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likely extent of hazard for a given storm. This suggests 
that campaigns to collect local precipitation data and 
detailed shallow landslide location maps after major 
storms could be used to calibrate models and improve 
their use in hazard assessment for individual storms.

Key words: shallow landslides, drainage area, slope stabili-
ty, Shalstab, parallel computing

INTRODUCTION
Downscaling of climate model precipitation pre-

dictions can now generate spatially detailed (i.e. at 
a scale of kilometres to tens of kilometres) maps of 
storm rainfall that include orographic and wind effects 
(e.g. Grell et alii, 1995; Giorgi et alii, 2001, Micha-
lakes et alii, 2001; Widmann et alii, 2003; Salathé, 
2003; Roe, 2005; Anders et alii, 2007; Dettinger et 
alii, in press). Such climate models typically operate 
over large areas (regional to continental to global). 
This allows an exploration of the effects of extreme 
storm events on hazard generation (through flooding 
and landsliding) and emergency response over these 
large areas. Landslides are always local, that is they 
are spatially discrete events, and from a management 
perspective the more spatially explicit the landslide 
susceptibility can be delineated, the more useful it is 
for planning. Gross maps based on threshold slopes 
derived from coarse grained digital elevation data (e.g. 
30 m grid), for example, provide limited guidance. The 
increasing availability of higher resolution topographic 

ABSTRACT
Recent advances in downscaling climate model 

precipitation predictions now yield spatially explicit 
patterns of rainfall that could be used to estimate shal-
low landslide susceptibility over large areas. In Cali-
fornia, the United States Geological Survey is explor-
ing community emergency response to the possible 
effects of a very large simulated storm event and to 
do so it has generated downscaled precipitation maps 
for the storm. To predict the corresponding pattern 
of shallow landslide susceptibility across the state, 
we have used the model Shalstab (a coupled steady 
state runoff and infinite slope stability model) which 
susceptibility spatially explicit estimates of relative 
potential instability. Such slope stability models that 
include the effects of subsurface runoff on potentially 
destabilizing pore pressure evolution require water 
routing and hence the definition of upslope drainage 
area to each potential cell. To calculate drainage area 
efficiently over a large area we developed a parallel 
framework to scale-up Shalstab and specifically intro-
duce a new efficient parallel drainage area algorithm 
which produces seamless results. The single seamless 
shallow landslide susceptibility map for all of Califor-
nia was accomplished in a short run time, and indicates 
that much larger areas can be efficiently modelled. As 
landslide maps generally over predict the extent of in-
stability for any given storm. Local empirical data on 
the fraction of predicted unstable cells that failed for 
observed rainfall intensity can be used to specify the 
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cap/arkstorm.html for details). They provided hourly 
rainfall simulation for all of California with resolution 
ranging from 2 to 6 km. The challenge here is can we 
predict shallow landslides across the entire state us-
ing the highest resolution state-wide topographic data 
(10m cells) and assess not only the potential location 
by the also the magnitude (number of landslides) for a 
given area given the predicted rainfall patterns.

There are many approaches for mapping shallow 
landslide potential across a landscape, ranging from 
purely empirical statistical approaches to process 
based models (e.g. review in Casadei et alii, [2003]). 
There are insufficient studies in California to map the 
shallow landslide risk solely on statistical relation-
ships. We elect as a first step in using the new drain-
age area algorithm to use the Shalstab model [Mont-
gomery & Dietrich, 1994; Dietrich et alii, 1995; 
Dietrich et alii, 2001] which couples a steady state 
shallow subsurface flow model (to predict pore pres-
sure distribution) with an infinite slope model. This 
model does not allow us to relate storm magnitude to 
landslide frequency, but its simplicity allows it to be 
applied across the entire state of California in the ab-
sence of spatially explicit data on such controlling fac-
tors as soil depth, root strength, soil saturated conduc-
tivity, and soil friction angle. Landslide susceptibility 
maps produced using the Shalstab model (or other 
hydrologically dynamic models), which successfully 
delineate areas of failure tend to also greatly over pre-
dict the extent of landsliding for a given storm event 
(e.g. Casadei et aii., [2003]). Following Stock et al. 
[this volume] we suggest that this problem can be ad-
dressed empirically by relating the proportion of un-
stable cells that fail in a given storm to some measure 
of that storm magnitude

This first application of the slope stability model 
in a parallelized framework points to a need for sys-
tematic data collection on precipitation and landslide 
locations for a wide range of storms and across the 
diverse landscape found in a large area such as Cali-
fornia. It is not clear to us at this point whether more 
mechanistic landslide models will be able to overcome 
the problem of over prediction and without consider-
able local calibration successfully delineate specific 
areas of instability for a given storm.

METHODS
TOPOGRAPHIC DATA

data (10m grid to 1 m (LiDAR-based)), the grid size 
of which approaches the scale of common shallow 
landslides (typically involving just the soil mantle), 
invites more mechanistic landslide models which have 
the potential to be broadly applicable. Such models, 
however, typically use hydrologic models to predict 
potential destabilizing pore pressure, and this means 
that drainage area to every cell must be determined. 
For small areas, this is readily accomplished, but for 
large areas (e.g. > 100 km2 for 1 m data or 10,000 km2 
for 10 m data) conventional algorithms will not work 
efficiently because they cannot address the necessary 
amount of memory. This is because the computation of 
drainage area is a global operation (i.e. the information 
needed may theoretically come from any part of the 
landscape) and thus particularly challenging to imple-
ment seamlessly and efficiently.

Here we report the successful development of a 
parallel framework for large-scale spatially explicit 
landslide susceptibility assessment, and the implemen-
tation of an efficient seamless parallel drainage area 
algorithm. Our drainage area algorithm, available on-
line at the National Center for Earth-surface Dynamics 
(http://www.nced.umn.edu/), is not dependent on the 
choice of landslide model and stands separately from 
its application to this problem.

This algorithm development was motivated by a 
challenge. As described in Stock et alii (this volume), 
the United States Geological Survey (USGS) is con-
ducting a study of the emergency preparedness in the 
state of California (414,000 km2) for the effects of ex-
treme storms. ArkStorm, their emergency-preparedness 
scenario, is intended to represent the most extreme 
storm events that have struck California (analogous 
those that devastated the state in 1861–62), as it is 
assumed such events will now increase in likelihood 
with global warming effects on climate. Recent work 
by Dettinger et alii [in press] and Ralph et alii [2006] 
has illustrated that some of California’s most damaging 
storms are atmospheric rivers of moisture that originate 
in the tropics and convey vast amounts of water vapour 
towards California in a narrow jet (e.g., 100-200 km 
wide) of moisture. When they strike California, these 
jets can deliver record rainfalls over the course of 1-3 
days. Combining data from California’s largest recent 
storms (1969 and 1985) Dettinger et alii [in press] 
simulated an atmospheric river storm in a dynamic 
meteorological model (see http://meteora.ucsd.edu/
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soil friction angle. Combining the two above equations 
we obtain the Shalstab equation in its simplest form:

In essence, this model captures the topographic 
(i.e. area and slope) control on the spatial variability 
of pore pressures, and expresses the relative potential 
for shallow landsliding in terms of the ratio of the ef-
fective (steady-state) precipitation and the capability 
of the soil to conduct water, in a spatially explicit fash-
ion. In this simple model, the only parameters are the 
friction angleφ , and the (saturated) soil bulk density 
ρs , which we set to values of 45 º and 1.7 g/cm3, fairly 
typical of unconsolidated cohesionless soils.

Two important issues arise in the application of 
this model. The first is that mostly due to the hydro-
logical simplifications, the model can not be linked to 
specific storm events The second is that as mentioned 
above, this model tends to over-predict the landsliding 
potential [Dietrich et alii, 2001]. These issues point 
to the need for a calibration procedure discussed in a 
following section.

With respect to parallelization, it is important to 
note that computing the right hand side of equation (3) 
is a purely local operation: every grid cell has a local 
slope θ, and a drainage area a, both already assigned. 
This is what is referred to as an “embarrassingly par-
allel operation” [Foster, 1995], as no communication 
is required between any two cells. The computation 
of slope is performed on a 3 by 3 neighborhood, us-
ing a moving window. Communication in this case 
is required only when operating at the boundary of a 
processor’s data domain. Thus, the real challenge for 
the parallelization of Shalstab lies entirely in the area 
computation, which is made possible by our new par-
allel algorithm.
PARALLEL FRAMEWORK

We utilize the Unified Parallel C (UPC) language 
[Carlson, et alii, 1999], an extension of the C lan-
guage based on the Partitioned Global Address Space 
(PGAS) parallel programming model. UPC offers 
programming abstractions similar to shared memory 
(where any process can read/write data allocated by 
another process), while allowing control over data 
layout that is critical to high performance and scal-
ability [Yelick et alii, 2007]. UPC offers the program-

Basic topographic data for California were ob-
tained from USGS’s National Elevation Dataset 
(http://ned.usgs.gov/). The data are gridded at a reso-
lution of 1/3 arc-second (approximately 10 m). Pre-
processing consisted in assembling the data into larger 
tiles (1000 tiles, 972 km2 each) and removing depres-
sions using the standard ArcGis Fill tool. Depressions 
greater than 1.5 m were ignored, effectively prevent-
ing closed basins (e.g. Death Valley) from being filled. 
During the pre-processing steps the data were resam-
pled at exactly 10m resolution, and saved in standard 
binary IEEE 32-bit floating point format for compat-
ibility and efficiency.

SHALLOW LANDSLIDE SUSCEPTIBILITY 
MODEL

We adopted the widely used shallow landslide 
susceptibility model Shalstab [Montgomery and Di-
etrich, 1994; Dietrich et alii, 1995; Dietrich et alii, 
2001] to estimate relative potential of shallow land-
slides initiated by storm rainfall. Shalstab couples a 
hydrological model to a limit-equilibrium slope stabil-
ity model to calculate the critical steady-state rainfall 
necessary to trigger slope instability at any point in a 
landscape. Rainfall is assumed to infiltrate to a lower 
conductivity layer and flow along topographically de-
termined paths above an impermeable layer. Under 
the simplifying assumption that soil transmissivity 
does not vary with depth, the degree of saturation of 
the soil profile can be written as

where h (m) is the height of the saturated soil 
above the impermeable layer, z (m) is the total height 
of the soil, q (m/day) is the effective steady-state pre-
cipitation, a (m2)is the upslope drainage area, b (m)is 
the grid cell width, T (m2/day) is the depth-integrated

soil transmissivity and θ (degrees) is the local 
slope. For the general (and conservative) case of co-
hesionless soils, the one-dimensional infinite slope 
stability model can be expressed as:

where ρ s and ρ w are the bulk densities of soil and 
water, z is the soil thickness, g is gravity and φ is the 

(1)

(2)

(3)
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upstream tiles which may not be identifiable a priori. 
This presents a significant obstacle for parallelization, 
as it is not possible to determine a partitioning scheme 
for the grid such that communication and cross-thread 
dependencies are minimized during this computation. 
For this reason we develop a new efficient parallel 
drainage area algorithm.

The grid over which upslope area information 
must travel to each cell can be viewed as a con-
nected directed graph [Dasgupta et alii, 2006], with 
the nodes representing the grid cells and with edges 
representing flow from uphill to downhill neighbours 
(figure 1). The graph construction procedure comes at 
no cost, as it can be inserted in the flow direction and 
partitioning procedure that requires a complete pass 
over each grid cell. Pointers to nodes which have no 
incoming edges (corresponding to local maxima in the 

mers a seamless view of the data layer and a trans-
parent communication layer (i.e. no explicit message 
passing is required), but data can be defined as local 
(i.e. near and reachable without communication costs) 
or as global (i.e. potentially far and more expensive 
to reach  for improved efficiency. In particular, UPC 
allows for operations such as the slope computation 
discussed above to be simple to implement as well 
as efficient: the global address space allows for the 
transparent reference of an address outside of the local 
domain (in this case the boundary in the neighboring 
processor’s domain), while the partitioning ensures 
that all memory access within a processor’s domain 
is local. These characteristics make the language well 
suited for our application, where most computations 
are local but there is the need to obtain global infor-
mation, as in the case of drainage area. The Lawrence 
Berkeley National Laboratory UPC compiler, used for 
this application, is now supported under many operat-
ing systems and architectures, and is freely available 
at http://upc.lbl.gov.

The parallel system used for testing and devel-
opment is named Franklin, the National Energy 
Research Scientific Computing Center (NERSC)’s 
38,288-CPU 2.3 GHz Opteron Cray XT-4 running 
a Linux-based operating system. It consists of 9572 
quadprocessor nodes, each with 8GB of memory, in-
terconnected with a high-speed SeaStar-2 network, 
and sharing a Lustre Parallel File System (LPFS) with 
436Tb of user disk space. Theoretical peak perform-
ance is 9.2 GFlops/second per core, or 352TFlop/sec-
ond for the whole system.

DRAINAGE AREA ALGORITHM
Generally, slope stability calculations, when im-

plemented on a grid or a mesh, operate on informa-
tion (such as topographic attributes) that is assigned 
to each cell, and thus are trivial to parallelize by using 
spatial domain decomposition of the (tiled) datasets 
[Wilkinson & Allen, 1999]. Most of the attributes 
that may be assigned to each grid cell (for example 
topographic slope) are also local in nature, requiring 
information only from pre-defined neighbourhoods of 
the target cell. Drainage area to a point, a fundamental 
landscape attribute, is defined as the total basin area 
above a specific point from which flow can reach such 
a point. The computation of drainage area is a glo-
bal operation, as information is needed from all other 

Fig.1 	 -	 Idealized topography in 3-D view (a), and corre-
sponding directed graph in plan view (b). Nodes 
correspond to grid cells and directed edges cor-
respond to flow to downhill neighbours. Edge 
weights (illustrated here as edge thickness) corre-
spond to the proportion of flow from outgoing cell. 
The upper-left node has no incoming edges and is 
a starting point for the algorithm. The lower-right 
node will be the last node to be processed.

Fig. 2	 -	 Flow chart of initialization phase of the drainage 
area algorithm
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tionship between a metric of rainfall and the fraction of 
unstable grid cells predicted by Shalstab that actually 
failed in historic storms (equation 1, Stock et al., this 
volume). This relationship accounts for the effect of 
rainfall intensity and duration on landslide abundance. 
They used digital landslide inventories mapped from 
air photographs taken after storms to construct storm-
specific landslide catalogs for two southern Califor-
nia sites (Sunland and Santa Paula) and one northern 
California site (Montara). In the Santa Paula area they 
isolated landslides triggered by storms that occurred in 
1969, 1998, 2001, and 2005; in the Sunland area they 
isolated landslides which occurred after storms in 1998 
and 2005; in the Montara area they isolated landslides 
which occurred in 1955, 1982, and 2005.

Nearby rain gages recorded hourly rainfall data 
for all the storms of interest, with the exception of the 
1955 and 1982 Montara storms (which were thus ex-
cluded from their study). Using the Santa Paula data as 
a training dataset, they found that the fraction of unsta-
ble cells that actually failed increased as a power law 
with the maximum 6-hour averaged rainfall intensity 
(unstable fraction = 0.00001 * I6-hr 

2.7). The 1998 and 
2005 Sunland events fell nicely on this curve (figure 
6, Stock et al., this volume), suggesting that such a 
metric could be applied regionally. However, the 2005 
Montara event in northern California had more than 
an order of magnitude lower fraction of unstable cells 
for similar 6-hour intensities. This points to the need 
for further region-specific calibration is needed if one 
wishes to apply such a method state wide.

STORM SIMULATION
Dettinger et al. [in press] simulated an atmospher-

ic river storm (ArkStorm) combining data from two 
of California’s most intense storms on record (Janu-
ary 1969 in southern California and February 1986 in 
northern California) as initial conditions in a spatially 
explicit dynamic meteorological model to describe a 
rapid sequence of several major storms over the state, 
yielding precipitation totals that go well beyond what 
actually occurred during the two separate events. They 
used a General Circulation Model (GCM) that depicts 
the world’s climate over time at a coarse scale (hun-
dreds of kilometres), coupling it over California with 
the state-of-the-art Weather Research and Forecast 
(WRF) model. WRF down-scales weather in a nested 
fashion down to a 2-km grid size, thus capturing the 

elevation data), and the information they contain, are 
pushed into queues belonging to the thread that owns 
the downhill node (figure 2). The algorithm routes the 
drainage area information across this graph, operating 
only on nodes from the queues (i.e. nodes which have 
received all upslope information). 

Individual threads poll the queues belonging to 
them, and remove the first item in the queue. The area 
information contained is then distributed to all the re-
ceiving node’s downhill neighbours on the graph, ac-
cording to the chosen flow weighting scheme. When 
information is sent across an edge of the graph, the 
edge is deleted. If, as a consequence of an edge de-
letion, a node no longer has any incoming edges, it 
becomes available for processing and it is placed onto 
the appropriate queue (figure 3). The algorithm termi-
nates when the graph is fully disconnected, and all the 
queues are empty.

This algorithm is general, in other words it does 
not depend on the choice of flow partitioning. In our 
application we implement the multi-direction slope-
dependent flow partitioning scheme, in which flow is 
distributed to all neighbouring downhill cells propor-
tionately to the local slope [Quinn, et alii, 1991].

STORM INFLUENCE ON LANDSLIDES
Stock et al. [this volume] found an empirical rela-

Fig. 3	 -	 Flow chart of processing phase of the drainage 
area algorithm
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relevant orographic and wind controls on precipitation. 
They provided hourly rainfall totals on a 2-km grid in 
southern California, and a 6-km grid over the whole 
state, effectively simulating the “perfect storm” sce-
nario for the state of California (figure 4).

An example of the seamless drainage area com-
putation resulting from the application of our parallel 
drainage area algorithm is shown in figure 5. The re-

sults of the application of the parallel Shalstab to the 
State of California are shown in figure 6. They are 
classified based on their q/T value (eq. 3), the ratio of 
effective steady-state precipitation and soil transmissiv-
ity required for instability. Two additional classes are 

also shown, representing areas having too low 
a gradient (unconditionally stable), and those 
with too high a gradient (unconditionally un-
stable). Table 1 illustrates the number of square 
kilometres and the percent area belonging to 
each class, for the entire state, reflecting the un-
derlying distributions of steep and convergent 
areas. The results indicate that landslide sus-
ceptibility is generally focused in these steep 
convergent areas, and that while landslides 
pose a significant hazard in the state of Califor-
nia, the susceptible areas are a relatively small 
fraction of the entire landscape. For example, 
using a log(q/T) threshold of -2.8, as suggested 
by Dietrich et al., 2001 (for 10m data), 5.42% 
of the landscape would be considered to be 
susceptible to shallow landsliding. Assuming a 
soil transmissivity value of 65 m2/day [Mont-
gomery and Dietrich, 1994], a log(q/T) thresh-
old of -2.8 threshold would be equivalent to a 
critical rainfall rate of 103 mm/day.

The regression derived by Stock et al. 
[this volume], relating the fraction of unstable 
cells (calculated using our parallel Shalstab 

run), which may actually fail under the ArkStorm sce-
nario, show that within the areas having similar lithol-
ogy as the Santa Paula training site, the abundance 
of landslides under the ArkStorm scenario reflect the 
abundance of failures observed after the extreme win-
ter storms of 1969.

All values of q/T above the “unconditionally sta-
ble” value were used by Stock et al. [this volume] to 

Fig. 4	 -	 Total accumulated precipitation during WRF 
simulation of ArkStorm scenario, in 6-km state-
wide WRF nest (a), and 2-km southern Califor-
nia WRF nest (b). Notice that colour bars are not 
all the same; the domain of panel (b) is indicated 
by white rectangle in panel (a). Figure from Det-
tinger et al. [in press]

Fig. 5	 -	 Detail showing the intersection of four drainage area data tiles 
from a 1m LiDAR survey of the Eel River, CA (National Center 
for Airborne Laser Mapping). Panel (a) shows sequentially 
processed data tiles. The red arrows point to discontinuities 
in drainage area results. Panel (b) shows the same tiles proc-
essed by our parallel algorithm with a seamless grid

Tab 1	 -	 Distribution of Shalstab grid cells per stability 
class
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The Stock et alii [this volume] findings suggest 
that a systematic effort be made across the state to 
collect local rainfall data and map landslide scars for 
specific storm events and then compute the proportion 
of failed to predicted cells for a given area. Differ-
ent slope stability models could be used in such re-
gressions. This approach has the advantage over the 
now widespread use of intensity-duration precipita-
tion threshold plots for landsliding (e.g. Rossi et alii, 
2006; Guzzetti et alii, 2008; Baum & Godt, 2009) in 
providing estimates of the number of landslides in an 
area. Given the complex legacy of land use effects, 
uncertain fire history, and the presently unknown in-
fluence of bedrock type (and its tectonic history) there 
are good reasons to question whether this approach 
can be successful in general. Nonetheless, such data 
would prove invaluable in evaluating models and, 
hopefully, improving hazard prediction. Some simple 
steps can be taken to explore if improvements can be 
made in shallow landslide prediction at the state level 
using more mechanistic models. Data on soil thick-
ness, vegetation cover, soil material properties, and 
geology (glaciated versus unglaciated) could be used 
to parameterize models that include root strength. 
Models that predict parameters such as soil depth (e.g. 
Dietrich et alii, 1995) could exploit the parallelized 
framework and possibly improve estimates of the spa-
tial structure of soil depth. Hydrologically dynamic 

delineate areas likely to fail in the storm. However, ex-
perience with Shalstab suggests that, when using 10m 
data, a log(q/T) threshold value of -2.8 will capture the 
vast majority of shallow landslide scars [Dietrich et alii, 
2001]. Figure 7 shows in red all the area of California 
that would be potentially unstable using this threshold.

DISCUSSION
Despite its simplicity, the application of Shal-

stab over the entire state of California at 10 m cell 
size required the development of a parallelized form 
of the drainage area determination for each cell. As 
topographic resolution increases further (from 10 m 
to 1 m data spacing) through airborne laser mapping, 
our ability to map landslides will greatly improve, but 
to make spatially explicit landslide predictions over 
large areas, parallelization of computation algorithms 
will be necessary. The largest area that a modern desk-
top computer can load into memory ranges from 100 
km2 for 1 m data to 10,000 km2 for 10 m data. This im-
plies that larger areas must be processed on a distrib-
uted memory architecture. Thus for seamless results 
over areas such as California, the only alternatives to 
parallelization are databases which are not practicable 
in terms of speed. Nevertheless, our scaling tests sug-
gest that if we had 1 m data for all of California, even 
using all of the 9572 nodes available on Franklin (one 
of the world’s most powerful computers) would still 
require several hours for Shalstab to run.

Fig. 7	 -	 Map showing potentially unstable areas for the 
state of California, as determined by a threshold 
of log(q/T) -2.8. The inset map shows the Sunland 
test area southern California

Fig. 6	 -	 Map showing Shalstab for the state of California. 
The inset map shows the Sunland test area south-
ern California
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cells that failed for a given storm are needed to esti-
mate the magnitude of the landslide response. We an-
ticipate that higher resolution topographic data, more 
mechanistic models, and increased computational effi-
ciency through parallelization algorithms will progres-
sively improve shallow landslide hazard predictions
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models which can route water and include the effects 
of vegetation at the spatial scale of DEM’s (e.g. Wig-
mosta et alii 2002) could similarly exploit the paral-
lelized framework and improve the spatial structure of 
the pore pressure field.

CONCLUSION
Detailed precipitation predictions now available 

at the large scale allow and invite the assessment of 
the effects of extreme storm parallel version of Shal-
stab allow for fast seamless results even when applied 
to large areas. We applied the algorithms to the state 
of California (414,000 km2) using 10 m resolution 
topographic data, but tests show that our application 
could process in a few hours all of the United States 
(9,830,000 km2) or all of Europe (10,180,000 km2) 
with similar data resolution.

To contribute to the USGS ArkStorm emergency 
preparedness study we ran Shalstab for the entire state. 
The extent of landsliding for any given storm will be 
greatly over-predicted by this model. Empirical rela-
tionships between the percent of predicted unstable 
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