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introduction
One of the greatest challenges in debris-flow 

modeling involves seamlessly simulating behavior 
during initiation and subsequent rapid flow. Most nu-
merical simulations of debris-flow motion avoid this 
challenge by specifying finite force imbalances in 
static debris poised on slopes. In this way, modelers 
artificially impose a static state before computations 
begin. By contrast, initiation of natural debris flows 
occurs when balanced forces are infinitesimally per-
turbed -- that is, when the factor of safety in static 
debris becomes infinitesimally smaller than 1. As mo-
tion of the debris begins, however, the force imbal-
ance may significantly change because dilatancy and 
pore-pressure feedback modify frictional resistance. 
This feedback commonly determines whether motion 
evolves to produce a rapid debris flow or a different 
phenomenon, such as a landslide that creeps imper-
ceptibly downslope (Iverson et alii, 2000; Wang & 
Sassa, 2003; Iverson, 2005). Similar feedback is also 
important during later stages of debris-flow motion, 
because it can cause frictional resistance to evolve in 
response to changing stresses and deformation rates.

Here we summarize a new, depth-averaged com-
putational model that simulates debris-flow motion 
from initiation to post-depositional consolidation 
by including the effects of coupled evolution of di-
latancy, solid and fluid volume fractions, and pore-
fluid pressure. This formulation results in a hyper-
bolic system of four simultaneous partial differential 

ABSTRACT
Pore-fluid pressure plays a crucial role in debris 

flows because it counteracts normal stresses at grain 
contacts and thereby reduces intergranular friction. 
Pore-pressure feedback accompanying debris deforma-
tion is particularly important during the onset of debris-
flow motion, when it can dramatically influence the 
balance of forces governing downslope acceleration. 
We consider further effects of this feedback by formu-
lating a new, depth-averaged mathematical model that 
simulates coupled evolution of granular dilatancy, solid 
and fluid volume fractions, pore-fluid pressure, and 
flow depth and velocity during all stages of debris-flow 
motion. To illustrate implications of the model, we use 
a finite-volume method to compute one-dimensional 
motion of a debris flow descending a rigid, uniformly 
inclined slope, and we compare model predictions with 
data obtained in large-scale experiments at the USGS 
debris-flow flume. Predictions for the first 1 s of motion 
show that increasing pore pressures (due to debris con-
traction) cause liquefaction that enhances flow accelera-
tion. As acceleration continues, however, debris dilation 
causes dissipation of pore pressures, and this dissipa-
tion helps stabilize debris-flow motion. Our numerical 
predictions of this process match experimental data 
reasonably well, but predictions might be improved by 
accounting for the effects of grain-size segregation.
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Relative motion of solid and fluid phases can lead 
to possible ambiguity in the definition of h(x,t), because 
in some instances rocks may protrude through a debris 
flow's free surface, but in other instances all solid grains 
may be submerged. To avoid this ambiguity we define 
h(x,t) as the height of a virtual free surface, such that the 
debris-flow mass per unit basal area is ρh(x,t).

evolution of mass distribution
By employing the mixture bulk density defined in 

(1) and mixture velocity defined in (3), we can utilize a 
mixture mass-conservation equation in the standard form

Mass conservation additionally requires that the 
divergence of q must be balanced by a compensating 
divergence of the grain velocity vs (Iverson, 1997):

Divergence of vs implies that m evolves, leading 
to our definition of the depth-averaged granular dila-
tion rate D: 

Here denotes a material time 
derivative that follows motion of the granular phase.

 Because we assume that m = m, we can recast (6) as

where denotes a depth-averaged 
material time derivative. Equation (7), which expresses 
depth-averaged conservation of the granular phase, is the 
first of the four evolution equations solved by DIGCLAW.

equations we solve numerically by using a finite-vol-
ume wave-propagation method similar to that used 
in CLAWPACK and GEOCLAW (LeVeque, 2002; 
Berger et alii, in press?). We implement the compu-
tations in a new FORTRAN code we call DIGCLAW, 
and we compare solutions generated by DIGCLAW 
with aggregated data obtained in large-scale experi-
ments at the USGS debris-flow flume.

model formulation
To emphasize physical concepts and minimize 

mathematical complexity, we focus on one-dimen-
sional motion of a two-dimensional debris flow 
descending a rigid, impermeable plane uniformly 
inclined at the angle θ (Figure 1). The flow moves 
downslope as an evolving surge that has a character-
istic length, L, characteristic thickness, H, and charac-
teristic grain diameter, δ, such that L >> H >> δ. The 
disparity of these length scales justifies our use of a 
depth-averaged continuum model. 

Our model treats debris as a mixture of incom-
pressible solid grains of mass density ρs occupying the 
volume fraction m and incompressible fluid of mass 
density ρf occupying the volume fraction 1-m, such 
that the mixture bulk density is

ρ = ρsm + ρf (1-m)
In DIGCLAW the depth-averaged solid volume 

fraction m is a dependent variable that evolves as a func-
tion of the downslope coordinate, x, and time, t, imply-
ing that the depth-averaged bulk density, ρ, also evolves. 
The other dependent variables are the depth-averaged 
downslope flow velocity, v(x,t), the flow thickness, h(x,t), 
and the basal pore-fluid pressure, pbed(x,t) (Figure 1).

Our model emphasizes motion of the granular 
solid phase, and treats fluid flow in a frame of refer-
ence that moves with the solids. This approach utilizes 
an apparent fluid velocity q (i.e., fluid volume flux per 
unit area) relative to the solids, defined as

where vf and vs are the velocities of the fluid and sol-
ids, respectively, in a fixed frame of reference (Bear, 
1972). Formally, the model assumes that the magni-
tude of q is sufficiently small that ||q||<<||vs||(1-m), 
although violation of this assumption (e.g., when vs= 
0) poses no significant problem, provided that varia-
tion of q has negligible effect on the mass-weighted 
mixture velocity, defined as

Fig. 1	 -	 Schematic illustrating a debris flow of charac-
teristic length L, characteristic thickness H, and 
characteristic local grain diameter δ descending 
a uniform slope inclined at the angle θ. Magnified 
slice illustrates the dependent variables h, v, m, 
and pbed used in DIGCLAW
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(2)

(3)

(4)

(5)

(6)

(7)
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ψ cannot be a material constant. Rather, ψ must evolve 
and ultimately become zero during steady shearing. In 
classical soil mechanics, where γ < 0.01 s

-1 is typical, 
such steady states are called critical states (Schofield & 
Wroth, 1968). In DIGCLAW quasi-steady states with 
ψ = 0 can develop even if γ >> 0.01 s

-1 .
To calculate evolution of ψ we adopt a rationale 

similar to that of Pailha & Pouliquen (2009), who 
combined the principles of critical-state soil mechanics 
with those of dense grain-flow mechanics (Forterre & 
Pouliquen, 2008) to postulate that the value of tan ψ de-
pends linearly on m - meq, where meq is a value of m equil-
ibrated with the ambient state of stress and shear rate. 
To gauge the effects of the stress state and shear rate on 
meq, they used a dimensionless parameter N that can be 
interpreted as a timescale ratio in which the numerator 
is the characteristic time for local grain rearrangement 
(mediated by pore-fluid viscosity, μ), and the denomina-
tor is the characteristic time for bulk shear deformation, 
1 / γ (cf. Courrech du Pont et alii, 2003; Cassar et alii, 
2005). Here we identify the grain-rearrangement times-
cale as μ / (ρ - ρf)gh cos θ, where (ρ - ρf) gh cos θ is the 
characteristic effective normal stress, and we combine 
this timescale with the depth-averaged bulk shearing 
timescale 1 / γ = h / v to express N as

This relationship shows that N is essentially the 
reciprocal of the friction number introduced previous-
ly to describe the stress state in debris flows (Iverson 
& LaHusen , 1993; Iverson, 1997). 

Next we define ψ by using the linear Pailha-
Pouliquen (2009) formula

but we include nonlinear dependence of on N:

Here C1 and C2 are positive coefficients that re-
quire calibration (cf. Pailha & Pouliquen, 2009), and 
mcrit is the static, critical-state value of meq that applies 
when the stress is lithostatic, the pore pressure is hy-
drostatic, and N = 0. As N increases from 0 to ∞, tanh 

N increases almost linearly from 0 until it smoothly 
asymptotes to 1, implying that the equilibrium volume 
fraction meq decreases monotonically but not indefi-
nitely in response to decreasing normal stresses and 
increasing shear rates. Through its dependence on meq 
and N, ψ evolves in response to evolution of all of the 
dependent variables in DIGCLAW: m, v, h, and pbed.

We evaluate depth-averaged mass conservation 
for the two-phase mixture by integrating (4) through 
the flow depth to find

The term including dρ/dt in (8) accounts for changes 
in ρ due to changes in m. Use of (1) and (7) in conjunc-
tion with the chain rule 
shows  that  these  changes  can  be  expressed  by 

, and substitution of this 
equation in the second line of (8) leads to

This depth-averaged mass-conservation equa-
tion for the mixture is the second evolution equation 
solved by DIGCLAW. If D = 0, then (9) reduces to the 
standard depth-averaged mass conservation equation 
for incompressible materials, and (7) reduces to the 
trivial relation dm / dt = 0.

evolution of dilatancy
Although (6), (7), and (9) summarize the kin-

ematic effects of the granular dilation rate, they do not 
describe the mechanical causes of dilation. For this 
purpose we use an equation modified slightly from 
one proposed by Iverson (2009),

where γ is the macroscopic shear rate, ψ is the shear-
induced dilatancy (a property of granular materials 
that is commonly expressed as an angle, -π/2 ≤ ψ ≤ 
π/2), α is the mixture compressibility (a property that 
commonly declines as m increases), and σe is the ef-
fective normal stress (defined as σe= σ - p, where σ is 
the mean total normal stress and p is the pore-fluid 
pressure). Positive dilatancy indicates that densely 
packed grains move apart as they shear past one an-
other, whereas negative dilatancy implies that grains 
converge during shearing, provided that σe  is constant. 

If no macroscopic shearing occurs (i.e., γ = 0), then 
(10) reduces to a standard equation used in quasi-static 
soil consolidation theories; but if shearing occurs in 
a closed container that enforces ∆vs = 0, then (10) re-
duces to dσe / dt = γ tan ψ/α. This equation erroneously 
predicts that σe increases with time if ψ>0 and shearing 
proceeds at a constant rate γ, thereby demonstrating that 

(8)

(9)

(10)

(11)

(12)

(13)
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flow scaling that applies if H / L << 1. This scaling in-
dicates that ∂2p / ∂y2

 >> ∂
2p / ∂x2 because ∂2

 / ∂y2 scales 
with 1 / H

2, whereas ∂2
 / ∂x2 scales with 1 / L

2. Conse-
quent neglect of ∂2p / ∂x2 reduces (17) to

Another step involves use of the approximations 
vy = (y / h) dh / dt and vx = v to recast the total time de-
rivatives in (18) as 
(Savage & Iverson, 2003). Then (18) can be rewritten as

Depth integration of (19) is accomplished term-by-
term by using Leibniz' rule and applying the stress-free 
surface boundary conditions p (h) = σ (h) = 0, yielding

where p denotes the depth average of p, and v/h is 
used to approximate the depth-averaged shear rate. 
The term ρf g cos θ arises in (20) from depth integra-
tion of the pore-pressure diffusion term in (19) and 
application of a zero-flux basal boundary condition 
that requires the pore-pressure gradient at the bed to 
remain hydrostatic: [∂p / ∂y]y=0 = - ρf g cos θ . The term 
- (σ - p) dh / dt arises from depth-integrating the term 
that includes ∂ (σ - p) / ∂y in (19) by parts. This term 
cancels some other terms and thereby reduces (20) to

where

is the depth-averaged mean total normal stress, and κ 
is a longitudinal normal-stress coefficient that equals 1 
if the stress state is hydrostatic (Iverson & Denlinger, 
2001). Equation (21) is a valid, depth-integrated, one-
dimensional pore-pressure evolution equation, but it 
retains two pore-pressure variables, p and p, rather 
than the desired variable, pbed.

To express (21) in terms of pbed, approximations of 
p and [∂p / ∂y]y=h are necessary, and we obtain these ap-
proximations by utilizing the assumption that m=m at 
all depths. This assumption implies that Λvs and Λq are 
not functions of y, further implying that ∂2p / ∂y2 is not 
a function of y in (18) and (19). With this stipulation, 
we solve ∂2p / ∂y2

 = constant and employ the hydro-
static basal boundary condition ∂p / ∂y | y=0 = - ρf g cos θ 

evolution of pore-fluid pressure
Development of a depth-averaged evolution 

equation for pbed involves several steps. The first en-
tails use of a linear, Darcian drag formula to relate q to 
the gradient of excess pore-fluid pressure, pe:

Here pe = p - ρf g (h - y) cos θ, where p is the total fluid 
pressure, and k is the intrinsic hydraulic permeability of 
the granular debris (Bear, 1972). A linear drag formula 
such as (14) may oversimplify the effects of complex 
phase-interaction forces in debris flows, but detailed 
investigations of similar mixtures indicate that it prob-
ably provides a suitable first approximation (e.g., John-
son et alii, 1990; Shamy & Zeghal, 2005).

Substitution of (14) into (5) yields a fundamental 
equation that shows how the divergence of 
is related to the granular dilation rate, Δvs:

Next, Δvs can be eliminated from (15) through 
use of (10). If k / μ is assumed constant (an assump-
tion that is easily relaxed computationally), the re-
sulting equation reduces to

where k / αμ plays the role of a pore-pressure diffusivity.
From (16) we obtain a forced, advection-diffusion 

equation governing evolution of pe by first using the defi-
nitions of effective stress and excess pore-fluid pressure 
to find that dσe / dt = dσ / dt - dpe / dt - d [ρf g (h - y) cos θ] / dt. 
Substitution of this equation into (16) yields

The forcing terms on the right-hand side of (17) 
express the evolving effects of the shear-induced dila-
tion rate γ tan ψ, the mean total stress σ, and the hydro-
static pore-pressure component ρf g (h - y) cos θ. Note 
that if all of the time derivatives in (17) are zero and 
γ tan ψ is constant, the equation reduces to the steady-
state balance  which can alterna-
tively be expressed as . This result 
shows that porosity creation during steady dilation 
is balanced by a steady influx of fluid that fills the 
enlarging pores.

The next step in obtaining our pore-pressure evo-
lution equation is depth integration. Preliminary steps 
involve recasting (17) in terms of the total pore-fluid 
pressure, p = pe + ρf g (h - y) cos θ, and invoking shallow-

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)
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and pressure-free surface boundary condition p(h) = 0 
to find that p(y) satisfies the quadratic equation

This equation indicates that temporal evolution of 
p is represented entirely by the evolving values of the 
basal pressure pbed(t) and flow thickness h(t). Equation 
(23) also implies that

Substitution of (22) and (24) into (21) then yields

The derivatives d(ρh) / dt and dh / dt can be elimi-
nated from the right-hand side of (25) by using the 
mass-conservation equation (9), yielding the final 
form of the evolution equation for pbed:

The first term on the right-hand side of (26) ac-
counts for pore-pressure relaxation due to the depth-
integrated effects of pressure diffusion, and the second 
term accounts for the forcing effects of the evolving 
gravitational load and dilation rate.

evolution of momentum distribution
For a debris mixture with ρ = ρ, depth integration 

of the left-hand side of the x component of the mo-
mentum-conservation equation 
yields a result that can be written in several forms, 
including

The first line of (27) is exact, but subsequent lines 
assume that differential advection of x momentum as 
a function of y is negligible, and therefore omit the 
integral containing vx - v. In the second line of (27), 
the term in brackets expresses mass conservation and 
vanishes through application of (8), leaving only the 
term ρh(dv/dt). This term is mathematically correct 
but physically "non-conservative" because it does not 

explicitly represent the effects of evolving ρh. The 
final line of (27), which is used in DIGCLAW, dif-
fers from a conventional, conservative shallow-water 
formulation owing to presence of the term - (ρ - ρf) Dv. 
This term equals hv (dρ / dt) and thereby accounts for 
the effects of D on evolution of ρ.

The right-hand side of the depth-averaged momen-
tum-conservation equation expresses the sum of forc-
ing effects due to gravity and resisting effects due to 
internal and boundary stresses, as derived by Iverson 
(1997). Addition of the right-hand side to (27) yields 
the fourth evolution equation solved by DIGCLAW,	  

Here τs and τf are the basal shear tractions exerted 
by the solid and fluid phases, respectively. 

To estimate τs we use the Coulomb-Terzaghi 
equation for granular friction influenced by pore 
pressure and dilatancy,

where fbed is the steady-state (zero-dilatancy) friction 
angle of grains in contact with the bed, fbed+ ψ is the 
effective basal friction angle when nonzero dilatancy is 
present (Iverson, 2005), and ρgh cos θ - pbed is an estimate 
of the basal effective stress, σe bed. To estimate τf we use

where 1 - m is the fluid volume fraction and v / h is, again, 
a depth-averaged approximation of the shear rate γ.

mathematical closure 
Two additional relationships are needed to evalu-

ate D and κ, and thereby complete the mathematical 
model. We obtain an equation for D by combining (5), 
(6) and (15) to find that

The second line of (31) assumes that k / μ is 
constant and that the pore-pressure distribution 
obeys the quadratic relationship specified in (23). 
It also shows that pbed remains equilibrated to the 
dilation rate D as both quantities evolve. This be-
havior is a logical consequence of mass conserva-

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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Berger et alii, in press). The results presented here 
depict 10 s of debris-flow motion; generation of the 
results required about 49 s of CPU time on a standard 
desktop computer with a 2.4 GHz processor. 

initial conditions and short-term 
behavior

We focus first on predicted short-term evolution 
of the dependent variables h, v, m and pbed in the 
upper part of the flume, from x = -5 m (behind the 
headgate) to x = 5 m, just downslope of the head-
gate (Figure 2). At t = 0, the debris impounded be-
hind the headgate is static and the basal pore-fluid 
pressure is hydrostatic (pbed= ρf gh cos θ). The solid 
volume fraction is uniformly m = 0.61, matching the 
mean value measured by Iverson et alii (2010), and 
implying a loosely packed initial state. The panels 
of Figure 2 show these initial conditions as well as 
the evolving longitudinal profiles of all dependent 
variables at t = 0.2, 0.4, 0.6, 0.8 and 1.0 s.

The model predicts that as downslope motion be-
gins, the highest velocities occur near the flow front, 
resulting in progressive longitudinal extension and de-
creasing depth of the entire debris mass (Fig. 2 a and 
b). At the same time, the solid volume fraction increas-
es everywhere except at the leading edge of the ad-
vancing flow (Fig. 2c), and this increase causes a com-
mensurately widespread increase in basal pore-fluid 
pressure, pbed (Figure 2d). At t = 1 s, for example, much 
of the mass has pbed~ 10 kPa and h ~ 0.5 m, implying a 
mostly liquefied state (i.e., pbed ≈ ρ gh cos θ). An excep-
tion to this behavior develops in the advancing flow 
snout, which begins to dilate almost immediately be-
cause h→0 at the snout tip, and implied shear rates 

tion in a fully saturated mixture together with our 
assumptions of Darcian fluid flow and m = m.

The value of the longitudinal stress coefficient 
κ generally can vary from about 0.3 to 3, depending 
on whether flowing debris undergoes longitudinal 
extension or compression (Savage & Hutter, 1989; 
Iverson, 1997, 2009; Iverson & Denlinger, 2001). 
The effects of such variation are relatively subtle but 
potentially quite complicated. To avoid such compli-
cations while focusing our computations on coevolu-
tion of m, v, h, and pbed, we have used the traditional 
shallow-flow assumption, κ = 1. The most important 
consequence of this assumption is that the term (1 - κ) 

h∂pbed / ∂x vanishes from (28), implying that pore-fluid 
pressure exerts direct effects on flow momentum only 
through its influence on basal Coulomb friction.

MODEL predictions and tests
As a demonstration and test of our model predic-

tions, we have used DIGCLAW to simulate behaviour 
measured in a series of eight replicate experiments 
performed in the USGS debris-flow flume. In each 
experiment 10 m3 of water-saturated sand, gravel 
and mud ("SGM") discharged abruptly from behind a 
vertical headgate and travelled more than 70 m down 
the uniformly sloping (31º), 2-m wide flume before 
encountering flatter slopes and debouching from the 
flume mouth. Iverson et alii (2010) presented de-
tails of experimental protocols, data acquisition and 
processing, and debris and flume properties. Because 
the flume's sidewalls were vertical and much smooth-
er than its bumpy flume bed (1 mm vs. 16 mm char-
acteristic roughness amplitudes), a one-dimensional 
model was appropriate for simulating flow within the 
flume. Parameter values used to generate simulation 
results generally matched values measured in labora-
tory tests (Tab. 1). A notable exception was the value 
of k, which we discuss below. 

Our DIGCLAW simulations used 1000 fixed, uni-
formly spaced Eulerian grid cells on a domain ranging 
from x = -10.0 m to x = 90.0 m, where x = 0 denoted 
the flume headgate location. The code used explicit 
computational time steps that were modified adaptive-
ly to satisfy a Courant-Friedrichs-Lewy (CFL) con-
dition. At each time step the numerical solution was 
updated by using a finite-volume wave-propagation 
method to solve Riemann problems at grid cell in-
terfaces, as detailed elsewhere (e.g., LeVeque, 2002; 

Tab. 1	 -	 Comparison of parameter values used in DIG-
CLAW with values measured in "SGM" debris-
flow flume experiments of Iverson et alii (2010)
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sal pore pressures gradually relax from their elevated 
values, and effective basal friction increases. Mean-
while, the flow elongates greatly while maintaining 
a steep leading edge, or snout, as observed in experi-
ments (Iverson et alii, 2010). The peak flow depth 
occurs just behind the snout and gradually declines 
until it stabilizes at about h = 0.1 m (Figure 3a), 
while the snout speed stabilizes at between 8 and 10 
m/s (Figure 3b), similar to behavior observed in the 
experiments (Iverson et alii, 2010). The high speed 
of the snout leads to commensurately large shear 
rates, dilation rates, and rates pore-pressure deple-
tion, thereby reinforcing the frictional resistance of 
the snout. As a consequence, classic head-and-tail 
debris-flow architecture develops and persists.

are accordingly high. As the solid volume fraction in 
the snout declines in response to high shear rates, pore 
pressures there also decline. Flow resistance therefore 
begins to grow in the snout while most of the trailing 
debris maintains a liquefied state that allows it to push 
the snout from behind. As a consequence, the snout ini-
tially moves downslope faster than an ideal frictionless 
body, despite its relatively high flow resistance.

DOWNSLOPE behavior
Behavior computed as the simulated flow moves 

further downslope differs qualitatively from short-
term behavior because flow velocities become high 
enough that the dominant debris response becomes 
dilative (Figure 3). In conjunction with dilation, ba-

Fig. 2	 -	 Simulated short-term evolution of dependent vari-
ables over the interval from x = −5 m to 5 m. Longi-
tudinal profiles of variables are shown for the initial 
condition (t =0 ) and for t= 0.2, 0.4, 0.6, 0.8, and 1.0 s

Fig. 3	 -	 Simulated long-term evolution of dependent vari-
ables over the interval from x = -10 m to 75 m. 
Longitudinal profiles are shown for the initial con-
dition (t =0 ) and for t= 2, 4, 6, 8, and 10 s
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COMPARISON OF COMPUTED and measu-
red time series

Next we compare model predictions with values of 
flow depth, h(t), basal pore-fluid pressure, pbed(t), and 
total basal normal stress, σbed(t) measured in the eight 
replicate SGM experiments described by Iverson et alii 
(2010). Aggregated data from replicate experiments 
provide a better basis for model tests than do data from 
individual experiments or field observations, because 
data aggregation minimizes the effects of idiosyncrasies 
and reveals the effects of inherent variability. Therefore, 
Figure 4 superposes model predictions (black lines) 
on gray shaded envelopes that depict mean values ±1 
standard deviation measured in eight experiments.

Figure 4 compares model predictions with time 
series measured at two instrumented cross sections: 
one 32 m downslope from the flume headgate and 
one 66 m downslope from the headgate. All panels of 
the figure show that model predictions of flow-front 
arrival times differ from measured arrival times by 

< 1 s. Viewed in more detail, the evolving values of 
predicted flow depth h(t) and basal total normal stress 
σbed(t) at x = 32 m match those of data relatively well 
(Figure 4 a and b), but the predicted basal pore-fluid 
pressure pbed(t) is somewhat lower than measured val-
ues (Figure 4c). At x = 66 m, the predictions of flow 
depth and basal normal stress remain relatively good, 
but the predicted pore-fluid pressure is considerably 
smaller than that observed in experiments. The next 
section discusses some shortcomings of the model that 
might account for these discrepancies.

DISCUSSION
In our simulations of debris-flow flume experi-

ments, values of some parameters were not pre-
cisely constrained by independent measurements. 
When we adjusted the values of these parameters 
within the range of physically plausible values, it 
affected our predictions, but we did not make such 
adjustments blindly.

Fig. 4	 -	 Comparison of model predictions (black lines) and aggregated time series data (gray shaded areas) measured at two 
instrumented cross sections in the SGM debris-flow flume experiments of Iverson et alii (2010). The shaded areas  
depict the mean values +/- one standard deviation of measurements made in eight replicate experiments
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putations, but we believe that size segregation would 
enhance this development and lead to attendant 
regulation of flow speeds. Recent work on grain-size 
segregation in dry granular avalanches (e.g., Gray & 
Ancey, 2009) may point the way toward including 
segregation effects in our debris-flow model.

CONClusion 
Our model differs from previous models of 

debris-flow dynamics by describing coupled evolu-
tion of dilatancy, solid and fluid volume fractions, 
pore-fluid pressure, and flow depth and velocity. This 
formulation enables use of realistic initial conditions 
with infinitesimal force imbalances, and it therefore 
permits seamless simulation of debris-flow initiation 
and subsequent flow. A key feature of our model is 
non-monotonic evolution of computed pore pressures 
during initiation (when pressures tend to increase and 
promote liquefaction) and subsequent flow (when 
pressures tend to relax diffusively). This non-monot-
onic evolution results from evolution of the dilatancy 
angle and volume fractions in response to changes in 
the debris' stress state and shear rate.

By computing simultaneous evolution of several 
variables, our model provides more detailed predic-
tions than most alternative models, and it therefore fa-
cilitates more stringent testing. Our model predictions 
of evolving flow depths and velocities match experi-
mental data quite well, but to attain these matches, our 
computations require use of a relatively high debris 
permeability that leads to overprediction of pore-pres-
sure relaxation. This shortcoming might be remedied 
by including grain-size segregation effects that lead to 
evolving permeability distributions and sharper differ-
ences in debris-flow head and tail friction. At present, 
however, we are encouraged that our model predic-
tions match many aspects of debris-flow behavior 
measured in large-scale experiments.
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Initially, when we began simulating the flume 
experiments, we found that the model predicted flow 
velocities almost twice as large as those observed at 
x = 66 m. The high velocities were due to widespread 
persistence of very high pore-fluid pressures, such 
that friction remained close to zero. By increasing 
the ratio k / μ to values about five times larger than 
those measured in quasistatic permeameter tests 
with water-saturated SGM, we caused pore pres-
sures to relax more rapidly toward hydrostatic lev-
els. This adjustment increased basal friction enough 
to produce reasonably accurate predictions of flow 
speeds. We believe the adjustment is defensible 
from a physical perspective, because rapidly shear-
ing, dilated debris is likely to be more permeable 
than debris at rest in a permeameter. 

Additionally, we followed the precedent es-
tablished by Pailha & Pouliquen (2009) and se-
lected values of the dilatancy coefficients C1 and 
C2 to optimize model fits to the data. Interestingly, 
however, despite the fact that many aspects of our 
model differ from those of the Pailha-Pouliquen 
(2009) model, our values C1= 0.5 and C2= 20 are 
comparable to the values C1= 4.09 and C2= 25 used 
by Pailha & Pouliquen to optimize their fits to data 
from small-scale, underwater granular avalanches. 
(Note that in the Pailha-Pouliquen formulation, K3 
is analogous to our C1, and K2 is analogous to our 
C2.) This consistency lends some credibility to the 
formulae that employ C1 and C2 for calculating the 
dilatancy angle ψ (i.e., equations (12) and (13).

The most significant discrepancy between our 
model predictions and measured flow behavior in-
volves relaxation of basal pore-fluid pressure. In 
our predictions the pressure relaxes more rapidly 
than the measured pressure, but as noted above, this 
rapid relaxation is necessary to obtain realistic flow 
speeds. We believe the lack of grain-size segregation 
in our model is responsible for this problem. In ex-
perimental debris flows, and in most natural debris 
flows, large grains rapidly concentrate at flow fronts, 
focussing more flow resistance there while leaving 
finer-grained tails that remain largely liquefied (Iver-
son, 2003). Thus, as segregation occurs, the perme-
ability k can increase significantly in coarse-grained 
flow fronts, leading to a zone of almost completely 
depleted basal pore-fluid pressure. This heterogene-
ous architecture develops to some degree in our com-
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