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alii, 2001). The most widely used approaches to model 
debris flows are usually related either to “continuum” 
or to “granular” mechanics. A combination of them can 
sometimes be used, depending on the type of debris 
flow under study. The content of this paper belongs to 
the former kind of approach where the Navier-Stokes 
equations are considered as the master tool. In the 
“continuum” framework, a quite general mathematical 
model, that can be used to model a physical phenom-
enon like the one discussed in this paper, would consist 
of two sets of equations: a first set for the liquid phase 
and a second one for the solid phase. Interactions terms 
can then be added to the equations in order to model 
the forces exchanged by the two phases. A model of 
this kind can be derived from the mixture theory (at-
kin et alii, 1976): an implementation of such theory 
in the case of debris flows can be found in iveRson 
(1997), where the possibility of using different rheo-
logical models for each phase is suggested.

The grain size distribution plays an important role 
in the physics of debris flows and recent developments 
in the study of water-solid mixtures have shown that 
the clay fraction can be of great importance too, as 
it influences the granular interactions. In particular, it 
is reported by laiGle et alii (1997) that debris flow 
mixtures with a high clay fraction, despite retaining 
their two-phase nature, behave like viscoplastic fluids 
and that a single phase model of such kind can repro-
duce their physics to a good degree of approximation. 
We then restrict our analysis to the specific case of 

ABSTRACT
2D muddy debris flow has been simulated accord-

ing to a dam break like problem along a slope. The two 
sets of equations related to the fluid and solid phases, 
as considered by the debris flow mixture theory, have 
been simplified in only one set of equations, consider-
ing just one equivalent material. Then the Herschel-
Bulkley fluid constitutive equations have been select-
ed. The correct parameters of the HeRsCHel-bulkley 
model have been chosen in order to correctly simulate 
the behaviour of mudflows. The final mathematical 
model, has been solved numerically with the smoothed 
particle hydrodynamics (SPH) method. SPH is a par-
ticle mesh-free Lagrangian method, well suitable for 
computing highly transitory free surface flows of com-
plex fluids in complex geometries. Finally a laboratory 
experimental test has been selected for comparison. 
Satisfactory results have been achieved. Nevertheless, 
further parametric analyses will be carried out and fur-
ther considerations about both constitutive equations 
and numerical improvements will be employed and 
discussed in future papers.

Key words: SPH, 2D numerical modelling, muddy debris  flow

INTRODUCTION
Debris flows are characterized by a mixture of wa-

ter and poorly sorted granular material flowing under 
the effect of gravity (PieRson et alii. 1987; takaHasHi, 
1991; Coussot et alii, 1996; iveRson, 1997; CRosta et 
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where:
η is the local dynamic viscosity of the fluid;
τc is the yield stress;
k is called the liquid consistency;
n is called the power law index;
D is the strain rate tensor of eqn. (4).

τc, k, and n represent the constitutive law param-
eters: their values will be adjusted according to experi-
ments (see Tab. 1) in order to correctly reproduce the be-
haviour of a mudflow. The physical meaning of the yield 
stress is immediate, representing the stress threshold 
below which the fluid starts to behave like a rigid body.

NUMERICAL MODELLING
The physics and the complexity of debris flow phe-

nomena require the selection of an appropriate numerical 
approach. The related bibliography is very extensive and, 
for the sake of completeness, we mention the fields of 
Computational Fluid Dynamics (CFD) and of Computa-
tional Granular Dynamics (CGD). CFD (CHunG, 2006), 
among many others) and CGD (PösCHel & sCHwaGeR, 
2005) are considered, respectively, as numerical tools 
related to continuum mechanics and granular mechan-
ics. Molecular Dynamics is a further numerical tool 
used to study the interactions among particles, exploit-
ing essentially Newton law related to both their transla-
tions and rotations. Nevertheless, according to the scope 
of the present paper, an appropriate numerical method, 
among the ones suitable for solving the Navier-Stokes 
equations, should be selected. In these regards, many ap-
proaches have been proposed: in particular, techniques 
capable of handling free surfaces and violent mass fluxes 

debris flows characterized by a high clay fraction 
(mudflows) and simplify the problem by employing a 
single equivalent phase model of a viscoplastic fluid.

GOVERNING EQUATIONS
In light of the considerations reported in the intro-

duction, we are therefore interested in the equations of 
motion of an incompressible non-Newtonian fluid. In 
order to develop a theoretical framework for a numeri-
cal model we resort to the basic principles governing 
the motion of a continuum, namely the mass conserva-
tion and the momentum equations. They can be written 
in Lagrangian form as:

where:
n is the local velocity of the continuum
ρ is the local density of the continuum
f is the body force per unit of mass exerted on the con-
tinuum;
σ is the local total stress tensor;

The total stress tensor is usually split into two 
parts: an isotropic and a deviatory one. The stress ten-
sor decomposition is indicated as follows in the paper:

where:
p is the isotropic pressure;
I is the unit tensor;
τ is the deviatory part of the total stress tensor;

The isotropic part of the tensor depends on the 
pressure, while the deviatory part of the total stress 
tensor is usually expressed as a function – namely the 
constitutive law - of the strain rate tensor D:

The constitutive law used throughout the paper to 
simulate the behaviour of a mudflow is the Herschel-
Bulkley law, which has also been recently used by 
laiGle et alii (2007):

(1)

(2)

(3)

(4)

(5)

(6)

Tab. 1 - Rheological characteristics and experimental pa-
rameters in lAiGle et alii (1994) and lAiGle (1997)
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method that is easy to code. Its meshless and Lagrang-
ian nature make it very attractive for solving fluid flow 
problems where free surface boundary conditions and 
large strain rates are involved. The computational do-
main is filled with particles carrying flow field infor-
mation (e.g. pressure, velocity, density) and capable of 
moving in space.

Particles are the computational frame used in the 
method to solve the flow describing PDEs, as a grid or 
a mesh to calculate spatial derivatives is not needed.

We shall refer to 2D cases throughout the rest of 
the paper, even though all the assumptions and results 
can be extended to a 3D case with little effort. The key 
idea on which the method is based is the well-known 
use of a convolution integral with a Dirac delta func-
tion to reproduce a generic function f(x):

In the SPH method, the Dirac function is replaced 
by a “bellshaped” kernel function w (it ‘mimics’ the 
Dirac delta function), and the generic function f(x) 
is reproduced with a convolution integral, which in 
a discrete framework takes the form of a summation 
over particles:

where:
xi and xj represent the i and j particle positions in the 
given frame of reference;
∆Aj represents the tributary area (or volume in a 3D 
case) associated with particle j;
Summation is extended to all the particles located 
within the support domain of particle i.

The kernel function is chosen to be non negative, 
even and with a support domain Ωx (usually circu-
lar) whose radius is a multiple of a length h, named 
smoothing length. The kernel function is zero outside 
the support domain and the smoothing length serves 
as a scaling parameter for its arguments. It also has 
the property of converging to the Dirac function as the 
smoothing length approaches to zero.

It is possible to obtain the expression for the SPH 
approximation of a function gradient by writing the 
convolution integral of the function with the kernel 
and by using the Gauss-Green formula:

appear to be suitable for solving muddy debris flows 
problems.

Finite Elements (FEM), Finite Volumes (FVM), 
Finite Differences (FDM) are some of the most com-
mon used methods (CHunG, 2006). For all the men-
tioned approaches, grid generation is an important 
step to be performed. And as far as grid generation is 
concerned, the possibilities are numerous: structured 
grids, unstructured grids and adaptive meshes.

Other important issues related to the numerical 
solutions of fluid flows problems modelled with the 
Navier-Stokes equations involve incompressibility and 
convective terms. In order to avoid the latter one, a La-
grangian approach is commonly selected instead of an 
Eulerian one.

Furthermore, particular care should be taken con-
cerning the numerical issues related to large deforma-
tions. This is the main reason why a frequent (time 
consuming) update of the grid, aimed at lowering the 
excessive mesh distortion due to large deformations, 
is  often necessary.

From the above discussion, it is clear that meth-
ods that avoid the numerical instability due to the 
convective terms, lower the grid generation time and 
that are capable of easily taking free surfaces into ac-
count, are very desirable. The “Meshless Finite Ele-
ment Methods” include many of the above necessary 
discussed features (see idelsoHn et alii, 2003; 2004; 
for an overview). The “Smoothed Particle Hydrody-
namics” (SPH), briefly described in the following par-
agraphs and selected in our approach is among these. 
A similar tool, the “Particle Finite Element Method” 
(PFEM) (oñate et alii, 2004) is very promising as it 
includes all the advantages of the FEM without some 
of the difficulties of the SPH method (in particular, the 
imposition of boundary conditions), even if it requires 
some time, (which can still be reduced by using an 
extended Delaunay method), to update grid meshes.

Finally, it is worth to mention other approaches, 
reliable for granular debris flow, like the “Distinct 
Elements” and the “Alternate Lagrangian Eulerian” 
method (ALE) (CRosta et alii, 2001).

OVERVIEW OF THE SPH METHOD
The Smoothed Particle Hydrodynamic (SPH) 

method is a numerical technique that was initially de-
veloped during the 1970s to solve astrophysical prob-
lems (monaGHan, 2005). It is a fully meshless particle 

(7)

(8)
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Particles positions are evolved in time, according 
to the velocity of each particle.

SPH DISCRETIZATION TECHNIQUE
MAIN EQUATIONS

The equation briefly presented in the overview 
paragraph can be used to discretize the Herschel-
Bulkley fluid flow governing equations in order to 
create an SPH algorithm.

There are many references where it is possible to 
find details on how fluid flow governing equations can 
be effectively discretized into SPH equations. Among 
the many of them, we indicate monaGHan (2005), liu  
et alii (2003) & takeda et alii (1994).

The SPH discretization of the mass conservation 
equation (1) used in the paper is as follows:

where:
m represents the particle mass;
vij = vi - vj represents the difference between the inter-
acting particles velocity;

A widely used SPH discretization of the momen-
tum equation (2) is as follows:

where:
rij = ri - rj represents the difference between the inter-
acting particle position;
ηij is a symmetrised dynamic viscosity between inter-
acting particles, such that ηij= ηji .

Usually, a symmetrised expression for the 
smoothing lengths of each pair of interacting particles 
in the summations is used when calculating the kernel 
gradient (e.g. hij=(hi+hj)/2). If this is the case, it can 
be shown that particles exchange equal and opposite 
forces, making eqn. (12) capable of conserving the 
linear momentum of the particles system.

In the paper, the following expression has been 
used for the symmetrised viscosity:

where:
the kernel is differentiated with respect to the x’ co-
ordinate;
n represents the normal to the support domain bound-
aries (pointing outward).

The first term of the RHS of eqn. (9) is zero if the 
support domain isn’t truncated by the computational 
domain boundaries, as the kernel is zero on the sup-
port domain boundaries. Another case when the term 
can be zero is when the support domain is truncated 
by the computational domain boundaries but there ex-
ists a boundary condition forcing the function f(x) to 
vanish on the boundaries (it may be the case when f(x) 
represents a velocity and a no-slip condition has to be 
enforced on the computational domain boundaries). If 
the first term of the RHS of eqn. (9) is zero, then the 
SPH approximation of f(x) gradient takes the follow-
ing form in a discrete framework:

Eqn. (10) is often used, even when the first term 
of the RHS of eqn. (9) doesn’t vanish. Nevertheless, 
it is possible to offset the errors induced by neglect-
ing the term by introducing special treatments of the 
boundaries, as detailed later.

There are consistency conditions that the kernel 
has to satisfy in order to correctly reproduce continu-
ous field functions up to a certain order of accuracy. 
They are related to the kernel moments and should 
be satisfied both in the continuous and in the discrete 
frameworks. More details can be found in liu et alii 
(2003) & in liu et alii (2006).

Numerical applications of SPH share these com-
mon features: The equations describing the continuum 
motion are written in Lagrangian form, by using La-
grangian instead of Eulerian time derivatives.

The spatial gradients involved in the PDEs are 
discretized over the particles, by using a SPH ap-
proximation.

Time integration of variables is performed par-
ticle-wise usually by using an explicit time stepping 
method.

(9)

(10)

(11)

(12)

(13)
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It can be shown that density variation is propor-
tional to the square of the Mach number (monaGHan 
(1994)). If an artificial equation of state where sound 
speed is larger than the bulk velocity of flow is used, 
then it is possible to keep density variations as low 
as desired. The artificial equation of state used in this 
paper is as follows: 

where:
c is the artificial speed of sound;
ρ0 is the reference density of the fluid at zero pressure;

There are other possible forms for the equation of 
state that can be used to simulate a weakly compressible 
flow [see monaGHan (1994)]. Nevertheless, we found 
that the choice of the equation of state doesn’t signifi-
cantly affect the results, as long as the artificial speed of 
sound is chosen to be large enough.

VISCOSITY REGULARIZATION
The Herschel-Bulkley constitutive law provides 

a viscosity diverging to infinite for strain rates ap-
proaching to zero. It is therefore impossible to numer-
ically reproduce this behaviour in a straightforward 
manner. In the calculations, the expression of eqn. (5) 
for viscosity has been regularized and the infinite val-
ue that is obtained when the strain rate approaches to 
zero has been replaced with a finite value. The expres-
sion used to regularize viscosity has been proposed by 
PaPanastasiou (1987):

The parameter B is related to the maximum vis-
cosity that is returned by the regularization when the 
strain rate is zero. In this case the maximum viscosity 
value is given by:

The value assigned to the parameter B has been 
chosen high enough to correctly simulate the physi-
cal behaviour of the fluid but small enough to avoid 
prohibitively small time steps.

BOUNDARY TREATMENT
Since the gradient formulation given by eqn. (10) 

is used even for fluid particles close to the boundaries, 

The term in the right hand side of eqn. (12) involv-
ing the symmetrised viscosity represents the deviatory 
stress tensor divergence. Such an expression has been 
proposed by CleaRy (1998) & monaGHan (2005) and 
accounts for the presence of spatial gradients in viscos-
ity too. It is possible to find a proof in Espanol et al. 
(2003) that it accounts also for a bulk viscosity coeffi-
cient, which is equal to 5/3 times the dynamic shear vis-
cosity. Despite not having any bulk viscosity in the con-
stitutive law that is being used in the paper, we still think 
it could be worth using the expression in eqn. (12) for 
the deviatory tensor divergence for two main reasons:

It conserves the angular momentum in the parti-
cles system as discussed in monaGHan (1997), thus 
leading to more accurate results in the simulations;

It provides zero-th order consistency. This means 
that there are no viscous interactions between particles 
if the velocity field is constant in space;

The bulk viscosity induced by the expression 
should not significantly affect the simulation results, 
as the velocity field in the weakly compressible fluid 
approximation is nearly divergence-free;

A possible alternative to eqn. (12) is the one of 
directly calculating the total stress tensor from eqn. 
(10) and to use then the following SPH approximation 
for its divergence:

This formulation is still able to preserve the linear 
momentum of the particles system and is able to ex-
actly reproduce the Herschel- Bulkley rheology within 
the accuracy of the SPH approximation, without add-
ing any kind of bulk viscosity to the flow. Neverthe-
less, it lacks some good properties of the formulation 
of eqn. (12) like the zero-th order consistency and the 
angular momentum conservation

ARTIFICIAL COMPRESSIBILITY
The simulation of an incompressible flow requires 

the solution of a Poisson equation for the pressure, 
which often leads to an increase of the computational 
time. Therefore, it is more practical to approximate 
the uncompressible medium with a weakly compress-
ible one, thus allowing the calculation of the pressure 
from the density with a stiff equation of state which 
introduces an artificial compressibility in the fluid.

(14)

(15)

(16)

(17)
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special treatments are required in order to offset the 
errors introduced by neglecting the terms in the right 
hand side of eqn. (9).

There are a number of strategies to tackle bounda-
ry-related problems. Randles et alii (1996) used ghost 
particles to treat a symmetrical surface boundary con-
dition. Ghost particles have also been used in various 
manners for particle approximations near boundaries 
by takeda et alii (1994), moRRis et alii (1997) and feR-
RaRi et alii (2009) by using point symmetry.

In this paper, boundaries have been treated by 
placing a layer of particles on them, whose spacing 
is three times narrower than the fluid particles one. 
Boundary particles prevent fluid particles from pass-
ing through the domain boundaries by exerting a nor-
mal force on them. They also interact with the fluid 
particles via SPH summations through their viscosity, 
thus enforcing the no-slip condition. The expression 
used for the boundary forces has been proposed by 
monaGHan et alii (2009):

where:
kb is a constant having the dimensions of a square ve-
locity, used to correctly reproduce the bulk forces ex-
erted by the boundaries on the fluid;
Summation is extended to all the boundary particles lo-
cated within the support domain of fluid particle i.

It can be shown (monaGHan et alii, 2009), that the 
above summation gives negligible contribution along 
the direction parallel to the boundary, making boundary 
forces being exerted only along the normal direction. It 
is also a symmetrical formulation, thus conserving the 
linear momentum of the particles system.

TIME INTEGRATION
Time integration has been performed by means 

of a symplectic Verlet scheme, as in kaJtaR et alii 
(2008). The time stepping scheme is explicit and con-
serves the linear momentum of the particles system. 
The time step Δt is controlled by a C.F.L. condition 
depending on the artificial speed of sound, the viscous 
interactions between particles and on the interactions 
with boundary particles, according to the following 
equation:

where:
The minimum time step value is sought over each 
couple of interacting particle;
hij=(hi+hj)/2 is a symmetrised smoothing length be-
tween the pair of interacting particles;
cij=(ci+cj)/2 is a symmetrised artificial speed of sound 
between the pair of interacting particles;
ρij=(ρi+ρj)/2 is a symmetrised density between the pair 
of interacting particles;
dp is the initial fluid particles spacing;
β is the ratio between the boundary and the fluid par-
ticles spacing;
The C.F.L. number, indicated as CFL, has been set 
equal to 0.5.

MODEL TESTING
The ability of the SPH model to correctly repro-

duce a mudflow has been tested by simulating the 
experiments performed by laiGle et alii (1994) and 
(1997). Their experiments consisted in creating a 
mudflow dam break problem in a laboratory flume, by 
quickly opening a gate. The experimental setup they 
used is briefly shown in the figure below:

After the opening of the gate, the material stored 
behind it was released and the three ultrasonic gages, 
sketched in the picture, recorded the mudflow wave 
heights in time. The authors used waterclay mixtures 
prepared in laboratory with different concentrations in 
order to simulate mudflows. Herschel-Bulkley rheo-
logical parameters for the used mixtures were fitted 
to measures, carried out with a rheometer by the au-
thors. They performed tests with four different kinds 
of mixtures, named A, B, C and D. The rheological 

(18)

(19)

Fig. 1 - 3D sketch of the experimental setup in lAiGle et 
alii (1994) and lAiGle (1997)
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cal dissipation but increases the computational time, as 
the number of particles required to fill the entire com-
putational domain gets higher. As the physics of the 
flow is dominated by viscosity, the choice of the SPH 
discretization for the momentum equation plays an im-
portant role. We have tried both eqn. (12) and (14) with 
different particles spacing to reproduce the experiment 
of Tab.1. Accuracy is improved at higher resolutions for 
both equations but even though eqn. (12) seems to pro-
vide more accurate and less noisy results, it seems also 
to be more dissipative than eqn. (14). The influence of 
resolution and the issues regarding what would be the 
most appropriate choice for the momentum equation 
will be discussed further in a future paper 

Here we present the results obtained by using eqn. 
(14) with a particles spacing of dp = 3 mm. The fol-
lowing figure shows the initial particle disposition, 
right before the opening of the gate: 

In the following figures the particle disposition is 
reported in two different instants of the simulation:

We then extrapolated the wave heights below the 
same locations of the ultrasonic gages used in the ex-
periments of laiGle et alii. (1994) and (1997) from 
the numerical results of our simulation by measuring 
the thickness of the layer of particles passing below. 
Finally, a comparison of our numerical wave heights 

characteristics of the A mixture and the experimental 
parameters are summarized in the following table:

The authors modelled the mudflow as a wide chan-
nel flow initially at rest: the resulting flow conditions 
were therefore completely determined by the height 
of the material stored behind the gate, the flume slope 
and the material characteristics. laiGle et alii (1994) 
and (1997) indicated two non dimensional scaling 
parameters controlling the resulting flow conditions. 
The values of the scaling parameters in the tests they 
performed can represent a wide range of real situa-
tions at smaller scales (Coussot, 1994). In particular, 
the material A, along with the experimental conditions 
of Tab. 1 represent a realistic natural material (with ρ0 
= 2200 kg/m3, τc = 900 Pa, k = 290 Pa·s1/3) in a 120 
m long slope (laiGle et alii, 1997). A field determina-
tion of the Herschel-Bulkley rheological parameters 
of a natural debris flow can be found in Coussot et 
alii (1998), even though the values provided for the 
parameters in the paper are in a slightly different range 
than the ones indicated above. laiGle et alii (1994) 
and (1997) developed a 1D numerical model based 
on the shallow water equations and solved it with a 
Godunov conservative finite volumes scheme. We 
tested our SPH model by simulating the experiment of 
laiGle et alii (1997) using the rheological parameters 
of the Herschel-Bulkley model for the material A and 
the experimental conditions indicated in Tab. 1.

In our SPH simulations, particles were stored be-
hind the gate and a layer of boundary particles was 
placed to simulate the closed gate at the initial time 
step. Particles were initially stored in a uniform lat-
tice according to their spacing and were given a ρ0 = 
1410 kg/m3 density. At first, around 3000 damped time 
steps, as in monaGHan (1994), were performed in or-
der to build up a hydrostatic pressure distribution. Af-
ter that, the gate opening was simulated by removing 
the layer of boundary particles placed on it, thus re-
leasing the mudflow. The artificial Mach number was 
set to 0.2, the boundary force constant of eqn. (18) 
was set to kb = g·Hg (where g = gravity acceleration, 
Hg = height of material behind the gate) and the coef-
ficient B of eqn. (17) for the viscosity regularization 
was set to 10 s.

Another important parameter is the initial parti-
cles spacing dp, which plays the same role of the grid 
spacing in finite differences schemes. A decrease in the 
spacing improves the accuracy and reduces the numeri-

Fig. 2 - Initial particles disposition (lengths are in meters 
and particles are colour coded according to their 
pressure in Pa)

Fig. 3 - Particles disposition after 0.15 s from gate open-
ing (lengths are in meters and particles are colour 
coded according to the module of their velocity in 
m/s)
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break experiments made by laiGle et alii (1994) and 
(1997). The SPH model is fully two-dimensional and 
is capable of providing more information than the 
one-dimensional model. Nevertheless, a preliminary 
analysis shows that it is too diffusive, while still being 
able to produce a good agreement with experimental 
results. While the SPH model numerical diffusivity is 
reduced by increasing the resolution, other kinds of 
improvements haven’t been fully tested yet, but they 
seem possible by using different SPH versions of the 
momentum equation. In further papers, parametric 
studies with comparison with actual debris flow phe-
nomena will be discussed.

with the experimental measurements of laiGle et alii 
(1994) and (1997) is reported in Fig. 5:

It can be observed that while the wave heights are 
well caught, the SPH model is still affected by some 
numerical diffusion, as the calculated wave’s velocity 
is lower than in the experimental data. This can be 
improved either by further increasing the resolution or 
by switching to a less diffusive SPH formulation for 
the momentum equation.

CONCLUDING REMARKS
A SPH model incorporating the Herschel-Bulk-

ley non Newtonian rheology has been developed 
and has been tested to simulate some mudflow dam 

Fig. 4 - Particles disposition after 0.60 s from gate open-
ing (lengths are in meters and particles are colour 
coded according to the module of their velocity in 
m/s)

Fig. 5 - Time plot of the simulated wave heights at the lo-
cations of gage 1 (red line), gage 2 (blue line) and 
gage 3 (black line). Experimental measurement s 
of gages are represented by dots coloured as the 
respective lines
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