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ENHANCED ONE-WAY COUPLED SWE-DE MODEL FOR FLOATING BODY TRANSPORT

EXTENDED ABSTRACT
Il problema del trasporto di grandi detriti durante gli eventi di piena viene sempre più spesso affrontato facendo ricorso alla 

modellazione numerica. In letteratura esistono alcuni modelli bidimensionali, cinematici o dinamici, che consentono di stimare le traiettorie 
di tronchi trasportati dalla corrente, includendo a volte anche le interazioni tra i detriti stessi e con le sponde, e la formazione di ammassi 
in corrispondenza delle pile dei ponti. Gli aspetti che vanno presi in considerazione per lo sviluppo di questi modelli sono molteplici. Ad 
esempio, il metodo scelto per il calcolo del moto dei corpi rigidi galleggianti sulla superficie della corrente, le semplificazioni di forma 
dei detriti, la scelta del metodo numerico per il calcolo idraulico. Inoltre, decidere come accoppiare il calcolo idraulico e quello dello 
spostamento dei corpi rigidi, come far interagire i detriti tra loro e con le pareti, o come superare le difficoltà legate alle dimensioni variabili 
delle celle del dominio e degli elementi trasportati gioca un ruolo importante per il buon esito delle simulazioni.

In questo articolo si fa riferimento ad un modello di trasporto esistente, che accoppia la soluzione euleriana delle equazione delle 
acque basse in due dimensioni ad un metodo lagrangiano per il calcolo dinamico dello spostamento di elementi rigidi galleggianti. 
L’accoppiamento è di tipo one-way, ovvero le forze esercitate dal flusso sul corpo rigido sono utilizzate per calcolare accelerazione e 
spostamento, mentre l’effetto esercitato dai detriti sul flusso non viene considerato.

Un primo obiettivo dell’articolo è presentare le modifiche del modello che interessano la localizzazione del corpo rigido nella griglia 
di calcolo e l’assegnazione delle variabili idrauliche nei punti in cui vengono calcolate le forze. La versione originale del codice prevedeva 
l’utilizzo di un algoritmo di ricerca basato sulla sola valutazione della distanza tra il punto di interesse sul cilindro (che rappresenta un 
tronco galleggiante) e il centro delle celle di calcolo, individuando quella più vicina. Tale procedimento, valido per maglie cartesiane, 
introduce distorsioni nel calcolo della velocità relativa (velocità del flusso meno velocità del tronco) e, quindi, nella stima delle forze agenti 
sul tronco, se applicato a maglie triangolari non strutturate. E’ stato quindi implementato un algoritmo aggiuntivo, che verifica che il punto 
di interesse cada esattamente nella cella individuata (inclusion check). In caso di esito negativo, l’algoritmo prende in considerazione le 
celle confinanti con la prima, fino a soddisfare il criterio di inclusione. 

Per superare il limite legato alla dimensione reciproca di celle e corpo rigido, che portava alla assegnazione di un unico valore di 
velocità per tutto il cilindro nel caso in cui la cella avesse dimensioni maggiori dello stesso, è stato implementato un procedimento di 
doppia interpolazione. I valori calcolati a centro cella vengono utilizzati per calcolare i valori ai nodi e, da questi, si interpolano i valori 
in corrispondenza dei punti di interesse sul cilindro. In questo modo, anche se il cilindro è incluso in un’unica cella, è possibile stimare la 
distribuzione di velocità lungo la sua massima dimensione.

Nella seconda parte dell’articolo si fa riferimento al metodo di rappresentazione degli ostacoli presenti all’intero del canale. Due 
distinte metodologie vengono confrontate: l’area occupata dall’ostacolo viene esclusa dalla griglia di calcolo e i suoi bordi diventano pareti 
del dominio; l’ostacolo viene rappresentato con celle ad elevata resistenza idraulica, calibrando il coefficiente di Manning in modo che il 
campo di moto risulti conforme ai valori precedentemente misurati. L’effetto di questi due metodi viene valutato sia da un punto di vista 
idraulico, confrontando il campo di moto, sia in riferimento al trasporto di detriti. I risultati evidenziano che, in generale, aumentando 
la resistenza idraulica vengono ridotti i picchi (positivi e negativi) di velocità, fattore che contribuisce a migliorare l’accuratezza della 
simulazione del moto di corpi rigidi galleggianti.

Le differenze riscontrate tra i due metodi, però, vengono meno quando la traiettoria del cilindro è disturbata da fattori esterni, quali urti 
con le parti, che alterano l’orientamento del corpo e allontanano in modo netto l’esito della simulazione dal risultato atteso. Tuttavia, una 
analisi di dettaglio riguardante il metodo scelto per la modellazione degli urti va oltre lo scopo di questo contributo.

In conclusione, i miglioramenti introdotti nella ricerca delle celle e nella interpolazione dei valori dal flusso al corpo rigido, oltre alla 
analisi dell’effetto delle due metodologie di rappresentazione degli ostacoli, hanno permesso di evidenziare il buon funzionamento del 
modello di trasporto dei detriti, che resta, però, fortemente influenzato dai fenomeni casuali (urti, turbolenza).
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ABSTRACT
Modelling the transport of floating bodies during floods is a 

topic that must be considered when dealing with flood risk, but 
many open issues still exist regarding its implementation. The pa-
per presents an enhanced one-way coupled SWE-DE (Shallow 
Water Equations-Discrete Element) model, focusing on to the al-
gorithm for the rigid body localization and on the interpolation 
of the flow velocity distribution along the body. The proposed 
algorithm leads to a smoother variation of the hydrodynamic co-
efficients. Moreover, the higher accuracy in assigning the flow 
velocity, needed to compute the forces on the bodies, reduces the 
dependence on the relative size of the cells and objects.  A labo-
ratory case has been used to validate the model in which some 
rectangular obstacles are present. Obstacles were represented 
by modelling them as solid walls or by increasing the Manning 
roughness coefficient. The influence of the two schematizations 
on the flow field and on the transport of a floating cylinder is 
evaluated. On overall, varying the obstacle roughness coefficient 
yield trajectories closer to the observed ones, although external 
factors, such as the effect of cylinder orientation and of collisions 
with side walls, may occasionally alter the outcome of the simu-
lation.

Keywords: floating large bodies, wood transport, rigid body transport, 
shallow water, obstacle numerical modelling, roughness

INTRODUCTION
Modelling wood transport is a strategy that is increasingly 

taken into consideration when dealing with flood risk estimation 
(e.g. Ruiz-Villanueva et alii, 2014a). The motion of floating bod-
ies on the water surface can be considered as the interaction of a 
continuous phase (water) and a discontinuous one (debris), but 
how to tackle the presence of floating discrete elements in a flow 
is still an open issue. In some cases, the 2D displacement of a 
volume of wood, computed by considering the wood budgeting, 
is performed (Mazzorana et alii, 2011), disregarding the physical 
response of the single floating object.

Another possibility is the use of hybrid 2D methods, character-
ized by the coupling of two different techniques for the solution of 
the two phases. The flow velocity may be computed by solving the 
full Navier-Stokes equations with the Volume of Fluid method (e.g. 
Fekken, 1975), or, more frequently, by the numerical solution of 
the Shallow Water Equations (SWE) with a finite volume code. For 
the discontinuous phase, Ruiz-Villanueva et alii (2014b) proposed 
a kinematic approach, in which the flow velocity and vorticity 
are simply assigned to the logs as linear and angular velocity. On 
the other hand, dynamic methods can be applied (Alonso, 2004; 
Stockstill et alii, 2009), in which the computation of the hydrody-
namic forces exerted by the flow on the rigid body is required, so 
that the body acceleration can be calculated. 

In this framework, Persi et alii (2018) proposed a 2D method 
based on the one-way coupling of the Eulerian solution of the 
SWE and the Lagrangian Discrete Element (DE) dynamic de-
scription of the body transport. The translation is computed by 
adapting the Basset-Boussinesque-Oseen equation (e.g. Maxey & 
Riley, 1983) to the case of large floating bodies, while rotation is 
calculated following the strategy proposed by Mandø & Rosen-
dahl (2010). In addition, the cylinders (which represent wooden 
logs) are divided in 4 segments, to take into account the approxi-
mated distribution of the flow velocity on elongated elements. 
The forces are thus computed for each subsection, by considering 
the velocity (and acceleration) of the flow in the cell where the 
centre of mass of each sub-segment is found, as well as the body 
velocity in that point.

The application of the model to the case of cylinders floating 
on the water surface in a laboratory channel (Ruiz-Villanueva et 
alii, 2014b) highlighted the sensitivity of the model to (i) the cor-
rect localization of the cell and to the flow velocity assignment  in 
the four computational points (segments representing the logs), in 
order to compute the hydrodynamic forces, and (ii) the influence 
of the flow field, and, in particular, of the representation of the 
inline or side obstacles.

Both  factors affect the outcome of the simulations. For this 
reason, the localization procedure of the segments was improved 
with respect to the first version proposed in Persi et alii (2018), 
and different obstacle representations were tested.

LOCATION ALGORITHM AND ASSIGNMENT OF 
THE VELOCITY TO THE RIGID BODIES

In order to simulate rigid body motion, the hydrodynamic 
force due to the velocity distribution along the cylinder (floating 
body) needs to be computed. As hydrodynamic coefficients are 
usually obtained in uniform flow conditions, the effect of the ve-
locity variation along the major axis of the body is approximated 
by dividing it into four segments. Velocities, and hence forces, 
are therefore evaluated in four points, which are the centres of 
mass of these four segments of length L/4. At each time, the posi-
tion of the body centre of mass, its dimensions and orientation 
are needed, as well as its linear and angular velocities. Then, the 
coordinates of the centres of the four body segments are calcu-
lated by considering their distance from the centre of mass and 
the body orientation. 

At the moment of computing  the forces acting on each seg-
ment, it is necessary to identify in which mesh cell each point 
is located. Two typical cases can be considered, depending on 
the size of the cells: when the cell average size is smaller than 
the body main dimension (Fig. 1a), and when the cells are large 
enough to include the body in a single element (Fig. 1b).

Even if these  configurations involve a different number of 
cells, it is essential to assign in both cases to each point the correct 
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flow velocity, independently from the cell size. This flow velocity 
must be interpolated from the available values at the cell centres: 
as this interpolated value determines the forces acting on each 
body segment, the interpolation method must guarantee a smooth 
variation when the segment centre moves within a cell or from a 
cell to a neighbouring one, in order to avoid numerical disconti-
nuities in the hydrodynamic forces acting on the body.

Cell location algorithm
As a first attempt, the cell in which a point resides may be 

identified as the cell whose centre of mass is nearest to the point 
(nearest neighbour criterion). This basic strategy is appropriate in 
the case of a structured Cartesian mesh but may result unsuccess-
ful in a triangular mesh, if the cells are skewed or if their size var-
ies sharply. Fig. 2 shows an example in which the nearest cell is 
not the cell in which the point is located. Such a mismatch, during 
the simulation, may result in abrupt variations of the flow veloci-
ties assigned to the computational point and has an impact on the 
computation of the relative velocity and angle, as well as of the 
hydrodynamic coefficients (which depend on the relative angle).

Different point location methods can be found in the literature 
(e.g. Kirkpatrick, 1983, Edahiro et alii, 1984, Preparata, 1990, 
Mücke et alii, 1999). Here, a new method, inspired by the one 
proposed by Soukal et alii (2011), has been implemented and 
integrated in the numerical procedure . The main idea behind the 
method by Soukal et alii (2011) is the use of the rotation matrix 
to align on an oriented horizontal line one vertex of the mesh, 
belonging to a randomly selected cell, and the point of interest. 
Then, the exact triangular cell is identified through the Remem-
bering Stochastic Walk algorithm by Devillers et alii (2001).

The method proposed in this paper takes advantage of the fact 

Fig. 1	 -	 Cells and rigid body  dimensions. The black solid line represents the rigid body and the white points are the centres of the four segments; a) the 
main dimension of the rigid body is larger than the cell average size; b) the main dimension of the rigid body is smaller than the cell average size

Fig. 2	 -	 Failure of the nearest neighbour criterion: the black point is 
located in cell 1, but the nearest cell centre is that of cell 2 (grey 
lines). Dashed black lines approximates the minimum distance 
between the point and the cells’ centres
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that the cell found with the nearest neighbour criterion is already 
very near to the correct one, so that only a short walk is required. 
Starting from that cell, the idea is to check if the point is inside it 
or not. A side of the triangle is selected and the coefficients of the 
rotation matrix are computed as in Eqs. 1 and 2.
	 k cos(β) = x(1) -x(2)	 (1)
	 k sin(β) = y(1) -y(2)	 (2)
where β is the angle between that triangle side and an horizontal 
line, x and y are the coordinates of the two vertices of that side, 
whose length is k.

The y coordinate of one of the vertex (alternatively 1 or 2) is 
transformed to y’, and set as the reference horizontal axis. Then, 
the y coordinates of the point of interest p and of the vertex not al-
ready used to compute the rotation matrix (vertex 3, to follow the 
numbers of this example) are transformed, too, and their distance 
with respect to the new horizontal axis is computed as shown in 
Eqs. 3 and 4:
	 y’p = -xp k sin(β)+yp k cos(β);    dp=y’p - y’(1)	 (3)
	 y’(3) = -x(3)k sin(β)+y(3) k cos(β);    d2=y’(1) - y’(1)	 (4)
where vertex 1 is selected as for the origin of the horizontal axis.

If the product of the distances dp and d3 is greater or equal to 
zero, the point of interest is on the same side of the free vertex 3, 
and the logical flag
	 f12 = (dp d2 >0) = TRUE	 (5)
for that side. The procedure is repeated for each side of the tri-
angle, and if the other flags f23 and f31 are also TRUE, the point is 
actually located in that cell. 

On the contrary, if one of the logical flags is FALSE, the point 
is certainly not located in that cell: the procedure moves then to 
the triangle adjacent to that side and all the above mentioned steps 
are repeated.

This algorithm, named inclusion check algorithm, is quite 
simple, requires few operations for each repetition and only three 
recurrences if the cell found with the nearest neighbour criterion 
is already the correct one. In the enhanced model it is applied to 
each of the four computational points (the four centres of the seg-
ments) when the mesh is triangular, and regardless of the shape of 
the triangular cell, it is able to locate the point exactly.

Velocity assignment to the four computational points
Once that the correct cell is located, the  flow velocity has to 

be assigned to the points which represent the rigid body. The finite 
volume method for the solution of the SWE provides the water 
depth and velocity at each cell centre. A zero-th order interpolation, 
assigning to each point the values of the cell in which they reside, 
may result inappropriate:  in the configuration of Fig. 1a, if the val-
ues of cells from 1 to 4 were directly assigned to the four points of 
the rigid body, an approximation of the velocity distribution along 
the body main dimension would be anyway obtained, while in the 
configuration of Fig. 1b, a single value would be assigned to all of 

the four points, totally missing any velocity gradient.
With the objective of maintaining the effectiveness of the 

subdivision of rigid bodies in segments, the interpolation of the 
velocity from the cell centres is required. Furthermore, to ensure 
the success of the interpolation for any location of the points, two 
steps are performed: firstly, the nodal values are interpolated from 
the values at the cell centres (Fig. 3a) and then the value for the 
considered point is interpolated from the nodal quantities (Fig. 
3b). It is worth highlighting that the interpolation procedure has 
to be performed for each of the centres of the body segments.

A general scheme of interpolation valid for a two-dimension-
al domain is:
	 U(x) = ∑ φi(x) Ui(x)	 (6)

where U(x) is the value of the scalar function (such as one of the 
components of flow velocity, or the water level) at the point of 
interest, ϕi(x) is the shape function for the interpolation node i and 
Ui(x) is the known scalar function value at the interpolation node.

To perform the interpolation from centred values to nodal val-
ues (Fig. 3a), the number of cells n sharing the same vertex is a 
priori unknown. The shape functions have thus to be valid for any 
irregular convex n-gons. The generalization to convex irregular 
n-gons of the Wachspress shape functions proposed by Meyer 
et alii (2002) and by Sukumar & Tabarrei (2004) is thus imple-
mented. The procedure is repeated for each vertex of the selected 
cell, so that the flow velocity in this case, as well as any other 
quantity of interest, is obtained at each node.

The velocities at the mesh nodes are then used to estimate 
the flow velocity for each body segment . In the case of a trian-
gular mesh, the piecewise polynomial interpolation of degree I is 
implemented (e.g. Hirsch, 1991).

This two-step interpolation mantains a detailed description of 
the velocity distribution on the body. However, several recurrenc-
es are needed, first of all to obtain the values of the flow variables 
at the vertices of each cell of interest – where the computation 
points are located – and then to interpolate the vertex values on 
the computational points. For this reason, the interpolation pro-
cedure is performed only for the cells where the computational 
points are located.

OBSTACLE REPRESENTATION
The effect of the obstacle modelling on the flow computa-

tion, and thus on the rigid body motion, is analysed by compar-
ing results obtained with the same geometry but with different 
strategies to represent the side obstacles. Two different methods 
are tested: (i) obstacles are excluded from the mesh (e.g. Aron-
ica & Lanza 2005, Bazin et alii, 2016) or (ii) they are repre-
sented as areas with higher roughness coefficient (e.g. Soares-
Frazão et alii, 2008; Petaccia et alii, 2010). Figure 4 shows a 
detail of the mesh for the abovementioned approaches. In Fig. 

n

i=1
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4a the obstacles are excluded from the mesh, which means that 
the flow and the cylinders encounter a solid wall where com-
plete reflection is considered.

In the second case (Fig. 4b) the obstacles are included in the 
mesh, and their effect is modelled by locally varying the Manning 
coefficient (different colours refer to different roughness coeffi-
cient values).

The hydraulic simulation is performed with the finite volume 

code ORSA2D (Petaccia et alii, 2010, Petaccia et alii, 2016), 
which implements a Roe’s Riemann solver, 1st-order accurate in 
time and space (Roe, 1981), applying an upwind discretization to 
the bottom slope source term (Bermúdez et alii, 1998), while the 
friction slope is evaluated in a semi-implicit way (Costabile et 
alii, 2015). The version of the Harten-Hyman entropy fix is used 
(Toro, 2009) to avoid the presence of non-physical results due to 
the linearization procedure.

Fig. 3	 -	 a) First step of interpolation: from cell values to vertex values; b) second step of interpolation: from vertex values to point values

Fig. 4	 -	 Detail of the computational domain with the different methods of obstacles representation: a) obstacles excluded from the mesh, with walls; b) 
obstacles with different Manning coefficient (yellow colour refers to different roughness)
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The selected case study for the comparison of the flow field 
is a laboratory flume (7.00 m long, 0.60 m wide, with a constant 
discharge of 18 l s-1) with six rectangular side obstacles with 
dimensions 0.13x0.18 m; the case study was provided by Ruiz-

Villanueva et alii (2014b). The simulation is performed on an 
unstructured triangular mesh (nearly 85000 elements) with a 
Manning coefficient equal to 0.01 s m-1/3 for the channel bottom, 
and to 10 s m-1/3 for the obstacles when method (ii) is applied. 

Fig. 5	 -	 Streamwise component of velocity, u [m s-1], for the two obstacle  representations: walls (up), roughness (down)

Fig. 6	 -	 Transversal component of velocity, v [m s-1], for the two obstacle representations: walls (up), roughness (down)
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These values are calibrated in order to provide a good reproduc-
tion of the velocities measured in the channel.

Figs. 5 and 6 show the contour maps with the streamwise and 
transversal velocity components, which are shown separately to 
highlight the characteristics of each obstacle representation.

As regards the streamwise component of velocity, the repre-
sentation with walls yields higher values of minimum and maxi-
mum velocity (1.06 m s-1 and -0.64 m s-1), while the method with 
a higher Manning coefficient presents a smoother transition of 
velocity between the obstacles and in the final part, and slightly 
lower peak values (0.9 m s-1 and -0.58 m s-1).

Also for the transversal velocity component, the first method 
reaches higher values (0.71 m s-1 and -0.71 m s-1) than those ob-
tained with the Manning coefficient (0.64 m s-1 and -0.67 m s-1). 
As for the streamwise component, the latter shows a smoother 
transition among the main channel and the recirculation areas.

To assess how the obstacle representation influences the flow 
computation, the simulated velocities are compared with the ones 
measured by Ruiz-Villanueva et alii (2014b). Figures 7, 8 and 
9 show the comparison of the measured and simulated velocity 

(with the two methods used to represent the obstacles) at the chan-
nel axis. The location of the points of measure is also reported.

The velocity comparison shows that the effect of the different 
strategies for obstacle representation  is more evident  on the left 
and on the right side, than in the mid channel. In particular, the 
negative values of streamwise velocity (which corresponds to areas 
of recirculation downstream the side obstacles) are smaller when 
the simulation is performed with the higher Manning coefficient.

The correlation coefficients reported in Tab. 1 highlight that, 
in general, the computation of velocity along the centreline is less 
accurate for both implemented methods, while on the right and 
left sides the representation of the obstacles with side walls pro-
vides slightly better results. 

On overall, the velocity prediction is satisfactory, since it pro-
vides good correlation with the available measures.

Fig. 7	 -	 Comparison of measured and computed axial component of the velocity in a longitudinal profile along the channel axis. The sketch of the channel 
above the graph shows the points of measure

Tab. 1	 -	 Comparison of the correlation coefficient for the two obstacle 
representations and for the three groups of measurement
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Fig. 8	 -	 Comparison of measured and computed streamwise component of the velocity in the right hand side of the channel. The sketch of the channel 
above the graph shows the points of measure

Fig. 9	 -	 Comparison of  measured and computed streamwise component of the velocity in the left hand side of the channel. The sketch of the channel above 
the graph shows the points of measure
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EFFECT ON WOOD TRANSPORT
Focusing on the effect of the new implemented algorithm, 

Fig. 10 shows an example of how the drag coefficient of the cy-
lindrical sample varies within a selected time interval when the 
nearest cell is found by applying either the nearest neighbour cri-
terion or with the inclusion check algorithm. The drag coefficient, 
in the model by Persi et alii (2018), is a function of the relative 
velocity of the log with respect to the flow, thus depending on the 
correct identification of the cell for each computational point. If 
the cell is found with the nearest neighbour criterion, the value 
of the drag coefficient oscillates strongly, because of the abrupt 
variation of the relative angle when the cell is not correctly identi-
fied. The reduction of the computed coefficient oscillations when 
the inclusion check algorithm is included in the model is evident. 

The variations observed in the flow field due to the diffe-
rent representation of the obstacles may affect the outcome of 
the simulation of wood transport. To verify the extent of such 
alterations, the simulation of wood transport in a laboratory flu-
me is performed. The abovementioned methods for obstacle re-
presentation are applied to two geometries which differ for the 
dimension of the side obstacles. The first case is the one already 
introduced for the comparison of velocity, with six side obstacles 
of dimensions 0.13x0.18 m, from now on named Geometry 1, 
while the second, Geometry 2, presents six side obstacles which 

measure 0.13x0.27 m and occupy nearly a half of the channel. 
Both cases are from Ruiz-Villanueva et alii (2014b).

The wooden sample (density 720 kg m-3) employed for Geo-
metry 1 has length 0.20 m and diameter 0.018 m while for Geo-
metry 2 it has the same length and a diameter of 0.008 m. 

In Figs. 11 and 12 the trajectories obtained for Geometry 1 
and Geometry 2 are shown, comparing in each one the two dif-
ferent obstacle representation methods. In both cases, the initial 
position of the sample is set equal to the first position recorded by 
Ruiz-Villanueva et alii (2014b), and the cylinder is set perpendi-
cular to the flow direction (i.e. aligned with the y axis).

For Geometry 1, the trajectories computed with  ORSA2D_
DEM (which is the model described in Persi et alii (2018), upda-
ted with the location algorithm presented here and the velocity as-
signment procedure described) are similar and follow quite well 
the measurements. Downstream of the third obstacle, the simula-
tion performed with obstacles represented by higher Manning co-
efficients (dashed line in Fig. 11) is nearer to the experimental ob-
servations. The correlation coefficients, shown in Tab. 2, confirm 
that the simulation performed with higher values of the Manning 
coefficients provides better results, especially in coordinate y.

As regards Geometry 2, the presence of larger obstacles leads 
to a sharper  trajectory, with the cylinder floating near the walls 
and the obstacles, being involved also in collisions with the side 

Fig. 10	-	 Trend of the drag coefficient with the nearest cell centre (left) and the inclusion check algorithm (right)

Fig. 11	 -	 Comparison of the cylindrical sample trajectory with the different obstacles representation for Geometry 1: black line for  walls, dashed black line 
for higher Manning coefficient. The results measured by Ruiz-Villanueva et alii (2014b) are shown by empty diamonds. Black rectangles represent 
the obstacles
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the left side wall. Figure 13 shows the y positioning of the centre 
of mass of the cylinder at different times, for the two obstacle rep-
resentation methods. In both cases the y displacement is delayed 
with respect to the observed results, but for the case with walls the 
positions are nearer to the expected ones, although the cylinder 
is recirculating. The higher value shown in Tab. 3 is thus related 
to the vicinity to the left side wall around t = 11 s and not to the 
accuracy in the overall trajectory simulation.

CONCLUSIONS
This paper discusses some of the features which need to be 

addressed when implementing an Eulerian-Lagrangian model that 
simulates the transport of floating bodies in a flow. The compu-
tation of the motion of rigid bodies requires actually to consider 
carefully several aspects. Apart from the choice of the transport 
model, which is not the main focus of the present paper, one should 
pay attention to the correct localization of the cells where the body 
is found and to the cell/body relative  dimensions. The inclusion 
check algorithm here proposed removes the localization mistakes. 
Since the identified cell is exact, the unpredictable variations in the 
relative velocity are avoided, leading to a more precise evaluation 
of the hydrodynamic coefficients and, consequently, of the forces 
on the body. Furthermore, with the two-step interpolation proce-
dure the distribution of the flow velocity on elongated bodies can 

of the channel. In this case, the trajectories differ from the ex-
pected one, especially when collision occurs. 

Collisions can be detected by the abrupt variation of the tra-
jectory, as can be seen, for example, around x = 1.10 m for the 
simulation performed with obstacles as walls (black line in Fig. 
12). After each collision, the simulated trajectory becomes differ-
ent from the expected result. 

For the simulation performed with obstacles as walls, the cyl-
inder collides three times with the walls. After the last collision, 
it is  recirculated downstream the third obstacle, totally missing 
the measured trajectory. 

Collisions can be observed also when the obstacles are repre-
sented by a higher Manning coefficient (dashed line in Fig. 12), 
although no recirculation occurs. In this case, the main difference 
with respect to the measured trajectory is the path of the cylinder 
upstream of the third and fifth obstacles. In the experiments, the 
cylinder floats very near the flume walls, while in the simulation 
it remains a few centimetres apart, probably due to the interaction 
with the rigid boundaries. The correlation coefficients are com-
puted also in this case (Tab. 3), showing that the two methods 
provide similar results.

Note that the slightly higher correlation coefficient for coor-
dinate y obtained with the wall representations (0.756) is due to 
the fact that, with this configuration, the cylinder goes nearer to 

Fig. 12	-	 Comparison of the cylindrical sample trajectory with the different obstacles representation for Geometry 2: black line for walls, dashed black line 
for higher Manning coefficient. The results measured by Ruiz-Villanueva et alii (2014b) are shown by empty diamonds. Black rectangles represent 
the obstacles

Fig. 13	-	 Comparison of the y positioning of the centre of mass of the cylindrical sample against time, with the different obstacles representation for Geom-
etry 2: black line for walls, dashed black line for higher Manning coefficient. The results measured by Ruiz-Villanueva et alii (2014b) are shown 
by empty diamonds
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nearly equivalent.
On the contrary, the effect on the transport of floating bodies 

is not the same. Despite the small differences in the flow field, 
the reduction of the peaks observed when the obstacles are rep-
resented by higher Manning coefficient has a positive impact on 
the body trajectory, especially when the transport is not affected 
by external factors. It is worth highlighting, however, that such a 
result is obtained by calibrating the value of the obstacle Manning 
coefficient based on existing flow measurements. This procedure 
is more difficult to perform in field condition. 

The prediction of the body trajectory becomes more difficult 
when particular circumstances, i.e. collisions with walls, occur. 
ORSA2D_DEM accounts for collisions, but the restitution coeffi-
cient has been only qualitatively calibrated (set equal to 0.1, thus 
obtaining nearly inelastic collisions with walls) and its variation 
may affect the outcome of the simulation. Furthermore, if subse-
quent collisions happen (as in Fig. 12), the trajectory is strongly 
modified and provides results departing from the expected ones, 
e.g. cylinder trapped in the recirculation downstream the ob-
stacle. The body orientation, here not examined due to the lack 
of experimental data, contributes to the different interaction with 
walls and to the progress of the body trajectory, too.

On overall, the improvement implemented and the detailed 
analysis of the obstacle representation helps in enhancing the 
model of floating bodies transport. The simulations shown in the 
paper highlight, however, that some other aspects deserve addi-
tional work, such as the calibration of the collision model and the 
in-depth analysis of the computation of body rotation.
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be estimated independently from the cell/body size ratio. This is a 
crucial achievement, because the correct estimation of the flow ve-
locity is fundamental for the simulation of rigid body motion, since 
the force computation depends strictly on this value.

The inclusion of obstacles in the domain can be faced with 
different techniques, so it is important to verify which method 
provides the best results, both in terms of flow estimation and of 
floating body motion. Two approaches are tested in this paper: in 
the first case, obstacles are excluded from the mesh, while, in the 
second, they are considered as areas with high hydraulic resis-
tance, which translates in an extremely high value of the Manning 
coefficient. In particular, for the considered case, the Manning 
coefficient implemented to obtain the correct simulation of the 
flow around the obstacles is one-thousand times higher than the 
base value assigned to the flume bottom.

By comparing the flow fields obtained with these two meth-
ods, it appears that by increasing the Manning coefficient the 
maximum and minimum velocity present lower absolute values. 
On overall, however, by comparing the simulated velocity with 
the measured one for a flume experiment, the two methods result 

Tab. 2	 -	 Comparison of the correlation coefficient computed with ref-
erence to the x and y coordinates for Geometry 1 for the two 
obstacle representation models

Tab. 3	 -	 Comparison of the correlation coefficient computed with refer-
ence to the x and y coordinates for Geometry 2 for the two 
obstacle representation models
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