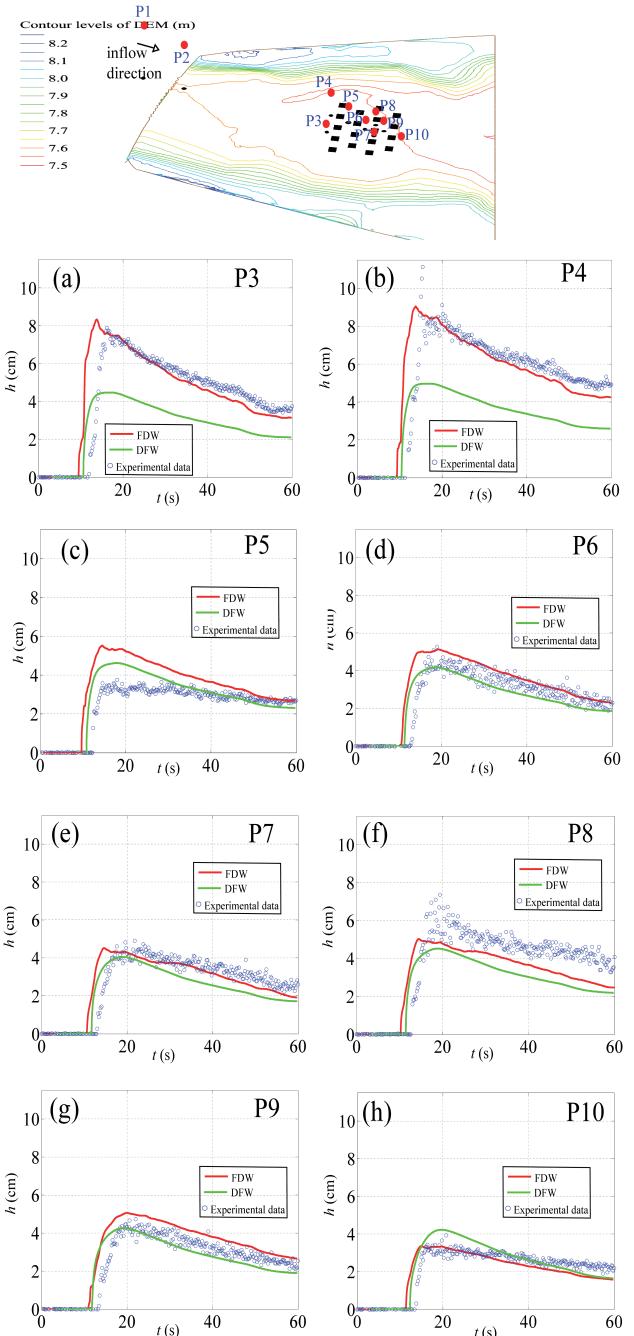


Fig. 7 - Comparison between models results and experimental data in the case of staggered arrangement and high hydrograph (from COSTABILE *et alii*, 2017; modified)

proposed ranging from linear concentrated models like black box to non-linear physically-based distributed models (TASKINEN & BRUEN, 2007; ALFIERI *et alii*, 2012). As regards the latter family, many simplified hydrodynamic model like diffusive and kinematic wave models can be found in the literature (LIGHTRILL

& WHITHAM, 1955; GOVINDARAJU, 1988; TAYFUR *et alii*, 1993; DI GIAMMARCO *et alii*, 1996; FENG & MOLZ, 1997; BORAH & BERA, 2003; LIU *et alii*, 2004; JAIN & SINGH, 2005; HOWES *et alii*, 2006; KAZEYILMAZ-ALHAN & MEDINA, 2007; GOTTALE & VENUTELLI, 2008; VENKATA *et alii* 2009; BATES *et alii*, 2010; LOPEZ-BARRERA *et alii*, 2012; WARNOCK *et alii* 2014). Also in this case, the development of these models have been proposed with the aim of overcoming the complexity of the full SWE, of facing the lack of high-resolution data and reducing the computational times. Nowadays, the importance of these issues is much less significant due to the progress has been built over the last decade. Parallel codes in shallow water 2-D are coming to be more and more usable in computer environments (i.e. LACASTA *et alii*, 2015; WITTMANN *et alii*, 2017; LIANG *et alii*, 2017). As regards the numerical issues, the application of the methods developed for dam break simulations, proved to be reliable also in the context of overland flow simulation and, therefore, computational dry cells that become wet because of the rainfall input and subsequently dry out because of high bed slopes, the source term computation and the treatment of friction slope terms can now be managed without any problem. Starting from the pioneering models proposed by ESTEVEZ *et alii* (2000) and FIEDLER & RAMIREZ (2000), several numerical studies on all these aspects can be found in the literature (UNAMI *et alii*, 2009; CAO *et alii*, 2010; YEH *et alii*, 2010; CEA *et alii*, 2010; MÜGLER *et alii*, 2011; KIM *et alii*, 2012; CAVIEDES-VOULLIÈME *et alii*, 2012; BERARDI *et alii*, 2013; KIM & SEO, 2013; COSTABILE *et alii*, 2013; YU & DUAN, 2014; SIMONS *et alii*, 2014; BUSAMAN *et alii*, 2015; CEA & BLADE, 2015; SINGH *et alii*, 2015; ROUSSEAU *et alii*, 2015; HUANG *et alii*, 2015; LIANG *et alii*, 2015; BELLOS & TSAKIRIS, 2016; FERNÁNDEZ-PATO *et alii*, 2016; XIA *et alii*, 2017; BERMUDEZ *et alii*, 2017). These studies show applications not only in experimental test cases but also in real catchments. An example of these can be found in COSTABILE *et alii* (2013) in which a numerical model has been applied to simulate a real event, which occurred in a sub-basin or Reno river in Italy (see Fig. 8a). Using net rains, as input for the numerical model, the numerical results show a satisfactory agreement between observed and simulated hydrographs, reproducing not only the peak discharge but also the shape of the observed hydrograph (see Fig. 8b).

The good results obtained by the authors who applied 2-D fully dynamic shallow water equations in overland flow simulations confirm the fact that it can be considered the most advanced physically based approach to deal with these kind of phenomena on large areas (BORAH, 2011). In this context, COSTABILE *et alii* (2009; 2012a) presented a comparative analysis of different overland flow models based on the shallow water equations and relative approximations (diffusive and kinematic models). Numerical results showed that the models performances are similar in very simplified tests where the

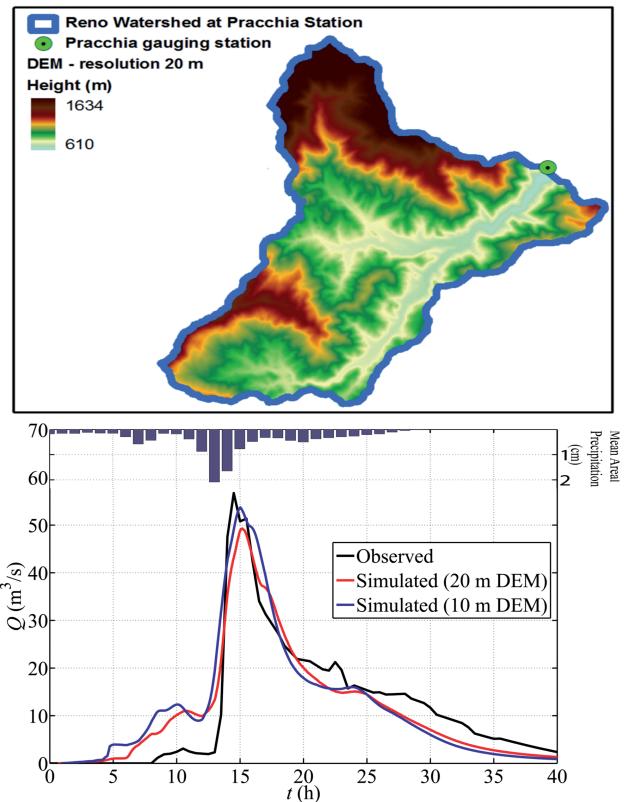


Fig. 8 - Pracchia river basin (a) and comparison between observed and simulated hydrographs (b) (from COSTABILE *et alii*, 2012; modified)

topography is reduced to a flat surface and the hydraulic phenomena are very far from those occurring during flash floods real events. Indeed, the results coming from the numerical simulation of the experimental test regarding the run off in varying space but leaving constant in time the rainfall intensity over a cascade of three planes, in which the generation of a shock wave occurs, lead to mitigate that conclusion.

Finally, recently, there is an increasing interest in the coupling of soil erosion model and physically based overland flow models (SIMPSON & CASTELLORT 2006; MURILLO *et alii*, 2008; HENG *et alii*, 2009; HENG *et alii*, 2011; ALI *et alii*, 2013; KIM *et alii*, 2013; LU *et alii*, 2016; TIAN *et alii*, 2017; LIN *et alii*, 2017; FERNÁNDEZ-PATO *et alii* 2017).

SIMPSON & CASTELLORT (2006) present a coupled model of overland flow and sediment transport with morphological evolution, based on the SWEs for flow, conservation of sediment concentration and empirical functions for bed friction, substrate erosion and deposition. FERNÁNDEZ-PATO *et alii* (2017) proposed a two-dimensional hydraulic-erosive model based on the fully dynamic approach and on a sediment mass conservation equation combined with several parameters related with the soil erodibility, the catchment slopes and the canopy cover.

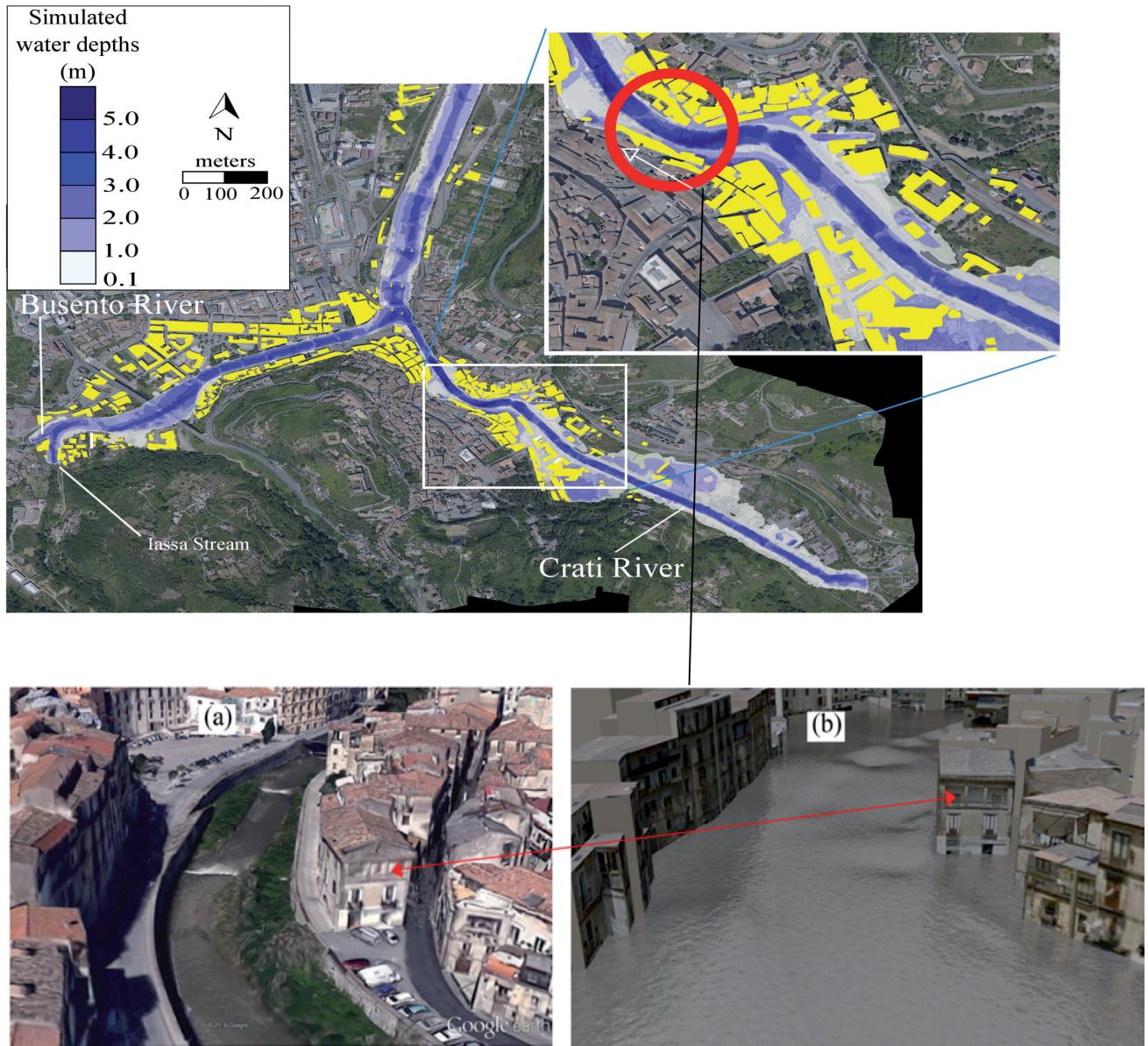


Fig. 9 - 2-D flood map (a) and 3-D representation of a specific area without (b) and with (c) simulated water surfaces

CONNECTION BETWEEN 2-D FLOOD SIMULATIONS AND 3-D VISUALIZATION TECHNIQUES FOR FLOOD HAZARD COMMUNICATION

The use of the 2-D fully dynamic modelling has proved to be a reliable approach for obtaining flood hazard maps prescribed by the Directive 2007/60/EC as a key tool for risk management. An example of this has been reported in Fig. 9a in which the flood-prone areas, resulting from two-dimensional numerical modelling, outlined by chromatic shading or contour based method, are

represented for the Cosenza old town (Calabria, Italy).

Though technicians and experts in flood risk can easily analyse the 2-D maps, these do not allow a non-scientific audience an immediate understanding of flooding impacts. This last aspect is not of secondary importance because the flood Directive precisely formulated the demand for risk communication with the people at risk. The importance of active involvement of stakeholders in flood risk management has been highlighted in several papers (VOINOV & BOUSQUET, 2010; ARGINIEGAS *et alii*, 2013; BARNAUD *et alii*, 2013; LESKENS

et alii, 2014; HEWITT *et alii*, 2014; MASKREY *et alii*, 2016).

Since communication to the public assumes a crucial role in the flood risk management, a basic expertise in this topic should characterize the professional training of hydraulic engineers working on flood hazards. Environmental modellers and technicians working on this field usually neglect this aspect (MCINERNY *et alii*, 2014, GRAINGER *et alii*, 2016). So, there is the need of research aimed at finding suitable options to communicate the main results coming from 2-D hydrodynamic simulations by means of specific visualization able to increase flood hazard perception and to influence behaviour of people in emergency and raise risk awareness (CHARRIÈRE *et alii*, 2012),

Virtual-Reality visualization of 3-D scenarios could allow users to view complex data in a more intuitive and comprehensible way and offers help in communication of scientific knowledge to potentially interested non-expert communities (SAGGIO & FERRARI, 2012). In this contest, MACCHIONE *et alii* (2016c; 2019) carry out the development of an intentionally simple workflow for the representation of 2-D hydraulic simulations within a 3-D virtual reality environment, using texture-mapping technique. The main goal of this research is to represent realistic flood scenarios with minimum standard formats in virtual environments. Figures 9 b,c shows a 3-D environment without and with flooding. The image without flooding have been taken from Google Earth, in the 3-D view. The results highlight a realistic representation of water depths at neighbourhood's scale by adding more information about interaction between flood and public/private goods, compared to a classic 2-D flood map. Furthermore, this kind of visual risk communication facilitates the emergency planning and preparation, flood damage estimation because the image is vivid and realistic and consequences associated to the flood evolution is easier to perceive.

REFERENCES

ALCRUDO F. & GARCIA-NAVARRO P. (1993) - *A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations*. International Journal for Numerical Methods in Fluids, **16** (6): 489-505.

ALFIERI L., THIELEN J. & PAPPENBERGER F. (2012) - *Ensemble hydrometeorological simulation for flash flood early detection in southern Switzerland*. Journal of Hydrology, **424**: 143-153.

ALHO P. & AALTONEN J. (2008) - *Comparing a 1D hydraulic model with a 2D hydraulic model for the simulation of extreme glacial outburst floods*. Hydrological Processes, **22** (10): 1537-1547.

ALI M., SEEGER M., STERK G. & MOORE D. (2013) - *A unit stream power based sediment transport function for overland flow*. Catena, **101**: 197-204.

ALMEIDA G. A. & BATES P. (2013) - *Applicability of the local inertial approximation of the shallow water equations to flood modeling*. Water Resources Research, **49** (8): 4833-4844.

ALTINAKAR M. S., MCGRATH M. Z., RAMALINGAM V. P. & OMARI H. (2010) - *2D modeling of big bay dam failure in Mississippi: Comparison with Field Data and 1D Model Results*. In River Flow, 2010: 547-554.

APEL H., ARONICA G. T., KREIBICH H. & THIEKEN A.H. (2009) - *Flood risk analyses—how detailed do we need to be?* Natural Hazards, **49** (1): 79-98.

ARCINIEGAS G., JANSSEN R. & RIETVELD P. (2013) - *Effectiveness of collaborative map-based decision support tools: results of an experiment*. Environmental Modelling & Software, **39**: 159-175.

ARONICA G., BATES P.D. & HORRITT M.S. (2002) - *Assessing the uncertainty in distributed model predictions using observed binary pattern information*

CONCLUSIVE CONSIDERATIONS

In this paper, attention has been devoted to the importance of the 2D SWEs for the numerical simulation of flood events and hazard mapping. For this reason, typical fields of applications of the fully dynamic modelling have been presented, in order to give a reference framework useful not only for researchers but also for technicians working on this area.

The first aspect analysed is related to dam break simulations. Beside the technical interest in that kind of simulation, dam break numerical modelling represented the reference field of research in which the most reliable numerical schemes have been developed, analysed and compared.

Then attention has been focused on the key role played by the fully dynamic shallow water modelling for flood hazard mapping. Two main aspects have been underlined. The first one concerned the limitations of the one-dimensional modelling highlighted by comparing the results with those obtained by using the two-dimensional approach. The second one dealt with the drawbacks associated to the use of simplified two-dimensional modelling.

The last modelling issue analysed in this work dealt with the application of the 2D fully dynamic modelling at a basin scale, which represents a relatively novel topic in the literature. In fact, due to the increasing availability of LIDAR data and the development of more and more efficient parallel-codes, the application of that modelling seems to be the best choice to achieve reliable results.

Finally, the connection between 2-D flood simulations and 3-D visualizations of the results in the context of flood risk communication has been highlighted. In particular, it has been mentioned the usefulness of virtual-reality scenarios to strengthen people's risk awareness in order to encourage the population at risk to implement preventive actions and to be prepared for an emergency.

within GLUE. *Hydrological Processes*, **16** (10): 2001-2016.

ARONICA G., TUCCIARELLI T. & NASELLO C. (1998) - 2D multilevel model for flood wave propagation in flood-affected areas. *Journal of water resources planning and management*, **124** (4): 210-217.

AURELI F., DAZZI S., MARANZONI A., MIGNOSA P. & VACONDIO R. (2015) - Experimental and numerical evaluation of the force due to the impact of a dam-break wave on a structure. *Advances in Water Resources*, **76**: 29-42.

AURELI F., MARANZONI A., MIGNOSA P. & ZIVERI C. (2008) - Dam-break flows: Acquisition of experimental data through an imaging technique and 2D numerical modelling. *Journal of Hydraulic Engineering*, **134** (8): 1089-1101.

AURELI F., MIGNOSA P. & TOMIOTTI M. (2000) - Numerical simulation and experimental verification of dam-break flows with shocks. *Journal of Hydraulic Research*, **38** (3): 197-206.

Bales J.D. & WAGNER C.R. (2009) - Sources of uncertainty in flood inundation maps. *Journal of Flood Risk Management*, **2** (2): 139-147.

BARNAUD C., LE PAGE C., DUMRONGJAWATTHANA P. & TRÉUIL G. (2013) - Spatial representations are not neutral: Lessons from a participatory agent-based modelling process in a land-use conflict. *Environmental Modelling & Software*, **22** (11): 1543-1556.

BATES P. D., HORRITT M. S. & FEWTRELL T.J. (2010) - A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. *Journal of Hydrology*, **387** (1): 33-45.

BECHTELER W., KULISCH H. & NUJIC M. (1992) - 2-D dam-break flooding waves: comparison between experimental and calculated results. In SAUL A.J. (Ed.), *Floods and Flood Management*, Kluwer Academic Publishers, Dordrecht: 247-260.

BELLOS C.V. & SAKKAS J.G. (1987) - 1-D dam-break flood-wave propagation on dry bed. *Journal of Hydraulic Engineering*, **113** (12): 1510-1524.

BELLOS C.V., SOULIS J.V. & SAKKAS J.G. (1992) - Experimental investigation of two-dimensional dam-break induced flows. *Journal of Hydraulic Research*, **30** (1): 47-63.

BELLOS V. & TSAKIRIS G. (2016) - A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques. *Journal of Hydrology*, **540**: 331-339.

BERARDI L., LAUCELLI D., SIMEONE V. & GIUSTOLISI O. (2013) - Simulating flood sinephemeral streams in Southern Italy by full-2D hydraulic models. *International Journal of River Basin Management*, **11** (1): 1-17.

BERMÚDEZ M., NEAL J. C., BATES P. D., COXON G., FREER J. E., CEA L. & PUERTAS J. (2017) - Quantifying local rainfall dynamics and uncertain boundary conditions into a nested regional local flood modeling system. *Water Resources Research*, **53** (4): 2770-2785.

BISCARINI C., DI FRANCESCO S. & MANCIOLA P. (2010) - CFD modelling approach for dam break flow studies. *Hydrology and Earth System Sciences*, **14** (4): 705.

BOHORQUEZ P. & DARBY S.E. (2008) - The use of one-and two-dimensional hydraulic modelling to reconstruct a glacial outburst flood in a steep Alpine valley. *Journal of Hydrology*, **361** (3): 240-261.

BORAH D. & BERA M. (2003) - Watershed-scale hydrologic and nonpoint-source pollution models: review of mathematical bases. *American Society of Agricultural and Biological Engineers*, **46** (6): 1553-1566.

BORAH D.K. (2011) - Hydrologic procedures of storm event watershed models: a comprehensive review and comparison. *Hydrological Processes*, **25**: 3472-3489.

BOSA S. & PETTI M. (2013) - A numerical model of the wave that overtopped the Vajont dam in 1963. *Water Resources Management*, **27** (6): 1763-1779.

BRADBROOK K.F., LANE S.N., WALLER S.G. & BATES P.D. (2004) - Two dimensional diffusion wave modelling of flood inundation using a simplified channel representation. *International Journal of River Basin Management*, **2** (3): 211-223.

BRADFORD S.F. & SANDERS B.F. (2002) - Finite-volume model for shallow-water flooding of arbitrary topography. *Journal of Hydraulic Engineering*, **128** (3): 289-298.

BRASCHI G., DADONE F. & GALLATI M. (1994) - Plain flooding: near field and far field simulations. In *Modelling of Flood Propagation over Initially Dry Areas*: 45-59, ASCE.

BRUFAU P. & GARCÍA-NAVARRO P. (2000) - Two-dimensional dam break flow simulation. *International Journal for Numerical Methods in Fluids*, **33** (1): 35-57.

BRUFAU P., VAZQUEZ-CENDON M. E. & GARCÍA-NAVARRO P. (2004) - Zero mass error using unsteady wetting-drying conditions in shallow flows over dry irregular topography. *International Journal for Numerical Methods in Fluids*, Wiley, **45**: 1047-1082.

BRUFAU P., VAZQUEZ-CENDON M. E. & GARCÍA-NAVARRO P. (2002) - A numerical model for the flooding and drying of irregular domains. *International Journal for Numerical Methods in Fluids*, **39** (3): 247-275.

BRUWIER M., ARCHAMBEAU P., ERPICUM S., PIROTTON M. & DEWALS B. (2017) - Shallow-water models with anisotropic porosity and merging for flood modelling on Cartesian grids. *Journal of Hydrology*, **554**: 693-709.

BUSAMAN A., MEKHAY K. & SIRIPANT S. (2015) - Dynamically adaptive tree grid modeling for simulation and visualization of rain-water overland flow. *International Journal for Numerical Methods in Fluids*, **79**: 559-579.

CAO Z., MENG J., PENDER G. & WALLS S. (2006) - Flow resistance and momentum flux in compound open channels. *Journal of Hydraulic Engineering*, **132** (12): 1272-1282.

CAO Z., WANG X., PENDER G. & ZHANG S. (2010) - Hydrodynamic modelling in support of flash flood warning. *Proceedings of the Institution of Civil*

Engineers - Water Management, **163** (7): 327-340.

CASTELLARIN A., Di BALDASSARRE G., BATES P. D. & BRATH A. (2009) - *Optimal cross-sectional spacing in Preissmann scheme 1D hydrodynamic models*. Journal of Hydraulic Engineering, **135** (2): 96-105.

CASTRO-ORGAZ O. & CHANSON H. (2017) - *Ritter's dry-bed dam-break flows: positive and negative wave dynamics*. Environmental Fluid Mechanics, **17** (4): 665-694.

CAVIEDES-VOUILLIÈME D., GARCIA-NAVARRO P. & MURILLO J. (2012) - *Influence of mesh structure on 2D full shallow water equations and SCS Curve Number simulation of rainfall/runoff events*. Journal of Hydrology, **448**: 39-59.

CEA L. & BLADE E. (2015) - *A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications*. Water Resource Research, **51**: 5464-5486.

CEA L., GARRIDO M. & PUERTAS J. (2010) - *Experimental validation of two-dimensional depth-averaged models for forecasting rainfall-runoff from precipitation data in urban areas*. Journal of Hydrology, **382** (1): 88-102.

CHARRIÈRE M.K.M., JUNIER S.J., MOSTERT E. & BOGAARD T.A. (2012) - *Flood risk communication: Visualization tools and evaluations of effectiveness*. FLOODrisk 2012: The 2nd European Conference on FLOODrisk Management" Science, Policy and Practice: Closing the Gap", Rotterdam, The Netherlands, 20-22 November 2012; authors version.

CHAUDHRY M.H. (1993) - *Open-channel flow*. Prentice Hall, Englewood Cliffs, New Jersey.

CHERTOCK A., CUI S., KURGANOV A. & WU T. (2015) - *Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms*. International Journal for Numerical Methods in Fluids, **78**: 355-383.

CHERVET A. & DALLEVES P. (1970) - *Calcul de l'onde de submersion consecutive à la rupture d'un barrage*. Schweizerische Bauzeitung, **88** (19): 420-432.

COOK A. & MERWADE V. (2009) - *Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping*. Journal of Hydrology, **377** (1): 131-142.

COSTABILE P. & MACCHIONE F. (2012) - *Analysis of one-dimensional modelling for flood routing in compound channels*. Water Resources Management, **26** (5): 1065-1087.

COSTABILE P. & MACCHIONE F. (2015) - *Enhancing river model set-up for 2-D dynamic flood modelling*. Environmental Modelling & Software, **67**: 89-107.

COSTABILE P., COSTANZO C. & MACCHIONE F. (2012a) - *Comparative analysis of overland flow models using finite volume schemes*. Journal of Hydroinformatics, **14** (1): 122-135.

COSTABILE P., COSTANZO C. & MACCHIONE F. (2013) - *A storm event watershed model for surface runoff based on 2D fully dynamic wave equations*. Hydrological Processes, **27** (4): 554-569.

COSTABILE P., COSTANZO C. & MACCHIONE F. (2017) - *Performances and limitations of the diffusive approximation of the 2-D shallow water equations for flood simulation in urban and rural areas*. Applied Numerical Mathematics, **116**: 141-156.

COSTABILE P., COSTANZO C., MACCHIONE F. & MERCOLIANO P. (2012b) - *Two-dimensional model for overland flow simulations: a case-study*. European Water, **38**: 13-23.

COSTABILE P., MACCHIONE F., NATALE L. & PETACCIA G. (2015a) - *Flood mapping using LIDAR DEM. Limitations of the 1-D modeling highlighted by the 2-D approach*. Natural Hazards, **77** (1): 181-204.

COSTABILE P., MACCHIONE F., NATALE L. & PETACCIA G. (2015b) - *Comparison of scenarios with and without bridges and analysis of backwater effect in 1-D and 2-D river flood modeling*. Computer and Modelling in Engineering and Sciences, **109-110** (2): 81-103.

COSTABILE P., COSTANZO C. & MACCHIONE F. (2009) - *Two-dimensional numerical models for overland flow simulations*. WIT Transactions on Ecology and the Environment, **124**: 137-148.

COSTANZO C. & MACCHIONE F. (2006) - *Two-dimensional numerical simulation of flood propagation in presence of buildings*. In: Alves Cardoso, Leal, Ferreira (Eds.), Proc. International Conference on Fluvial Hydraulics, River Flow 2006, Lisbon, Taylor and Francis, 2006.

COZZOLINO L., PEPE V., MORLANDO F., CIOMORELLI L., D'ANIELLO A., DELLA Morte R. & PIANESE D. (2017) - *Exact solution of the dam-break problem for constrictions and obstructions in constant width rectangular channels*. Journal of Hydraulic Engineering, **143** (11): 04017047.

CUNGE J.A., HOLLY F.M. & VERVEY A. (1980) - *Practical aspects of computational river hydraulics*. Pitman Publ. Inc., London.

DAZZI S., VACONDIO R., DAL PALÙ A. & MIGNOSA P. (2017) - *A local time stepping algorithm for GPU-accelerated 2D shallow water models*. Advances in Water Resources, **111**: 274-288.

DI BALDASSARRE G. & MONTANARI A. (2009) - *Uncertainty in river discharge observations: a quantitative analysis*. Hydrology and Earth System Sciences, **13** (6): 913.

DI BALDASSARRE G., SCHUMANN G., BATES P.D., FREER J.E. & BEVEN K.J. (2010) - *Flood-plain mapping: a critical discussion of deterministic and probabilistic approaches*. Hydrological Sciences Journal, **55** (3): 364-376.

DI CRISTO C., EVANGELISTA S., GRECO M., IERVOLINO M., LEOPARDI A. & VACCA A. (2017) - *Dam-break waves over an erodible embankment: experiments and simulations*. Journal of Hydraulic Research: 1-15.

Di GiAMMARCO P., TODINI E. & LAMBERTI P. (1996) - *A conservative finite elements approach to overland flow: the control volume finite element formulation*. Journal of Hydrology, **175**: 276-291.

DOMENEGHETTI A., VOROGUSHYN S., CASTELLARIN A., MERZ B. & BRATH A. (2013) - *Probabilistic flood hazard mapping: effects of uncertain boundary conditions*. Hydrology and Earth System Sciences, **17** (8): 3127.

DOTTORI F. & TODINI E. (2013) - *Testing a simple 2D hydraulic model in an urban flood experiment*. Hydrological Processes, **27** (9): 1301-1320.

DRESSLER R.F. (1952) - *Hydraulic resistance effect upon the dam-break functions*. Bureau of Standards, **49** (3): 217-225.

ELKHOLY M., LAROCQUE L.A., CHAUDHRY M.H. & IMRAN J. (2016) - *Experimental investigations of partial-breach dam-break flows*. Journal of Hydraulic Engineering, **142** (11): 04016042.

ESTEVEZ M., FAUCHER X., GALLE S. & VAUCLIN M. (2000) - *Overland flow and infiltration modelling for small plots during unsteady rain: numerical results versus observed values*. Journal of Hydrology, **228** (3): 265-282.

FALTER D., VOROGUSHYN S., LHMOMME J., APEL H., GOULD BY B. & MERZ B. (2013) - *Hydraulic model evaluation for large-scale flood risk assessments*. Hydrological Processes, **27** (9): 1331-1340.

FENG K. & MOLZ G.J. (1997) - *A 2D diffusion-based, wetland flow model*. Journal of Hydrology, **196**: 230-250

FERNÁNDEZ-PATO J., CAVIEDES-VOULLÍME D. & GARCÍA-NAVARRO P. (2016) - *Rainfall/runoff simulation with 2D full shallow water equations: sensitivity analysis and calibration of infiltration parameters*. Journal of Hydrology, **536**: 496-513.

FERNÁNDEZ-PATO J., JUEX C., TENA A., BATALLA R.J. & GARCÍA-NAVARRO P. (2017) - *Simulation of runoff generation and erosion in a mediterranean watershed using 2D shallow water equations*. International Symposium and Exhibition on Hydro-Environment Sensors and Software, Madrid, Spain.

FERRARI A., VACONDIO R., DAZZI S. & MIGNOSA P. (2017) - *A 1D-2D shallow water equations solver for discontinuous porosity field based on a Generalized Riemann Problem*. Advances in Water Resources, **107**: 233-249.

FEWTRELL T. J., DUNCAN A., SAMPSON C. C., NEAL J. C. & BATES P.D. (2011) - *Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data*. Physics and Chemistry of the Earth, Parts A/B/C, **36** (7): 281-291.

FIEDLER F.R. & RAMIREZ J.A. (2000) - *A numerical method for simulating discontinuous shallow flow over an infiltrating surface*. Int. J. Numer. Methods Fluids, **32** (2): 219-240.

FRACCAROLLO L. & TORO E.F. (1995) - *Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems*. Journal of Hydraulic Research, **33** (6): 843-864.

GALLEGOS H.A., SCHUBERT J.E. & SANDERS B.F. (2009) - *Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California*. Advances in Water Resources, **32** (8): 1323-1335.

GARCIA R. & KAHAWITA R.A. (1986) - *Numerical solution of the St. Venant equations with the MacCormack finite-difference scheme*. International Journal for Numerical Methods in Fluids, **6** (5): 259-274

GAVARDASHVILI G. (2013) - *Prediction of flooded territories in case of possible breakdown of the Sioni earth dam*. Italian Journal of Engineering Geology and Environment, TOPIC 4: 417-423.

GEORGE D.L. (2011) - *Adaptive finite volume methods with well-balanced Riemann solvers for modeling floods in rugged terrain: application to the Malpasset dam-break flood (France, 1959)*. International Journal for Numerical Methods in Fluids, **66** (8): 1000-1018.

GÓMEZ M., MACCHIONE F. & RUSSO B. (2011) - *Methodologies to study the surface hydraulic behaviour of urban catchments during storm events*. Water science and technology, **63** (11): 2666-2673.

GOTTARDI G. & VENUTELLI M. (2008) - *An accurate time integration method for simplified overland flow models*. Advances in Water Resources, **31** (1): 173-180.

GOVINDARAJU R. (1988) - *On the diffusion wave model for overland flow: 1. Solution for steep slopes*. Water Resource Research, **24** (5): 734-744.

GRAINGER S., MAO F. & BUYTAERT W. (2016) - *Environmental data visualization for non-scientific contexts: literature review and design framework*. Environmental Modelling & Software, **85**: 299-318.

GRIMALDI S., PETROSELLI A., ARCANGELETTI E. & NARDI F. (2013) - *Flood mapping in ungauged basins using fully continuous hydrologic-hydraulic modeling*. Journal of Hydrology, **487**: 39-47.

GUAN M., AHILAN S., YU D., PENG Y. & WRIGHT N. (2017) - *Numerical modelling of hydro-morphological processes dominated by fine suspended sediment in a stormwater pond*. Journal of Hydrology, **556**: 87-99.

GUINOT V. & SOARES-FRAZÃO S. (2006) - *Flux and source term discretization in two-dimensional shallow water models with porosity on unstructured grids*. International Journal for Numerical Methods in Fluids, **50** (3): 309-345.

GUINOT V. (2012) - *Multiple porosity shallow water models for macroscopic modelling of urban floods*. Advances in Water Resources, **37**: 40-72.

GUPTA H. & SINGH L.P. (2015) - *Simulation of dam-break problem using random choice method*. Computers & Fluids, **111**: 187-196.

HALTAS I., TAYFUR G. & ELCI S. (2016) - *Two-dimensional numerical modeling of flood wave propagation in an urban area due to Ürkmez dam-break, Izmir, Turkey*. Natural Hazards, **81** (3): 2103-2119.

HELMİÖ T. (2005) - *Unsteady 1D flow model of a river with partly vegetated floodplains - application to the Rhine River*. Environmental Modelling &

Software, **20** (3): 361-375.

HENG B., SANDER G. & SCOTT C. (2009) - *Modeling overland flow and soil erosion on nonuniform hillslopes: a finite volume scheme*. Water Resources Research, **45** (5).

HENG B., SANDER G., ARMSTRONG A., QUINTON J., CHANDLER J. & SCOTT C. (2011) - *Modeling the dynamics of soil erosion and size-selective sediment transport over nonuniform topography in flume-scale experiments*. Water Resources Research, **47** (2).

HERVOUET J.M. & PETITJEAN A. (1999) - *Malpasset dam-break revisited with two-dimensional computation*. Journal of Hydraulic Research, **37** (6): 777-788.

HERVOUET J.M. (2000) - *A high resolution 2-D dam-break model using parallelization*. Hydrological processes, **14** (13): 2211-2230.

HEWITT R., VAN DELDEN H. & ESCOBAR F. (2014) - *Participatory land use modelling, pathways to an integrated approach*. Environmental Modelling & Software, **52**: 149-165.

HIRSCH C. (2007) - *Numerical computation of internal and external flows: the fundamentals of computational fluid dynamics*. Butterworth-Heinemann.

HORRITT M.S. & BATES P.D. (2001) - *Predicting floodplain inundation: raster-based modelling versus the finite element approach*. Hydrological Processes, **15** (5): 825-842.

HORRITT M.S. & BATES P.D. (2002) - *Evaluation of 1D and 2D numerical models for predicting river flood inundation*. Journal of Hydrology, **268** (1): 87-99.

HORRITT M.S., DI BALDASSARRE G., BATES P.D. & BRATH A. (2007) - *Comparing the performance of a 2-D finite element and a 2-D finite volume model of floodplain inundation using airborne SAR imagery*. Hydrological Processes, **21** (20): 2745-2759.

HOWES D.A., ABRAHAMS A.D. & PITMAN E.B. (2006) - *One- and two-dimensional modelling of overland flow in semiarid shrubland, Jornada basin, New Mexico*. Hydrological Processes, **20**: 1027-1046.

HUANG W., CAO Z., QI W., PENDER G. & ZHAO K. (2015) - *Full 2D hydrodynamic modelling of rainfall-induced flash flood*. Journal of Mountain Science, **12** (5): 1203-1218.

HUNTER N. M., BATES P. D., NEELZ S., PENDER G., VILLANUEVA I., WRIGHT N. G., LIANG D., FALCONER R.A., LIN B., WALLER S. & CROSSLEY A.J. (2008) - *Benchmarking 2D hydraulic models for urban flood simulations*. In Proceedings of the institution of civil engineers: water management, **161** (1): 13-30.

HUTHOFF F., ROOS P.C., AUGUSTIJN D.C. & HULSCHER S.J. (2008) - *Interacting divided channel method for compound channel flow*. Journal of Hydraulic Engineering, **134** (8): 1158-1165.

JAIN M.K. & SINGH V.P. (2005) - *DEM-based modelling of surface runoff using diffusion wave equations*. Journal of Hydrology, **302**: 107-126.

JIN M. & FREAD D.L. (1997) - *Dynamic flood routing with explicit and implicit numerical solution schemes*. Journal of Hydraulic Engineering, **123** (3): 166-173.

JONKMAN S. N., VRIJLING J.K. & VROUWENVELDER A.C.W.M. (2008) - *Methods for the estimation of loss of life due to floods: a literature review and a proposal for a new method*. Natural Hazards, **46** (3): 353-389.

JUNG Y. & MERWADE V. (2011) - *Uncertainty quantification in flood inundation mapping using generalized likelihood uncertainty estimate and sensitivity analysis*. Journal of Hydrologic Engineering, **17** (4): 507-520.

KALITA H.M. (2016) - *A new total variation diminishing predictor corrector approach for two-dimensional shallow water flow*. Water Resources Management, **30** (4): 1481-1497.

KAZEYILMAZ-ALHAN C.M. & MEDINA JR M.A. (2007) - *Kinematic and diffusion waves: analytical and numerical solutions to overland and channel flow*. Journal of Hydraulic Engineering, **133** (2): 217-228.

KIM B. & SANDERS B.F. (2016) - *Dam-break flood model uncertainty assessment: case study of extreme flooding with multiple dam failures in Gangneung, South Korea*. Journal of Hydraulic Engineering, **142** (5): 05016002.

KIM B., SANDERS B. F., FAMIGLIETTI J.S. & GUINOT V. (2015) - *Urban flood modeling with porous shallow-water equations: a case study of model errors in the presence of anisotropic porosity*. Journal of Hydrology, **523**: 680-692.

KIM B., SANDERS B.F., SCHUBERT J.E. & FAMIGLIETTI J.S. (2014) - *Mesh type tradeoffs in 2D hydrodynamic modeling of flooding with a Godunov-based flow solver*. Advances in Water Resources, **68**: 42-61.

KIM D.H. & SEO Y. (2013) - *Hydrodynamic analysis of storm movement effects on runoff hydrographs and loop-rating curves of a V-shaped watershed*. Water Resource Research, **49**: 6613-6623.

KIM J., IVANOV V.Y. & KATOPODES N.D. (2013) - *Modeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scale*. Water Resources Research, **49** (9): 5134-5154.

KIM J., WARNOCK A., IVANOV V.Y. & KATOPODES D. (2012) - *Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow*. Advances in Water Resources, **37**: 104-126.

LACASTA A., MORALES-HERNÁNDEZ M., MURILLO J. & GARCÍA-NAVARRO P. (2015) - *GPU implementation of the 2D shallow water equations for the simulation of rainfall/runoff events*. Environmental Earth Science, **74**: 7295-7305.

LAROCQUE L.A., IMRAN J. & CHAUDHRY M.H. (2012) - *Experimental and numerical investigations of two-dimensional dam-break flows*. Journal of Hydraulic Engineering, **139** (6): 569-579.

LESKENS J.G., BRUGNACH M., HOEKSTRA A.Y. & SCHUURMANS W. (2014) - *Why are decisions in flood disasters management so poorly supported by information from flood models?* Environmental Modelling & Software, **53**: 53-61.

LEVEQUE R.J. (2002) - *Finite volume methods for hyperbolic problems*. Cambridge University Press, (31).

LI C. & WANG W. (2012) - *Urban flood modeling using 1D-2D coupled hydraulic models*. Disaster Advances, **5** (4): 1086-1090.

LIANG D., BINLIANG L. & FALCONER R.A. (2007) - *Simulation of rapidly varying flow using an efficient TVD-MacCormack scheme*. International Journal for Numerical Methods in Fluids, **53**: 811-826.

LIANG D., FALCONER R. A. & LIN B. (2006) - *Comparison between TVD-MacCormack and ADI-type solvers of the shallow water equations*. Advances in Water Resources, **29** (12): 1833-1845.

LIANG D., OZGEN I., HINKELMANN R., XIAO Y. & CHEN J.M. (2015) - *Shallow water simulation of overland flows in idealised catchments*. Environmental Earth Sciences, **74** (11): 7307-7318.

LIANG J., BRADFORD S.A., ŠIMŮNEK J. & HARTMANN A. (2017) - *Adapting HYDRUS-1D to simulate overland flow and reactive transport during sheet flow deviations*. Vadose Zone Journal, **16** (6).

LIANG Q. & BORTHWICK A.G. (2009) - *Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography*. Computers and Fluids, **38** (2): 221-34.

LIGHTHILL M. & WHITHAM G. (1955) - *On kinematic waves. I. Flood movement in long rivers*. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences: 281-316.

LIN J., HUANG Y., ZHAO G., JIANG F., WANG M. K. & GE H. (2017) - *Flow-driven soil erosion processes and the size selectivity of eroded sediment on steep slopes using colluvial deposits in a permanent gully*. Catena, **157**: 47-57.

LIN P.S., LEE J.H. & CHANG C.W. (2011) - *An application of the FLO-2D model to debris-flow simulation: a case study of Song-Her District in Taiwan*. Italian Journal of Engineering Geology and Environment, **3** (6): 947-956.

LIU Q.Q., CHEN L., LI J.C. & SINGH V.P. (2004) - *Two-dimensional kinematic wave model of overland-flow*. Journal of Hydrology, **291** (1): 28-41.

LIU W.C. & WU C.Y. (2011) - *Flash flood routing modeling for levee-breaks and overbank flows due to typhoon events in a complicated river system*. Natural hazards, **58** (3): 1057-1076.

LÓPEZ-BARRERA D., GARCÍA-NAVARRO P., BRUFAU P. & BURGUETE J. (2011) - *Diffusive-wave based hydrologic-hydraulic model with sediment transport. I: model development*. Journal of Hydrologic Engineering, **17** (10): 1093-1104.

LU J., ZHENG F., LI G., BIAN F. & AN J. (2016) - *The effects of raindrop impact and runoff detachment on hillslope soil erosion and soil aggregate loss in the Mollisol region of Northeast China*. Soil and Tillage Research, **161**: 79-85.

MACCHIONE F. & MORELLI M. A. (2003) - *Practical aspects in comparing shock-capturing schemes for dam break problems*. Journal of Hydraulic Engineering, **129** (3): 187-195.

MACCHIONE F. & RINO A. (2008) - *Model for predicting floods due to earthen dam breaching. II: Comparison with other methods and predictive use*. Journal of Hydraulic Engineering, **134** (12): 1697-1707.

MACCHIONE F. & VIGGIANI G. (2004) - *Simple modelling of dam failure in a natural river*. Proceedings of the Institution of Civil Engineers-Water Management, **157** (1): 53-60.

MACCHIONE F. (2008) - *Model for predicting floods due to earthen dam breaching. I: Formulation and evaluation*. Journal of Hydraulic Engineering, **134** (12): 1688-1696.

MACCHIONE F., DE LORENZO G., COSTABILE P. & RAZDAR B. (2016a) - *The power function for representing the reservoir rating curve: morphological meaning and suitability for dam breach modelling*. Water Resources Management, **30** (13): 4861-4881.

MACCHIONE F., COSTABILE P., COSTANZO C., DE LORENZO G. & RAZDAR B. (2016b) - *Dam breach modelling: influence on downstream water levels and a proposal of a physically based module for flood propagation software*. Journal of Hydroinformatics, **18** (4): 615-633.

MACCHIONE F., COSTABILE P., COSTANZO C. & DE SANTIS R. (2016c) - *La visualizzazione scientifica applicata al rischio di alluvione*. In: 37° Corso di Aggiornamento in Tecniche per la Difesa dall'Inquinamento, 13-22. ISSN 2282-5517.

MACCHIONE F., COSTABILE P., COSTANZO C. & DE SANTIS R. (2019) - *Moving to 3-D flood hazard maps for enhancing risk communication*. Environmental Modelling & Software, **111**: 510-522.

MAHMOOD K. & YEVJEVICH V. (1975) - *Unsteady flow in open channels*. Water Resources Publication, Fort Collins CO.

MARTINEZ C.E., MIRALLES-WILHELM F. & GARCÍA-MARTINEZ R. (2011) - *Quasi-three dimensional two-phase debris flow model accounting for boulder transport*. Italian Journal of Engineering Geology and Environment - Book Series, **3**: 457-466.

MARTINS R., LEANDRO J. & DJORDJEVIĆ S. (2015) - *A well balanced Roe scheme for the local inertial equations with an unstructured mesh*. Advances in Water Resources, **83**: 351-363.

MASKREY S.A., MOUNT N.J., THORNE C.R. & DRYDEN I. (2016) - *Participatory modelling for stakeholder involvement in the development of flood risk management intervention options*. Environmental Modelling & Software, **82**: 275-294.

McINERNY G.J., CHEN M., FREEMAN R., GAVAGHAN D., MEYER M., ROWLAND F., SPIEGELHALTER D.J., STEFANER M., TESSAROLO G. & HORTAL J. (2014) - *Information visualization for science and policy: engaging users and avoiding bias*. Trends Ecology & Evolution, **29** (3): 148-157.

MERWADE V., OLIVERA F., ARABI M. & EDLEMAN S. (2008) - *Uncertainty in flood inundation mapping: current issues and future directions*. Journal of Hydrologic Engineering, **13** (7): 608-620.

MORACI N., PISANO M., MANDAGLIO M. C., GIOFFRÈ D., PASTOR M., NARDI G. L. & COLA S. (2015) - *Analyses and design procedure of a new physical model for debris flows: results of numerical simulations by means of laboratory tests*. Italian Journal of Engineering Geology and Environment, **2**: 29-40.

MORALES-HERNÁNDEZ M., PETACCIA G., BRUFAU P. & GARCÍA-NAVARRO P. (2016) - *Conservative 1D–2D coupled numerical strategies applied to river flooding: The Tiber (Rome)*. Applied Mathematical Modelling, **40** (3): 2087-2105.

MÜGLER C., PLANCHON O., PATIN J., WEILL S., SILVERA N., RICHARD P. & MOUCHE E. (2011) - *Comparison of roughness models to simulate overland flow and tracer transport experiments under simulated rainfall at plot scale*. Journal of Hydrology, **402** (1): 25-40.

MURILLO J. & GARCÍA-NAVARRO P. (2010) - *Weak solutions for partial differential equations with source terms: application to the shallow water equations*. Journal of Computational Physics, **229** (11): 4327-4368.

MURILLO J., GARCÍA-NAVARRO P., BRUFAU P. & BURGUETE J. (2008) - *2D modelling of erosion/deposition processes with suspended load using upwind finite volumes*. Journal of Hydraulic Research, **46** (1): 99-112.

MURILLO J., GARCÍA-NAVARRO P., BURGUETE J. & BRUFAU P. (2007) - *The influence of source terms on stability, accuracy and conservation in two dimensional shallow flow simulation using triangular finite volumes*. International Journal for Numerical Methods in Fluids, **54**: 543-590.

NEAL J., VILLANUEVA I., WRIGHT N., WILLIS T., FEWTRELL T. & BATES P. (2012) - *How much physical complexity is needed to model flood inundation?* Hydrological Processes, **26** (15): 2264-2282.

NÉELZ S. & PENDER G. (2010) - *Benchmarking of 2D hydraulic modelling packages*. SC080035/SR2, Environment Agency, Bristol, 169.

OZMEN-CAGATAY H. & KOCAMAN S. (2011) - *Dam-break flow in the presence of obstacle: experiment and CFD simulation*. Engineering Applications of Computational Fluid Mechanics, **5** (4): 541-552.

PENG Y., ZHANG J.M. & ZHOU J.G. (2015) - *Lattice Boltzmann model using two relaxation times for shallow-water equations*. Journal of Hydraulic Engineering, **142** (2): 06015017.

PETACCIA G. & NATALE L. (2013) - *Design flood estimation: lessons learnt from Sella Zerbino dam-break*. Italian Journal of Engineering Geology and Environment, TOPIC 4: 437-443.

PETACCIA G., NATALE L. & SAVI F. (2008) - *Simulation of the Sella Zerbino catastrophic dam break*. In: Altinakar MS, Kokpinar MA, Aydin I, Kirkgoz S (eds) River flow 2008, 1: 601–608. Proceedings international conference on Fluvial Hydraulics, Izmir, Turkey, 3–5 September 2008.

PETACCIA G., NATALE L., SAVI F., VELICKOVIC M., ZECH Y. & SOARES-FRAZÃO S. (2013) - *Flood wave propagation in steep mountain rivers*. Journal of Hydroinformatics, **15** (1): 120-137.

PILOTTI M., MARANZONI A., TOMIROTTI M. & VALERIO G. (2011) - *1923 Gleno Dam break: case study and numerical modeling*. Journal of Hydraulic Engineering, **137** (4): 480-492.

PRESTININZI P. & FIORI A. (2006) - *Un modello numerico bidimensionale parabolico per la determinazione delle aree di esondazione*. Italian Journal of Engineering Geology and Environment.

PRESTININZI P. (2008) - *Suitability of the diffusive model for dam break simulation: application to a CADAM experiment*. Journal of Hydrology, **361** (1): 172-185.

PROUST S., BOUSMAR D., RIVIERE N., PAQUIER A. & ZECH Y. (2009) - *Nonuniform flow in compound channel: a 1-D method for assessing water level and discharge distribution*. Water Resources Research, **45** (12).

QIAN H., CAO Z., LIU H. & PENDER G. (2017) - *New experimental dataset for partial dam-break floods over mobile beds*. Journal of Hydraulic Research: 1-12.

RITTER A. (1892) - *Die Fortpflanzung der Wasserwellen*. Zeitschrift des Vereines Deutscher Ingenieure, **36** (33):947-954.

ROUSSEAU M., CERDAN O., DELESTRE O., DUPROS F., JAMES F. & CORDIER S. (2015) - *Overland flow modelling with the Shallow Water Equation using a well-balanced numerical scheme: better predictions or just more complexity*. Journal of Hydrologic Engineering, **20** (10): 04015012.

RUSSO B., GÓMEZ M. & MACCHIONE F. (2013) - *Pedestrian hazard criteria for flooded urban areas*. Natural Hazards, **69** (1): 251-265.

SAGGIO G. & FERRARI M. (2012) - *New trends in virtual reality visualization of 3D scenarios*. In: Virtual Reality-Human Computer Interaction. InTech.

SANDERS B.F., SCHUBERT J.E. & GALLEGOS H.A. (2008) - *Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling*. Journal of Hydrology, **362** (1): 19-38.

SARNO L., PAPA M.N. & MARTINO R. (2011) - *Dam-break flows of dry granular materials on gentle slopes*. 5th Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment: 503-512. Casa Editrice Università La Sapienza, Rome.

SIMONS F., BUSSE T., HOU J., ÖZGEN I. & HINKELMANN R. (2014) - *A model for overland flow and associated processes within the hydroinformatics modelling system*. Journal of Hydroinformatics, **16**: 375-391.

SIMPSON G. & CASTELLORT S. (2006) - *Coupled model of surface water flow, sediment transport and morphological evolution*. Computers & Geosciences,

32 (10): 1600-1614.

SINGH J., ALTINAKAR M.S. & DING Y. (2011) - *Two-dimensional numerical modeling of dam-break flows over natural terrain using a central explicit scheme*. Advances in Water Resources, **34** (10): 1366-1375.

SINGH J., ALTINAKAR M.S. & DING Y. (2015) - *Numerical modeling of rainfall-generated overland flow using nonlinear shallow water equations*. Journal of Hydrologic Engineering, **20** (8): 04014089.

SKINNER C.J., COULTHARD T.J., PARSONS D.R., RAMIREZ J.A., MULLEN L. & MANSON S. (2015) - *Simulating tidal and storm surge hydraulics with a simple 2D inertia based model, in the Humber Estuary, UK*. Estuarine, Coastal and Shelf Science, **155**: 126-136.

SOARES-FRAZÃO S., CANELAS R., CAO Z., CEA L., CHAUDHRY H.M., MORAN A.D. & ZECH Y. (2012) - *Dam-break flows over mobile beds: Experiments and benchmark tests for numerical models*. Journal of Hydraulic Research, **50** (4): 364-375.

SOARES-FRAZÃO S., LE GRELLE N., SPINEWINE B. & ZECH Y. (2007) - *Dam-break induced morphological changes in a channel with uniform sediments: Measurements by a laser-sheet imaging technique*. Journal of Hydraulic Research, **45** (supl): 87-95.

SOULIS J.V. (1992) - *Computation of two-dimensional dam-break flood flows*. International Journal for Numerical Methods in Fluids, **14** (6): 631-664.

STOKER J.J. (1957) - *Water waves*. Interscience, New York.

SZYMKEWICZ R. & GASIOROWSKI D. (2012) - *Simulation of unsteady flow over floodplain using the diffusive wave equation and the modified finite element method*. Journal of hydrology, **464**: 165-175.

TASKINEN A. & BRUEN M. (2007) - *Incremental distributed modelling investigation in a small agricultural catchment: 1. Overland flow with comparison with the unit hydrograph model*. Hydrological Processes, **21** (1): 92-102.

TAYEFI V., LANE S. N., HARDY R.J. & YU D. (2007) - *A comparison of one and two dimensional approaches to modelling flood inundation over complex upland floodplains*. Hydrological Processes, **21** (23): 3190-3202.

TAYFUR G., KAVVAS M.L., GOVINDARAJU R.S. & STORM D.E. (1993) - *Applicability of St. Venant equations for two-dimensional overland flows over rough infiltrating surfaces*. Journal of Hydraulic Engineering, **119** (1): 51-63.

TESSITORE S., DI MARTIRE D., MARTINO R. & CALCATERRA D. (2011) - *Comparison of 2D models for the simulation of the October 1954 debris flow and flood event at Maiori (Campania region, Italy)*. Italian Journal of Engineering Geology and Environment, **1**: 513-522.

TIAN P., XU X., PAN C., HSU K. & YANG T. (2017) - *Impacts of rainfall and inflow on rill formation and erosion processes on steep hillslopes*. Journal of Hydrology, **548**: 24-39.

TORO E.F. (2009) - *Riemann solvers and numerical methods for fluid dynamics*. Springer, Berlin, Heidelberg.

TORO E.F. & GARCIA-NAVARRO P. (2007) - *Godunov-type methods for free-surface shallow flows: a review*. Journal of Hydraulic Research, **45** (6): 736-751.

UNAMI K., KAWACHI T., KRANJAC-BERISAVLJEVIC G., ABAGALE F.K., MAEDA S. & TAKEUCHI J. (2009) - *Case study: hydraulic modeling of runoff processes in Ghanaian inland valleys*. Journal of Hydraulic Engineering, **135** (7): 539-553.

VACONDIO R., AURELI F., FERRARI A., MIGNOSA P. & DAL PALÙ A. (2016) - *Simulation of the January 2014 flood on the Secchia River using a fast and high-resolution 2D parallel shallow-water numerical scheme*. Natural Hazards, **80**: 103.

VACONDIO R., DAL PALÙ A., FERRARI A., MIGNOSA P., AURELI F. & DAZZI S. (2017) - *A non-uniform efficient grid type for GPU-parallel shallow water equations models*. Environmental Modelling & Software, **88**: 119-137.

VALIANI A. & BEGNUELLI L. (2006) - *Divergence form for bed slope source term in shallow water equations*. Journal of Hydraulic Engineering, **132** (7).

VALIANI A., CALEFFI V. & ZANNI A. (2002) - *Case study: Malpasset dam-break simulation using a two-dimensional finite volume method*. Journal of Hydraulic Engineering, **128** (5): 460-472.

VENKATA R.K., ELDHO T.I. & RAO E.P. (2009) - *A diffusion wave based integrated FEM-GIS model for runoff simulation of small watersheds*. Journal of Water Resource and Protection, **1**: 391-399.

VOINOV A. & BOUSQUET F. (2010) - *Modelling with stakeholders*. Environmental Modelling & Software, **25**: 1268-1281.

WANG Y., LIANG Q., KESSERWANI G. & HALL J.W. (2011) - *A 2D shallow flow model for practical dam-break simulations*. Journal of Hydraulic Research, **49** (3): 307-316.

WARNOCK A., KIM J., IVANOV V. & KATOPODES N.D. (2014) - *Self-adaptive kinematic-dynamic model for overland flow*. Journal of Hydraulic Engineering, **140** (2): 169-181.

WERNER M.G.F. & LAMBERT M.F. (2007) - *Comparison of modelling approaches used in practical flood extent modelling*. Journal of Hydraulic Research, **45** (2): 202-215.

WITTMANN R., BUNGARTZ H.J. & NEUMANN P. (2017) - *High performance shallow water kernels for parallel overland flow simulations based on FullSWOF2D*. Computers and Mathematics with Applications, **74**: 110-125.

WRIGHT N.G., VILLANUEVA I., BATES P.D., MASON D.C., WILSON M.D., PENDER G. & NEELZ S. (2008) - *Case study of the use of remotely sensed data for modeling flood inundation on the River Severn, UK*. Journal of Hydraulic Engineering, **134** (5): 533-540.

XIA J., FALCONER R.A., LIN B. & TAN G. (2011) - *Numerical assessment of flood hazard risk to people and vehicles in flash floods*. Environmental Modelling

& Software, **26** (8): 987-998.

XIA X., LIANG Q., MING X. & HOU J. (2017) - *An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulation*. Water Resource Research, **53**: 3730–3759.

XU X., ZHANG X., FANG H., LAI R., ZHANG Y., HUANG L. & LIU X. (2017) - *A real-time probabilistic channel flood-forecasting model based on the Bayesian particle filter approach*. Environmental Modelling & Software, **88**: 151-167.

YEH G.T., SHIH D.S. & CHENG J.R.C. (2010) - *An integrated media, integrated processes watershed model*. Computers & Fluids, **45**: 2-13.

YING X., JORGESON J. & WANG S.S. (2009) - *Modeling dam-break flows using finite volume method on unstructured grid*. Engineering Applications of Computational Fluid Mechanics, 3(2): 184-194.

YOCHUM S.E., GOERTZ L. A. & JONES P.H. (2008) - *Case study of the big bay dam failure: accuracy and comparison of breach predictions*. Journal of Hydraulic Engineering, **134** (9): 1285-1293.

YU C. & DUAN J. (2014) - *Two-dimensional hydrodynamic model for surface-flow routing*. Journal of Hydraulic Engineering, **140** (9): 1-13.

YU D. & LANE S.N. (2006) - *Urban fluvial flood modelling using a two dimensional diffusion wave treatment, part 2: development of a sub grid scale treatment*. Hydrological Processes, **20** (7): 1567-1583.

ZHANG H., WANG Y., LIANG Q., SMITH L.S. & KILSBY C.G. (2014) - *Non-negative depth reconstruction for a two-dimensional partial inertial inundation model*. Journal of Hydroinformatics, **16** (5): 1158-1177.

ZECH Y., SOARES-FRAZÃO S., SPINEWINE B. & LE GRELLE N. (2008) - *Dam-break induced sediment movement: experimental approaches and numerical modelling*. Journal of Hydraulic research, 46(2): 176-190.

ZHOU J.G., CAUSON D.M., MINGHAM C.G. & INGRAM D.M. (2004) - *Numerical prediction of dam-break flows in general geometries with complex bed topography*. Journal of Hydraulic Engineering, **130** (4): 332-340.

ZOPPOU C. & ROBERTS S. (2003) - *Explicit schemes for dam-break simulations*. Journal of Hydraulic Engineering, **129** (1): 11-34.

Received April 2017 - Accepted November 2017