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Extended abstract
Il loess è un deposito quaternario ampiamente diffuso nelle regioni aride e semiaride. I suoli loess hanno una struttura aperta con elevata 

sensibilità all’acqua e comprimibilità. Di conseguenza, questo tipo di suolo può determinare gravi problemi ambientali, determinando cedimenti 
causati da pioggia o da irrigazione, l’innalzamento della falda freatica e innescare fessurazioni in terreni interessati da infiltrazioni (Xu et alii, 
2015; Peng et alii, 2016). Ciò determina spesso gravi conseguenze economiche e sociali con perdite di vite umane, la distruzione del suolo e 
il danneggiamento dei campi agricoli, il deterioramento delle infrastrutture, quali gasdotti e oleodotti e l’alterazione delle vie di trasporto. Gli 
approcci per la zonazione del rischio possono essere suddivisi a grandi line in qualitativi (metodi basati sulla conoscenza) e quantitativi (metodi 
basati sui dati). I metodi quantitativi sono basati su procedure statistiche. Queste procedure sono state generalmente utilizzate nella preparazione 
delle mappe di suscettibilità alle frane, sebbene questi metodi possano essere utilizzati anche nelle mappe di suscettibilità di grotte di loess. E’ 
stata eseguita un’analisi della suscettibilità alle frane mediante modelli statistici che utilizzano procedure bivariate o multivariate e sono state 
studiate le performance e i limiti di una combinazione degli approcci attuali. Nello studio della zonazione di suscettibilità di grotte di loess sono 
stati utilizzati modelli di predizione statistica e probabilistica. Pertanto, l’obiettivo principale di questo studio è affrontare il problema della va-
lidazione dei modelli di suscettibilità di grotte di loess nella provincia del Golestan (Iran nordorientale), precisamente nella pianura di Gorgan. 
Vengono quindi valutati i fattori che ne influenzano la loro presenza e, infine, condotta la mappatura della suscettibilità delle grotte di loess, 
confrontando la performance di tre modelli, Density Area (DA), Information Value (IF) e Frequency Ratio (FR) .

Ampie aree dell’Iran settentrionale sono state ricoperte da loess, formando una delle parti più meridionali della cintura eurasiatica del loess. 
Questa cintura di loess circonda il Medio Oriente e copre Tagikistan, Kazakistan e Turkmenistan (Keshavarzi, 2014). La ricerca è stata condotta 
nell’altopiano iraniano di Loess, identificato da depositi di loess da sud a nord della provincia del Golestan, tra 38.15 N e 36.30 N di latitudine e 
54.00 E e 56.00 E di longitudine. Sulla base delle caratteristiche geotecniche e sedimentologiche, il loess di questa provincia si suddivide in tre 
zone: I (loess argilloso), II (loess limoso) e III (loess sabbioso). L’allontanamento dal sito di origine e la diminuzione dell’energia eolica hanno 
disperso i suoli di loess e i fattori che modificano la struttura del suolo sono stati differenziati in tre aree con climi diversi con piovosità media 
annua variabile da 200 a 750 mm/anno da nord a sud della provincia del Golestan. 

Informazioni come mappe geologiche e topografiche, eventi storici di formazione di grotte di loess, analisi di laboratorio, interpre-
tazioni di immagini satellitari e indagini sul campo utilizzando il Global Positioning System (GIS) sono state conisderate come variabili 
dipendenti. Per prevedere le aree a potenziale sviluppo di grotte di loess, sono stati prodotti e digitalizzati in ambiente ArcGIS come fattori 
determinant l’incidenza di grotte di loess (variabili indipendenti), gli strati informativi includenti: geologia, pendenza, assetto, elevazione, 
erosione, precipitazioni, uso del suolo, tipo di suolo, classificazione del suolo USDA, distanza da strade, distanza da fiumi e predisposi-
zione ai collassi. E’ stato studiato l’effetto di tutti i fattori proposti e l’ubicazione di ciascuna grotta di loess è stata documentata mediante 
l’applicazione del GIS ai dati basati su sopralluoghi in campo. La mappatura basata sui dati di campo è stata supportata dall’interpretazione 
dei dati digitali raccolti da un veicolo aereo senza pilota (UAV), il quadricottero DJI Phantom 4 Pro con una fotocamera DJI FC6310. Il 
software ArcGIS 10.2.2 è stato utilizzato per tracciare i record in formato raster e per calcolare i parametri fisici e meccanici che regolano 
la dispersione delle grotte in loess, abbiamo preparato campioni di blocchi indisturbati provenienti da 62 punti nelle zone I, II e III. Dopo 
la pulizia, tutti i campioni sono stati posti in scatole da 20 × 20 × 20 cm e trasferiti al laboratorio di geologia applicata. Nelle mappe delle 
classi dei fattori determinanti e pesati per Information Value, Density Area e Frequency Ratio, lo studio è stato condotto in ArcGIS uti-
lizzando un’analisi basata sui pixel. La dimensione di ogni pixel è 30 m×30 m, con griglia quadrata. Inoltre, dalla somma algebrica delle 
mappe ponderate relative ai breakpoint della curva di frequenza sono state derivate mappe di zonazione di pericolosità per grotte di loess. 
Infine, le curve ROC sono state valutate con l’ausilio della capacità predittiva o della competenza delle mappe di suscettibilità, in un grafico 
che fissa la relazione tra sensibilità e specificità del modello su una serie di soglie per un risultato positivo. La determinazione dell’AUC 
consente la valutazione quantitativa della capacità predittiva complessiva dei modelli di suscettibilità.
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Abstract
Loess cave is one of the geological hazards in the Loess 

Plateau of northeast Iran, in the Gorgan plain. In total, 697 
caves were mapped, and an inventory map was prepared. Due 
to the importance of geo-environmental and soil properties 
in the development of loess caves, six independent variables, 
including joint density, land use, soil type, collapse sensitivity, 
self-weight collapse coefficient, and surface water distance, 
were designed for modeling the caves susceptibility in the GIS 
software. Loess cave susceptibility maps were constructed using 
Density Area (DA), Information Value (IF), and Frequency Ratio 
(FR) methods in a GIS environment. Loess cave susceptibility 
map obtained from three models was compared using Relative 
Operating Characteristic (ROC) and Area Under Curve (AUC). 
The area under the curve analysis was used to evaluate model 
compatibility and predictability. The equal interval classification 
method classified the study area into five ordinal categories, 
i.e., very low, low, moderate, high, and very high. AUC of the 
IF model was 0.727. The values of AUC for DR and the FR 
models were similar and equal to 0.725. Therefore, the loess cave 
susceptibility maps of Golestan Province is valuable for decision-
maker in loess cave-prone area.

Keywords: loess cave zonation, information value, density area, 
frequency ratio, validation

Article Highlights
•	 Preparing the loess cave susceptibility map in Golestan 

Province utilizing the bivariate statistical approach.
•	 The concept of collapse sensitivity was calculated with the 

laboratory tests in detail.
•	 Performing soil mechanics laboratory tests on loess soils 

to determine the Ic, collapse speed, and collapse sensitivity 
(Is).

•	 Preparing the joint density map using the Global Positioning 
System (GIS), compass, aerial photographs, and satellite 
images.

•	 Evaluation and  comparison of FA, DR, and IF models.

Introduction
Loess is a Quaternary deposit that is broadly spread in arid and 

semiarid regions. Loess soils have an open structure, high water 
sensitivity, and collapsibility properties. As a result, this specific 
loess inappropriately can pose severe environmental difficulties, 
such as subsidence caused by rain or irrigation, the rising water 
table, and ground fissures affected by seepage (Xu et alii, 2015; 
Peng et alii, 2016). Water seepages show strong water sensitivity 
of disintegration, dissolution, liquefaction, creep, and sliding. 
Research on the water sensitivity of loess and its special-temporal 
distribution has a practical significance in guiding the engineering 

constructions in the unsaturated loess area. Based on the theory 
of unsaturated loess, the concept of suction stress is introduced 
to explain the water sensitivity of loess. The essence of water 
sensitivity is that the suction stress decreases with increased 
water content, and the different deformation behaviors will occur 
under different boundary conditions. Loess collapse is one of 
the most severe environmental problems in Golestan Province 
in NE, Iran. Several geo-hazards and engineering challenges 
occur in Golestan Province’s loess, such as landslides, gully, 
subsidence, and loess cave. All of these landscapes are created 
by high collapsibility (Salehi, 2011). They often have severe 
environmental and economic consequences such as human loss, 
soil destruction and damaging agricultural fields, undermining 
infrastructure, gas and oil pipelines, and altering transportation 
corridors (Fig.1).

Despite numerous studies on slope instability (Ghorbanzadeh 
et alii, 2021; Ghobadi et alii, 2017; Pourghasemi et alii, 2019) 
and gullies (Amiri et alii, 2019; Karimi Nejad et alii, 2019), 
unfortunately, little research has been done on the factors affecting 
the occurrence of loess cave and its zoning in Golestan province. 
Caves, in non-karstic landscapes, refer to the formation of linear 
voids by the collapse of the soil surface due to the wetting of loess 
soils. It is prevalent in different regions. Loess cave results from 
hydro-mechanical, gravitational, biological, and physic-chemical 
destruction of the soil. Loess collapse causes the formation of 
landforms that are very reminiscent of the typical karsts (dips, 
loess caves, gullies, circuses, tunnels, etc.)( Lavrusevich, 
2019). Under natural conditions, the loess cave develops slowly 
and affects large areas. There is no single meaning of the term 
“Loess cave,” described in detail and reviewed by Peng et alii 
(2017). Richthofen earliest defined this process in China in 
1877 (von Richthofen, 1877). Later this course was called 
under a multiplicity of names: subterranean erosion (Fuller, 
1922), piping (Fletcher & Carroll, 1948), and pseudokarst 
(Halliday, 2007). The engineering geological problems of 
loess have attracted extensive research in past decades. Loess-
associated geo-hazards bring about severe infrastructure loss 
and soil loss (Zgłobicki et alii, 2016; Bernatek-Jakiel et 
alii,   2017). Therefore, scientists must predict and research the 
spatial occurrence of the loess cave. Land managing denotes the 
most robust tool to contrast the opposing effects of loess cave. 
A strategic contribution comes from loess cave susceptibility 
mapping. This mapping offers a given area into regions of different 
grades of susceptibility to the phenomenon, which is essential for 
exact land-use development. Several techniques are powerfully 
suggested to produce comprehensive and consistent susceptibility 
maps. GIS is critical in susceptibility mapping as it permits easy 
management and processing of regional data, which is central of 
susceptibility evaluation processes (Chen et alii, 2011).

The approaches for risk zoning can be broadly classified as 
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qualitative (knowledge-driven methods) and quantitative (data-
driven methods). Data-driven methods are quantitatively based 
on statistical procedures (Bai et alii, 2010; Lara & Sepulveda,  
2010). These procedures have been used generally in preparing 
landslide susceptibility maps, although these methods can also be 
used in susceptibility maps of loess caves. Landslide susceptibility 
analysis by statistical models using bivariate or multivariate 
procedures has been done and studied the performance and 
restrictions of a combination of current approaches (Romer 
& Ferentinou, 2016; Li et alii, 2017; Abedini et alii, 2017; 

Hadmoko et alii, 2017). In the study of loess cave susceptibility 
zonation, statistical and probabilistic prediction models are used. 

Therefore, the main objective of this study is to deal with 
the issue of validating loess cave susceptibility models in 
Golestan province. The Gorgan plain is highly prone to loess 
caves, therefore, in this study, we evaluate the factors affecting 
their occurrence and, finally, loess cave susceptibility mapping. 
This study assessed the performance of three Density Area (DA), 
Information Value (IF), and Frequency Ratio (FR) models in the 
loess cave susceptibility map.

Fig. 1	 -	 a) Abundance of loess caves on Kalaleh-Maraveh Tappeh road b) A loess cave developed near the Cheshmehli village road c) Loess caves along 
the power transmission line around Maraveh Tappeh d) Typical landslide developed on the loess plateau in Golestan Province e) Differential 
settlement of residential building in Feraghi city, and Bending of gas supply pipe of houses in Feraghi city due to loess collapse
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Study area and geological setting
Large areas in northern Iran have been covered by loess, 

forming one of the southernmost parts of the Eurasian loess belt. 
This loess belt surrounds the Middle East and covers Tajikistan, 
Kazakhstan, and Turkmenistan (Keshavarzi, 2014). The research 
was performed in the Iranian Loess Plateau, identified by loess 
deposits from the south to the north of the Golestan Province, 
between 38.15 N and 36.30 N latitude and 54.00 E and 56.00 E 
longitude (Fig. 2).

 This province is located northeast of Iran and on the 
south-eastern shore of the Caspian Sea, which is part of the 
so-called Kopeh Dagh structural zone (Karimi et alii, 2009). 
Geologically, it lies within the northern margin of central Iran 
on the southern edge of the Touran Plate (Eftekharnejad & 
Behroozi, 1991). The thickness of the Golestan loess deposits 
decreases from northeast to southwest and covers more than 17 
% (388,000) hectares of the province area (Feiznia, 2005). Based 
on geotechnical and sedimentology characteristics, the loess of 
this province is extended in the three zones I (clay loess), II (silty 
loess), and III (sandy loess). 

Being away from their origin and decreased wind energy has 
dispersed loess soils, and the factors changing the soil’s structure 
were differentiated in three areas with different climates. Based on 
the arid-humid climate classification De Martone (De Martonne 
,1926), the province is divided into climates to 5 Climate zones: 
Semiarid, Mediterranean, Semi-humid, Wet, and Very Wet. In 
general, most of the area is in a semiarid environment. Average 
annual rainfall ranges from 200 to 750 mm/year from north to 
south of Golestan Province.

Methodology
Information such as geological and topographic maps, 

historical loess cave events, laboratory analysis, satellite 
image interpretations, and field investigations using the Global 
Positioning System (GIS) was prepared as dependent variables. 
To predict the loess cave potential areas, the information layers, 
including geology, slope, aspect, elevation, erosion, precipitation, 
land use, soil type, USDA Soil Taxonomy, road distance, river 
distance, and sensitivity collapse, were produced and digitized 
as determining factors in loess cave incidence (independent 
variables) in ArcGIS environment. The effect of all the proposed 
factors was investigated. Due to the lack of influence of some 
primary selection factors on the occurrence of loess caves, they 
have been excluded from the final analysis. The variables were 
selected based on previous studies (Kariminejad et alii, 2020; 
Zhang et alii, 2018). 

According to the primary hypothesis, future geo-
environmental factors will happen under similar conditions 
(Lee & Talib, 2005). The location of each loess cave was 
documented by applying GIS based on field visits. The field-
based mapping was patronaged by interpreting digital data 
gathered by an unmanned aerial vehicle (UAV), the DJI Phantom 
4 Pro quadcopter with a DJI FC6310 camera. ArcGIS 10.2.2 
software was employed to plot the records in raster format.

To calculate the physical and mechanical parameters 
governing the scattering of loess caves, we prepared undisturbed 
block samples from 62 points in Zones I, II, and III. After waxing, 
all samples were placed in 20 × 20 × 20 cm boxes and transferred 
to the engineering geology laboratory. In addition, an odometer 
test was carried out based on (ASTMD 5333-03 2003) standard. 
Seven samples with a diameter of 75 mm and a height of 20 
mm were set up from each site to determine the Ic (collapse 
coefficient), collapse speed, self-weight collapse coefficient, and 
initial pressure required for collapse. The samples were exposed 
to pressures of 25, 50, 100, 200, 400, 800, and 1600 Kpa. In the 
standard method, the collapse coefficient of soils is determined 
at a pressure of 200 Kpa. However, in the current study, the 
collapse coefficient of soils was determined under different 
pressures. Loading stages are 25, 50, 100, 200, 400, and 800 Kpa, 
respectively. The deformation at each step of loading was read 
at intervals of 0.1, 0.25, 0.5, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 45, 
and 60 min. Then it was continued at intervals of 30 min until 
reaching a steady state (deformation value less than 0.01 mm per 
hour). Laboratory test outcomes show in table 1. 

In classes of determining factor maps and weighted by 
Information Value, Density Area, and Frequency Ratio, the study 
was conducted utilizing pixel-based analysis in ArcGIS. The size 
of each pixel is 30 m×30 m, a square grid. In addition, loess cave 
hazard zonation maps were acquired from the algebraic sum of 
weighted maps concerning breakpoints of the frequency curve. 

Fig. 2	 -	 Location map of the study area 
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Ultimately, the ROC curves were judged with the assistance of 
the predictive capability or the susceptibility maps’ competence. 
It is a plot that sets the relationship between sensitivity against 
the specificity of the model at a series of thresholds for a 
positive outcome. The determination of the AUC enables the 
quantitative evaluation of the overall predictive capability of 
susceptibility models. 

Data preparation 
The loess cave inventory map is crucial for studying the loess 

cave talent and risk. Figure 3 presents the map of loess deposits 
distribution and the loess cave spreading in the study area. 

 In the present study, 697 loess caves have been recognized 
from Google earth images and numerous field surveys. The 
maximum and minimum diameters of the loess caves are 58.41 m 
and 0.34 m, respectively, whereas the maximum depth is 37.2 m 
and the minimum depth is 0.28 m. An investigation of 78 caves 
in the northern part of Cheshmehli village found that 89% of the 
loess caves were between 2 and 3.5 m wide. An investigation of 
98 loess caves in the Hootan region of Golestan Province found 
the maximum width to be 3.8 m; however, the widths generally 

ranged from 0.28 to 2.4 m. Investigations have shown that the 
height/width ratio for loess caves in Cheshmehli village is usually 
between 0.75 and 1.33; in the Hootan region, the ratio is 0.91-
1.4; in the West of  Province, the ratio is 0.76 -1.52: in Gonbad-
Kaleleh, the ratio is 0.78-1.29: and in the central part of the study 
area is 0.64-1.24.

Loess cave conditioning factors
In susceptibility evaluation, it is crucial to select proper 

parameters for modeling because the selection factors in the 
training data set may be interdependent, leading to noise and 
errors in the model (Chen et alii, 2018). This study chose six 
loess cave conditional factors to demonstrate the areas at risk 
of loess caves. Figure 5 shows the joint density, land use, soil 
type, sensitivity collapse, self-weight collapse coefficient, and 
surface water distance maps.

Joint density
Loess joints, cracks, fissures, faults, bedding planes, and weak 

layers are geo-hazards, such as extensive erosion and effective 
land use. Loess caves associated with the loess joint, cracking–
sliding failure, gully and landform fragmentation usually 
destroy houses, urban planning and construction industrial and 
agricultural, roads, sewers, flood-control dikes, channels, and 
other infrastructure (Xu et alii, 2016), and cause damage to the 
environment (Wang et alii, 2009). Earth fissures can develop 
due to ground-water withdrawal (e.g., Ghazifard et alii, 2016), 
horizontal tensile strain induced by local differential compaction 
(Bankher & Al-Harthi 1999), Freeze and thaw cycles (Li et 
alii, 2019), earthquakes (Vaz & Zezere 2016), active faults (Xu 
et alii, 2016), weak tensile characteristics of loess (Sun et alii, 

Fig. 3	 -	 Distribution of loess deposits and spatial distribution of sink-
holes (n=697) in loess zones of Golestan Province, projected 
on a map 

Tab. 1	 -	 The physical and mechanical properties of Loess samples. 
W%: Natural water content, n%: Porosity, CaCO3%: Calcium 
carbonate,   LL%: Liquid limit
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2009), landslides (Wang et alii, 2010), underground mining 
(Li et alii, 2004), wetting-drying cycles (Xu et alii, 2017), 
biological processes (Richthofen, 1882), the combination of 
bending and shearing (Budhu, 2007) soil collapse (Li et alii, 
2018), and changes in the physicochemical properties of soils 
(Ayalew et alii, 2004). Rainwater or surface water has collected 

in depressions or animal nests that infiltrated down along the 
loess joints and caused the loess to collapse. Eroded loess 
landforms refer to areas where Earth cracks are most common 
in the Golestan Province and the Gorgan Plain. They may be 
several meters long, several meters wide, and tens of meters 
deep. Combining ground-water withdrawal, earthquakes, 

Fig. 4	 -	 Joints in loess plateau: a) The effect of tree roots on crack propagation (Sad Abad) b) Nearly parallel and equally spacing joint development 
(Seyyed Miran) c) Surface water accumulation and formation of mud cracks and joints (Alagol) d) Washing holes developed along the vertical 
joints, and vertical joints developed on the back scarp of the loess caves e) Ground cracking due to soil collapse (Ferraghi city).
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active faults, low tensile strengths of loess, biological processes, 
soil collapse, and aerial desiccation can produce joints in the 
Gorgan plain (Fig 4). Datasets needed to conduct hazard mapping 
of the earth joints include a comprehensive inventory of earth 
fissures, a digital geologic map, and a digital map showing the 
distribution of faults. These datasets are rasterized at 1000 m grid 
spacing using ArcGIS software.

Notably, from field surveys and loess cutting walls, the 
location of 8449 joints was recorded, and a map of their 
geographical distribution was prepared. The joint density map 

was categorized in four classes (Fig. 5a).

Land use
One of the parameters was land use, which plays a vital role 

in spreading loess caves’ positions (Kariminejad et alii, 2020). 
In addition, established on the land use map, in the rangeland, the 
occurrence of loess caves was denser than those in the agricultural 
land (Arabameri et alii, 2019). It shows the potential of rangeland 
(higher humidity than agricultural land) to variation to badland. In 
particular, we considered eight land use categories (Fig. 5b).

Fig. 5	 -	 Maps of six causal factors in loess cave susceptibility: a) Classified joint density b) Classified land use c) Classified distance from surface water 
d) Classified loess type e) Classified collapse sensitivity f) Classified self-weight collapse coefficient
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Surface water distance 
The drainage density is one of the main factors that have a 
determining role in loess caves, as in some hillsides with low 
slopes, waterway and loess cave density are high (Fig.6). Rivers 
can cut and eroding riverbanks. This layer was prepared and 
digitized as practical factors in landslide occurrence (independent 
variables) in ArcGIS. We used the distance to rivers as the index 
to reflect the effect of rivers on loess caves, and the factor had 
three classes (Fig. 5c).

Soil-type
Soil-type conditions of the study area are very vital 

in cave occurrence. From a lithological viewpoint, the 
vulnerable region to cave occurrence in Golestan Province is 
where the soils cover silty and sandy loess. Soil properties 
control the occurrence and development of caves (Bernatek‐
Jakiel et alii 2016). These properties were attained from the 
laboratory tests of 60 undisturbed block samples gathered 
in the vicinity of the loess cave. Based on the geotechnical 
and sedimentological characteristics of the loess soils of the 
study area, from south to north, these features are divided into 
clayey (Zone I), silty (Zone II), and sandy loess soils (Zone 
III), respectively (Rezaiy et alii,  2011). This factor is divided 
into three class maps (Fig. 5d).

Collapse sensitivity 
Some new research have revealed that although some 

areas have a higher collapse coefficient (Ic), the hazard of 
damaging phenomena in these areas may be lower than those 
with a lower Ic (Cui, 2010). The idea of collapse sensitivity 
(Is) is well-defined based on the magnitude and speed of 
collapse (Zhang et alii, 2018). In the current study, by leading 
laboratory experiments on loess soils of Golestan Province, the 
values of Ic and collapse speed of soil (T90%) were calculated, 

and the grade of collapse sensitivity was determined. T90% 
can be calculated from the laboratory data (ASTM D5333-03  
2003). Since the two parameters of collapse magnitude (Ic) and 
collapse speed (T90%), the criterion of soil collapse sensitivity 
is shown in Table 2. Using the outcomes of laboratory tests, we 
separated the soils into four classes based on the value of the Ic:
Ic <1.5, 1.5 < Ic ≤3,  3 < Ic ≤ 7, Ic > 7.
In addition, soils are separated into four groups based on T90%:
 T90% < 5 min, 5 < T90% ≤ 15min, 15min < T90% ≤ 60 min, 
T90% > 60 min.

Based on two causes, magnitude (Ic) and time of collapse 
(T90%), soils are separated into four classes with collapse 
sensitivity (Is) low, medium, medium to severe, and severe. 
We calculated Ic and T90% values  for 60 points in Golestan 

Fig. 6	 -	 Development of loess caves around the seasonal river (Maraveh Tappeh)
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of loess caves, mudslides, and landslides (Bernatek-Jakiel 
& Poesen 2018; Li L et alii, 2017). Loess collapse is mainly 
caused by the destruction of large and medium pores, although 
the contribution of the middle pores on the collapse. The changes 
in the physical state and strength of the loess occur mainly 
under the action of inundation. The particle connections are 
destroyed, fine particles fall into the large pores, and deformation 
rapidly increases. After the loess collapses, there is larger-scale 
destruction of the loess layer structure, and this causes whole-
scale ground subsidence or collapse and forms a collapsible 
crack around the subsidence area (Fig.7).

In general, if the wetting direction occurs from the top 
loess layer to the bottom loess layer, the occurrence of collapse 
deformation is also gradually carried out from the top layer to the 
bottom layer of the loess, and this is beneficial to the formation of 
loess caves or plate-shaped depressions (Fig.8).

 The developmental regionalization of loess caves and the self-
weight collapsibility are closely related. The loess caves are often 
developed in the zones where the loess collapsibility is intense, 
especially the zones where the self-weight significantly contributes 
to the collapse process, such as Hootan-Korand in zone III and 
Cheshmehli and Feraghi in zone II. The self-weight collapsibility 
(Icp) here is more than200 times that of others (Table 3). Therefore, 
we can conclude that the loess collapsibility, especially the self-
weight collapsibility is a primary internal cause that influences the 
development of loess caves. It was divided into four classes (Fig. 5f).

Bivariate statistical method
Each loess cave casual factor map is combined with the 

loess cave inventory map in the bivariate statistical method. The 
occurrence of loess cave is supposed to be a dependent parameter, 
and another environmental variable is regarded as an independent 
variable. The weights are derived from either loess cave 
abundance or densities in each attribute class within each factor. 
Under the probability principle, spatial densities correlate with 

Province, and the collapse sensitivity condition of loess soils in 
three Zones I, II, and III were determined (Table 3). This layer is 
separated into four groups (Fig. 5e).

Self-weight collapse coefficient
Loess deposit has distinct collapse specifications. Collapsible 

loess has been responsible for severe soil and water loss and 
has been known to aggravate and even induce the development 

Fig. 7	 -	 Crack initiation in loess soils due to self-weight collapse 
(Cheshmehli village)

Tab. 2	 -	 Grades of collapse sensitivity in loess (Zhang et alii, 2018)

Tab. 3	 -	 Grades of collapse sensitivity of loess soils and variation of 
ICp in Golestan Province
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divided by loess cave density in the total map area.
The Information Value can be computed by utilizing eqs. 1 and 
2(Yin & Yan, 1988);
	 		
  	 	    (1)

where Wi is the weight given to the class of a specific thematic 
layer (e.g., sandy loess in the thematic layer soil type), Densclass 
is the loess cave density within the thematic class, Densmap is 
the loess cave density within the total thematic layer, Npix(Si) 
is the number of loess cave pixels in a specific thematic class, 
Npix(Ni) is the total number of pixels in a specific thematic 
class, and n is the number of classes in a thematic map. The 
natural logarithm is used to accommodate the considerable 
variation in the weights. The weight map of the determining 
factors can be overlayed and combined in a GIS environment; 
each thematic layer’s total weight (Wi) in the study area is 
detected and illustrated in Table 3. To conclude, the outcoming 
weighted layers were summed up (Eq. 2) to make a loess cave 
Susceptibility Index (CSI) map:

 
                 Wij = WiJointdensity+WiLanduse+WiSurfacewaterdistance+              (2)
                        WiSelfweightcollapsecoefficient+WiSoiltype+ WiSensitivity

where, WiJointdensity, WiLanduse, WiSurfacewaterdistance, WiSelfweightcollapsecoefficient, 
WiSoiltype, WiSensitivity are distribution-derived weights of the joint 
density, land use, surface water distance, self-weight collapse 
coefficient, soil type, and collapse sensitivity, respectively. 

Density Area (DA) method
In this model, similar to the Info Val model, the loess cave 

density for each factor map is computed using Eqs. 3 and 4, the 

the chosen casual factors classes’ susceptibility to the destructive 
operation liable for developing the considered loess cave. Some 
casual factors included soil type, self-weight collapsibility, 
land use, river distance, joint density, and sensitivity collapse 
maps to classify the loess cave susceptibility zones. Lastly, we 
generated a map of loess cave susceptibility mapping through the 
algebraic addition of the Information Value maps of parameters 
and the previously obtained classifications. Mainly three 
weight estimation methods have been employed in the bivariate 
statistical method: Information Value method, Frequency Ratio, 
and Density Area. After comparing determining factors and 
creating weight maps, the best and the most exact method can be 
presented. Later, these methods will be given in detail.

Information Value (IF) method
In the Information Value model, the weighted class value 

is calculated through the density of loess caves regarding each 
determining factor. For spatial landslide zonation, the Information 
Value model has been employed by many researchers such as; 
Mengistu et alii (2019), Balasubramani, and Kumaraswamy 
(2013). The Information Values of numerous determining 
factors can be used to detect the potential areas of loess cave 
occurrence, which may simplify loess cave hazard zonation. The 
Information Values can be determined based on the appearance 
or nonappearance of the determining factor classes within the 
past loess cave. The loess cave map can be combined with the 
determining factor maps to calculate the weights for relevant 
classes. Thus, the overlay makes the loess cave hazard zonation 
(CHZ.) map of the loess cave map with different factor maps. 
If the Information Value is positive, the determining factor class 
represents a strong relationship with the loess cave in the area. 
The weighted value of a causative factor class can be represented 
as the natural logarithm of density of loess cave in a factor class, 

Fig. 8	 -	 The formation of a) plate-shaped depressions and b) loess caves
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statistical approaches, Frequency analysis is the most commonly 
used method (Chimidi et alii, 2017). The related factors with loess 
cave occurrence were prepared (Table 4). 

The overlay analysis will thus provide a ratio between loess 
cave that ‘did’ occur to the loess cave that ‘did not occur within 
each causative factor loess cave class, and the area ratio to the 
entire area was calculated. 

Results and discussion
Because loess cave occurrences are the products of 

synchronous impacts of intrinsic and environmental factors in 
each map unit and the existence of a correlation between these 
influencing factors, the entire risk of loess cave occurrence would 
be similar to the happening probability of all the influencing 
factors. Therefore, the ultimate weight of each pixel would be 
equal to the algebraic sum of all influencing factors, weight in 
that unit. This objective is attained by overlaying and combining 
weight influencing factor maps. Subsequently, after counting 
the weight of different effective influencing factor layers of 
loess cave, and from overlaying these influencing layers, and 
employing the bivariate statistical methods in this research, a final 
loess cave hazard map was generated. Loess cave susceptibility 
maps for four models are shown in Figures 9 to 11. 

The prepared Loess cave susceptibility maps of the 
Golestan Province were classified into five zones, i.e., very 
low, low, moderate, high, and very high susceptibility (Table 
5 and Figs. 9 to 11).

CHZ map is generated the same as the Info Val method (Lee & 
Kyungduck, 2001).

			   			 
	    		  		     (3)

		  		
	    	    	    (4)

Darea is the loess cave density in each hazard class, Warea 
is the area density index, Npix (SXi) is the area of happened 
loess cave in each class or variable Xi, Npix (Xi) is the area 
of each class or variable Xi. The best equation for causative 
factors and loess cave absence and presence as well as loess 
cave susceptibility map was produced in software Arc GIS., 
then classified based on turning points of cumulative frequency 
curves of pixels in five classes of susceptibility, including very 
high, high, medium, low, and very low. 

 Frequency Ratio (FR) method
The Frequency Ratio model gives each input layer the 

proportion of loess cave cells in the specific category. It can 
be described as the ratio of the relative frequency of loess cave 
cells in a category (an attribute class) to the relative frequency 
of all loess cave cells in the area. This model includes more 
independent variables that play a significant role in determining 
the dependent variables. One of the serial comprehensive linear 
models is beneficial for analyzing dependent variables and 
anticipating loess cave instability. The Frequency Ratio can be 
expressed as follows: 

		  		
		  	    (5)                 

where, (Si) is the number of loess cave cells in category i, 
(Ni) is the total number of cells in category i, Σ(Si) is the total 
number of landslide cells loess cave, and Σ(Ni) is the total 
number of cells. To calculate the loess cave susceptibility index 
(CSI), each factor’s Frequency Ratio values were summed to 
the training area as Eq. 6.

                       CSI = Fr1 + Fr2 + Fr3 +...+Frn                  (6)

This Frequency Ratio is normalized to ‘1’. If the value is 
higher than one, it shows a higher density of loess cave cells in the 
category than overall in the dataset. It means a higher correlation. 
If the value is lower than 1, it indicates a lower correlation. Results 
lower than 1 point to categories with a density of loess cave 
cells lower than the density in the dataset. Among the bivariate 

Tab. 4	 -	 Computed weights for classes of various thematic data layers 
based on loess cave occurrences using the bivariate statistical 
methods
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These methods were applied to ensure the relationship 
between the influencing factors, and 697 the loess caves results 
are shown in Table 4. As for the (Is) factor, 84.64 % of loess 
caves for severing sub-class and moderate-severe sub-class were 
12.6%, respectively, meaning that 97.24% of loess caves were 
distributed among the two sub-classes of Is factor. For the land-
use factor, 51.32 % of loess caves for the pasture subclass and 
agriculture subclass were 34.51%, respectively, meaning that 
85.83 % of loess caves were distributed between the two sub-
classes of the land-use factor. Besides, for the soil type factor, 
70.47% of loess caves for the silty loess sub-class and sandy loess 
sub-class were 18.69%, respectively, which means that 89.16% 
of loess caves were distributed between the two classes of soil 
type. For the joint density factor, 49.86% of loess caves for the 
high subclass and very high subclass were 30.23%, respectively. 
In addition, for the surface water distance factor, 44.78 % of loess 
caves for (500-1500 m) sub-class and for <500m sub-class were 
39.94 %, respectively.

In all methods at collapse sensitivity factor, the sever 
subclass; among soil type, silty loess subclass, land-use factor, 
flood plain area subclass, and self-weight collapse factor, the 
trouble subclass have the highest weights. In addition, land use 
factors have the highest weight in all methods.   In addition, 
according to the results (Table 4), all factors in the FR method 
are higher than others.

The result of the IF model showed that the study area was 
dominated by a high loess cave susceptibility zone (57.69%) and 
followed by a very high loess cave susceptibility zone   (28.92%), 
very low, low, and moderate loess cave susceptibility zones 
respectively. The application of DA and FR models showed 
that in high, very high, and moderate loess cave susceptibility 
zones, 30.57%, 0.37 %, and 47.82 % pixels are being affected by 
loess caves, respectively. The results with the IF model (86.61%) 
indicated that a considerable part of the study area was located 
in high to very high hazard classes. However, the results of 
DA and FR models (78.76%) show that 78.76 % of the study 
area was located in moderate, high to very high hazard classes. 
The bivariate methods were applied to explore the relationship 
between the occurrence of loess caves and the determining 
factors in this study, the results of which were essentially reliable 
in predicting the significant intervals of each factor.

Performance and comparison of 
different models

Each model has its strengths and weaknesses, and commonly its 
performance varies with different study areas. Thus, it is suggested 
to compare various models to choose the most appropriate one. 
The Density ratio (Dr) index (Guzzetti et alii, 2000) is used to 
compare hazard classes in individual maps independently, which 
can be accounted for through Eq. 7 (Gee, 1992).

Fig. 9 	 -	 Final loess cave hazard zonation map produced by the Infor-
mation Value method

Fig. 10	-	 Final loess cave hazard zonation map produced by the Fre-
quency Ratio method

Fig. 11	 -	 Final loess cave hazard zonation map produced by the Density 
Area method
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2013). It is a plot that sets the relationship between sensitivity 
(proportion of true positives) against specificity (proportion of 
false positives) of the model at a series of thresholds for a positive 
outcome. The sensitivity, which is plotted on the y-axis, is the 
likelihood that the area with a loess cave is correctly classified, 
while specificity (false negative rate) is the probability that the 
area with the no-loess cave is correctly classified. The x-axis 
expressed as 1 - specificity represents the false positive rate 
(Jaiswal et alii, 2010). The determination of the AUC enables 
the quantitative evaluation of the overall predictive capability of 
the susceptibility model (Beguería, 2006 ), ranging between 0 
and 1. A value closer to 1 indicates the good predictive ability of 
the model. A casual predictive power will be manifested for an 
AUC value of about 0.5, describing a diagonal straight line. AUC 
value below 0.5 means models with a terrible predictive capacity 
and should not be taken into consideration. The mathematical 
expression of the AUC is given by Equation 8 (Pereira et alii, 
2012).
		  		
		  	    (8)

where x is the portion of the study area predicted as susceptible 
by descending order and y is the percentage of correctly classified 
loess cave area belonging to the validation group. AUC values 
between 0.70 and 0.80 correspond to an acceptable model, while 
AUC values ranging between 0.8 and 0.9 indicate an excellent 
susceptibility model, and finally, AUC values > 0.9 typify 
excellent models. The area under the curve approach was used, 
and the results are shown in Table 6 and Figure 12.

The AUC of the IF model was 0.727. The values of AUC 
for DR and the FR models were similar and equal to 0.725. 
Respective AUC values for all models showed that the map 
obtained from the models accurately classified the areas of 
existing loess caves. For the prediction capacity evaluation of 
the developed loess cave models, the prediction rate curve was 
obtained using the loess cave pixels in the validating dataset 
(30% of the total observed loess caves). It can be seen from 
Figure 6 that three models have a good prediction capability 
(AUC ≥ 0.727), and the prediction capacities of the three models 
can be evaluated relatively similarly.

			   			 
			   		      (7)

where, Dr is loess caves density in each hazard class, Si is the 
total number of loess caves in each hazard class, Ai is the area for 
each hazard class in the zonation map, and n is the number of a 
hazard class. In a zonation method, loess cave density in a hazard 
class with Dr = 1, i.e., having a density equal to the average loess 
cave density of all the region, and a class density ratio of 2, has 
a loess cave density equal to two times of the loess cave density 
of the area. The density ratio (Dr) for the IF method in the hazard 
class is very high, accounting for 2.038. The amounts are the 
same for DA and FA models and equal to 3.817 (Table 5).

Loess cave susceptibility maps can be verified by comparing 
the susceptibility maps with the training data used for building 
the models with the validation data that were not used during the 
model building process. The compatibility of the susceptibility 
models was evaluated using the training dataset. Correspondingly, 
their prediction probability was assessed using the validating 
dataset. The susceptibility maps’ predictive capability or 
competence was judged using the ROC curves (Zizioli et alii, 

Tab. 5	 -	 Accounted values for density ratio

Tab. 6	 -	 The test result variable (s): Frequency, Density, Infoval has 
at least on tie between the positive actual state group and the 
negative actual state group. Statistics may be biased.

                a. Under the nonparametric assumption
                b. Null hypothesis: true area=0.5
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of density ratio show that DA, IF and FR methods have good 
accuracy and applicability within all the three used methods 
to separate hazard classes by the density ratio index in the 
studied area;

-through FR, IF, and DA methods, land use, joint density, 
and sensitivity collapse factors impact loess cave occurrence;

-the calculated results of the ROC curves show that in the 
used models in this study, all methods are the accepted model 
for the studied area;

- the results from all models show that collapse sensitivity 
(Is) is the most critical factor affecting loess caves occurrence. 
So, 84.64 % of loess caves are distributed in the severe 
subclass for Is influencing factor;

- in the all model, agricultural lands and pastures land-use 
factors were essential in loess cave occurrence; 

- to determine the exact extent of loess cave destruction, 
areas within high and very high loess cave susceptibility 
categories require more site detailed studies by engineering 
geologists before commencing development.

Acknowledgments
The Engineering Geology and Geotechnics laboratory 

of Bu-Ali Sina University is appreciated for providing the 
laboratory tests. The comments of anonymous reviewers were 
very helpful in improving the manuscript.

Conclusions
Preparing the loess cave susceptibility map was a vital 

step forward in Golestan Province’s hazard mitigation. In the 
current study, three models based on bivariate methods as 
FR, DA, and IF  were used to zoning loess cave hazard, and 
their efficiency and performance are compared in Golestan 
Province, NE Iran, and the following conclusions can be 
drawn:

- the FR and DA models performed the best in terms of 
accuracy, and the loess cave susceptibility map constructed 
by these models was appropriate and analytical. The amounts 

Fig. 12	-	 ROC curve of the models
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