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ExTENDED ABSTRACT
Le frane rappresentano un grave rischio geologico in molti Paesi. In Italia le frane censite sono circa 624.601 (periodo di riferi-

mento 1116-2021) e interessano un’area di quasi 24.000 km2, pari al 7,9% del territorio nazionale (CNR-IRPI report, 2021). La 
disponibilità di inventari che descrivano la distribuzione spaziale e temporale delle frane è fondamentale per effettuare analisi di 
suscettibilità e per la definizione del rischio da frana, che risultano a loro volta essere strumenti necessari sia per la pianificazione 
del territorio sia per lo studio dell’evoluzione del paesaggio nel tempo. Per il territorio italiano sono presenti diverse mappe di 
pericolosità e rischio da frana, partendo dalla scala regionale sino a quella nazionale. Questi prodotti sono stati sviluppati grazie 
alla disponibilità del dataset IFFI, ovvero un inventario di frane realizzato e mantenuto aggiornato nel tempo dall’Istituto ISPRA. 
Tuttavia, per alcune applicazioni, la reale utilità di questo inventario è piuttosto limitata a causa di una diffusa disomogeneità spa-
ziale e dell’utilizzo di diversi metodi di mappatura e criteri di classificazione. 

Nonostante negli ultimi anni l’evoluzione delle tecniche utilizzate per la valutazione della suscettibilità da frana a livello nazio-
nale, come i metodi statistici, numerici o basati sull’intelligenza artificiale (ad esempio le reti neurali), sia stata notevole, i risultati 
sono ancora limitati a causa della qualità dei dati utilizzati, come quella degli inventari di frane. Oltre all’inventario IFFI a scala 
nazionale, sono disponibili altri geodatabase a scala locale e regionale, come quelli forniti dai “Distretti idrografici”, un’autorità 
pubblica cui spetta la gestione della pianificazione del territorio nell’ambito della salvaguardia da frane e alluvioni. Tali enti non 
si occupano di mappare l’intero territorio italiano. Tuttavia, a livello locale, possono produrre un miglioramento in termini di pre-
cisione e accuratezza rispetto al dataset nazionale disponibile.

In questo studio viene presentato un approccio innovativo per la valutazione della suscettibilità da frana da una scala locale ad 
una provinciale, basandosi su inventari di frane a livello regionale. Utilizzando una tecnica data-driven, si propone di allenare un sin-
golo modello su un inventario di frane costituito da una composizione di inventari regionali. Il modello dovrà essere in grado di sti-
mare la suscettibilità da frana in diverse aree di studio nel territorio italiano. L’intera analisi è stata condotta utilizzando lo strumento 
SRT per Google Earth Engine e il plugin SZ per QGIS ed i dati utilizzati e processati sono disponibili e scaricabili gratuitamente.

Nell’ambito del progetto RETURN (Multi-Risk sciEnce for resilienT commUnities under a changiNg climate) facente parte del 
Piano Nazionale di Ripresa e Resilienza-PNRR, l’approccio precedentemente descritto è stato applicato a due aree di studio carat-
terizzate in passato da eventi di frana e alluvione. Le due aree risultano differenti da un punto di vista geologico e geomorfologico, 
ma racchiudono al loro interno una rete di infrastrutture ferroviarie e stradali essenziale per la mobilità interregionale: la prima area 
è nella Regione Campania e comprende un tratto della rete ferroviaria che collega Napoli a Bari; la seconda area invece è nella Re-
gione delle Marche ed interessa i territori maggiormente colpiti dall’alluvione del 2022.

Nelle aree studio selezionate, l’approccio proposto in questo lavoro è stato messo a confronto con la stima di suscettibilità ottenu-
ta mediante l’approccio più diffuso in letteratura, e quindi, rispetto all’attuale stato dell’arte, il migliore a parità di metodo e dati uti-
lizzati. I risultati mostrano come la combinazione di più inventari di frana anche se non spazialmente connessi tra loro non comporta 
un degrado significativo della capacità predittiva del modello. Per cui, a parità di metodo e dati, i due approcci sono equiparabili.

Affinché l’approccio proposto possa essere consolidato, verranno effettuati ulteriori approfondimenti in diverse aree studio per 
poi arrivare all’individuazione delle corrispondenti tratte stradali e ferroviarie più vulnerabili.
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ABSTRACT
Landslides pose a severe geohazard in many countries. The 

availability of inventories depicting the spatial and temporal 
distribution of landslides is crucial for assessing landslide 
susceptibility and risk in territorial planning or investigating 
landscape evolution. In the case of the Italian territory, several 
landslide hazard and risk maps were produced ranging from 
regional to national scale. This was made possible leveraging 
public domain data of the Italian Landslide Inventory (IFFI 
project; Trigila et alii, 2010), or other geodatabases spanning 
from local to regional scale. However, the practical utility of 
this inventory is often limited in many applications due to its 
spatial inhomogeneity or the use of different mapping methods 
and classification criteria. Despite the impressive advancements 
in techniques for assessing natural hazard susceptibility at a 
national scale over the past years, including statistical models, 
AI based models (i.e. Neural Networks) and others, the results 
are still limited by the quality of the data used. Specifically, 
the effectiveness of these models is closely tied to the quality 
of the landslide inventory utilized. Currently, recent regional 
landslide inventories could potentially enhance precision and 
accuracy compared to the national dataset, primarily owing to 
their finer resolution compared to the IFFI dataset. In this work, 
we present a new approach to assess landslide susceptibility 
at local scale, relying on regional landslide inventories. Using 
a data-driven technique, we propose to train a single model on 
a landslide inventory consisting of a composition of regional 
inventories selected to be representative of the national scenario. 
The weighted model is now capable of predicting landslide 
susceptibility in any study area across Italy. The entire analysis 
has been done using the SRT tool for Google Earth Engine and 
the SZ-plugin for QGIS. All the data used and processed are 
freely available and downloadable. The proposed approach has 
been tested in the framework of the PNRR RETURN project. 
The evaluation was conducted in two specific areas: the first one 
encompasses a section of the railway connecting Napoli to Bari 
(southern Italy), while the second focuses on areas impacted by 
the Marche region 2022 landslide event (central Italy).

Keywords: flow-like landslides, landslide inventory, susceptibility mapping, 
Generalized Additive Model.

INTRODUCTION
Landslides are complex natural phenomena that pose severe 

geohazards in many countries, occurring in diverse geological, 
geomorphological, and climatological environments. Thus, 
understanding the spatial and temporal distribution of 
landslides is crucial to assess related hazards and to support a 
comprehensive risk assessment (Grelle et alii, 2014; Fusco et 
alii, 2021; Fusco et alii, 2023a). It holds also high importance 

for analyzing landscape evolution and sediment budget on 
scales ranging from slope to basin (Corti et alii, 2023). In Italy 
about 625,000 landslides have been inventoried (covering about 
the 8% of the territory; CNR-IRPI report, 2021). The growing 
of urban settlements has led population settlement in areas at 
risk, where prediction and prevention actions are nowadays a 
challenge for geoscientists. In this context, landslide inventories 
can be used for various purposes, such as: preliminary step 
for the assessment of landslide susceptibility, hazard and risk. 
They are valuable for investigating landslide distribution, 
types and patterns in relation to morphological and geological 
factors as well as for studying landscape evolution. However, 
the practical utility of these inventories is often constrained by 
limited accessibility, spatial inhomogeneity or use of different 
mapping methods and classification criteria. This condition 
stands as a significant limitation for studies aimed at landslide 
susceptibility and risk assessment.

Landslide susceptibility assessment is the most common 
approach to assess how prone to landsliding a landscape 
is. Several methods and approaches, both qualitative and 
quantitative, have been proposed and tested for distributed 
landslide susceptibility assessment (Reichenbach et alii, 
2018). Qualitative approaches include heuristic ones, such as 
geomorphological mapping, analysis of landslide inventories, 
and susceptibility zoning. Quantitative methods encompass 
physics-based numerical modelling and statistically based 
classification methods (Guzzetti et alii, 1998). At the slope or 
basin scale this is commonly achieved by applying quantitative 
methods, such as physics-based models, which consider dynamic 
variables that illustrate how landslide triggering is significantly 
affected by hillslope hydrological and morphological conditions, 
as well as stratigraphic setting of the involved terrains (Ozturk 
et alii, 2016; Tufano et alii, 2016; De Vita et alii, 2018; 
Formetta et alii, 2019; Panzeri et alii, 2022; Sepe et alii, 
2023). In contrast, for broader geographic contexts, ranging 
from catchments to regional and even continental scales, 
landslide susceptibility is commonly generated using expert-
driven (Günther at alii, 2014) or data-driven (e.g., Ciurleo 
et alii, 2017; Lombardo et alii, 2020; Titti et alii, 2021a; 
Ahmed et alii, 2023) methods. Expert-driven models involve 
standardizing and weighting causative factor maps, even in the 
absence of a sufficiently complete landslide inventory. Data-
driven methods can use binary classifiers, originating from 
statistical or machine learning approaches. Regardless of the 
specific algorithm at hand, a data-driven-based susceptibility 
assessment requires a series of spatially-explicit instances 
describing previously occurred landslides. 

Assuming that “the past is the key to the future” (Carrara 
et alii, 1995), the model learns how to distinguish the 
presence from the absence of a landslide based on a set of 
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predisposing factors (i.e. slope degree, curvature, aspect, 
geology). For example, Titti et alii (2021) investigated how 
landslide presence variation affects the model performance by 
systematically reducing the number of the landslides in the 
dataset. The model performance has significantly improved in 
the last decade, particularly with the emergence of artificial 
intelligence-based models (Dahal et alii, 2023), especially 
when the scale of the analysis is relatively small. However, 
landslide inventories still face limitations in terms of updating 
and accuracy. To this regard, is there a method to enhance the 
accuracy and completeness of landslide inventories in Italy?

In the framework of the PNRR RETURN project (Multi-
Risk sciEnce for resilienT commUnities undeR a changiNg 
climate), an alternative approach is introduced wherein the 
data-driven model is trained using a selection of landslide 
inventories to evaluate the landslide susceptibility of a third 
area. This method, known as transfer learning, has been 
investigated in the literature for purposes other than landslide 
susceptibility. More recently, the transfer learning approach 
has been introduced in the field of landslide susceptibility 
analysis, as evidenced by studies such as Liu et alii (2021), Ai 
et alii (2022), and Wang et alii (2022a), which explore various 
approaches in delineating model source and target datasets. 

For example, Zhu et alii (2020) proposed unsupervised transfer 
learning where source and target areas were selected to be adjacent. 
On the other hand, Wang et alii (2022b) compared a single-
source transfer benchmark approach with multiple-source transfer 
benchmarks for non-adjacent study areas. The key difference 
between single- and multiple-source transfer learning approaches 
lies in the number of non-adjacent datasets used to train a model: 
one for single-source and more than one for multiple-source.

Inspired by the work of Wang et alii., we compare a 
conventional single-source transfer learning method, where 
the prediction and training areas are contiguous, with a multi-
source transfer learning approach that utilizes non-adjacent 
training areas. Both scenarios include regional and local landslide 
inventories, obtained from public Authorities or literature, which 
exhibit greater accuracy than the national landslide inventory 
(IFFI project, Triglia et alii, 2010), the most used in the literature 
to attempt landslide susceptibility of the entire Italian territory.

The approach is applied to two selected test sites based on 
availability of detailed landslide inventories and the presence of 
critical transport infrastructures (railways and national roads) 
in landslide-prone territories (Fig. 1). Specifically, the first site 
comprises a sector of the railway connecting Napoli to Bari 
(Campania region, southern Italy), while the second one includes 
areas affected by the Marche 2022 flood event (Marche region, 
central Italy). The model was trained by coupling the datasets from 
these two regions with the aim to provide a detailed susceptibility 
analysis on two site-specific locations within each region. 

DATA AND METHODS
Study areas

The approach was tested in two areas of the Italian territory 
(Fig. 1): the Marche region (central Italy, M); and the Campania 
region (southern Italy, C). Geologically, these areas coincide with 
the Apennines chain, a fold-and-thrust belt formed during Neogene-
Quaternary by the collision of African and European plates. 
Orogenesis processes characterized by collisional and extensional 
tectonic phases involved Triassic to Miocene sedimentary 
successions (Satolli & Calamita, 2008; Vitale & Ciarcia 
2018). Pre-, syn-, and post-orogenic lithologies characterize the 
areas. In detail, central and eastern areas of the Marche region are 
characterized mainly by flysch deposits (clays, marls, sandstones); 
while by carbonate deposits (limestones, dolomites) the western 
one. Similarly, the Campania region is characterized by flysch 
deposits in the eastern and southern areas; while also by volcanic 
deposits (ash-fall pyroclastic covers, tuffs and lavas) in the western 
sector coinciding with the two volcanic districts (Mt. Somma-
Vesuvius and Phlegraean Fields) and the surrounding relief.  
The complex geological-structural setting strongly affects the 
morphology of the study areas, characterized by slopes, from steep 
to hilly, valleys, from narrow to wide, and alluvial plains. In such 
a complex framework, slope instabilities with different kinematics 
strongly affect the study areas. Consulting the CAHD (Central 
Apennines Hydrological District) inventory, 7165 landslide 
events were revealed for the Marche site (out of 22031 in total); 
while 15125 landslides (out of 51155 in total), from the LaICa 
(Landslide Inventory of Campania region; Fusco et alii, 2023b) 
were documented for the Campania site. Such events include falls, 
topples, slides, flows, creeps, and deep-seated gravitational slope 
deformations (Cruden & Varnes, 1996; Hutchinson et alii, 
1988). In this study, only flow events were considered.

Susceptibility mapping
Landslide spatial susceptibility is defined as the probability 

of occurrence of an event according to geo-environmental factors 
(Brabb, 1985). The analysis was carried out using a data-driven 
method known as the Generalized Additive Model (GAM), 
available in the SZ-plugin v2.0 for QGIS (Titti et alii, 2022a). This 
statistical method allows the user to investigate the partial effect 
of single predisposing factors and to understand their contribution 
to the final probability. The GAM includes three different kinds of 
partial effects: linear, non-linear and categorical. Specifically, nine 
predisposing factors were considered: slope degree, relative relief, 
vertical curvature, horizontal curvature, northness, eastness, mean 
daily precipitation, land cover and lithology.

After a preliminary analysis, mean daily precipitation was 
categorized as linear while the remaining ordinal covariates as 
non-linear. Land cover and lithology were treated as categorical 
predisposing factors. The ordinal factors were collected using 
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the Spatial Reduction Tool (SRT) (Titti et alii, 2022) allowing 
both data retrieval from various sources and spatially reducing of 
dataset into a mean and a standard deviation representing the single 
mapping unit. Morphological data were derived from Copernicus 
DEM (GLO-30) (spacedata.copernicus.eu), rainfall time series 
from 1991 to 2020 from CHIRPS dataset (chc.ucsb.edu/), land 
cover from 2018 CORINE land cover (land.copernicus.eu) and 
lithology from national dataset (portalesgi.isprambiente.it). The 
relative relief was excluded from the analysis due to its collinearity 
with the slope. The collinearity between the predisposing factors 
was evaluated by the Pearson’s coefficient. Ultimately, eight 
covariates were taken into consideration, including six ordinal 
and two categorical ones. The slope unit subdivision proposed by 
Alvioli et alii (2020) was considered as mapping unit.

To accurately reproduce the statistical distribution of each 
ordinal covariate in each mapping unit, the mean and standard 
deviation per ordinal covariate was included in the analysis. A 

total of 1545 flow-like landslide events in the Marche area and 
5334 ones in the Campania area were considered. Furthermore, 
they were aggregated into 813 and 1208 unstable units, 
respectively. In total, 4383 slope units in the Marche region 
and 2543 in the Campania region were selected. The number 
of flow-like landslide events (flows density) in Marche study 
area (Fig. 2a, Fig. 2b) is lower than the number in Campania 
study area (Fig. 2c, Fig. 2d): specifically, 19% and 48% of the 
selected slope units are unstable, respectively. All the slope 
units characterizing the Marche dataset (M) and Campania one 
(C) were sub-sampled in two samples each: M-train (Fig. 2a) 
and M-trans (Fig. 2b), and C-train (Fig. 2c) and C-trans (Fig. 
2d) where ‘train’ and ‘trans’ represent the area dedicated to train 
and to transfer the model knowledge, respectively.

A four steps analysis was carried out, two of those representative 
of the single-source transfer learning approach (1a and 1b) and two 
based on the multi-source approach (2a and 2b): 1a) model training 

Fig. 1 - Landslide inventory in the Marche (M) and the Campania (C) study areas. (WGS84/UTM 33N)”
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in M-train area and susceptibility mapping in M-trans; 1b) model 
training in C-train area and susceptibility mapping in C-trans; 2a) 
model training in C + M-train areas and susceptibility mapping in 
M-trans area; 2b) model training in M + C-train areas susceptibility 
mapping in C-trans. Finally, the resulting maps of steps 1a and 2a 
and the resulting maps of steps 1b and 2b were compared using 
several metrics including the Area Under the Receiving Operating 
Characteristic Curve (AUC) (Fawcett, 2006), the Cohen’s Kappa 
score (Kraemer, 2014), the F1 score (Singhal, 2001) and the 
confusion matrix based on the Youden index (Fluss et alii, 2005).

RESULTS AND DISCUSSION
The prediction capability of the latest generation of data-

driven models used for assessing susceptibility is significantly 
higher than the actual prediction capability reached by their 

resulting maps due to the limitations induced by inaccuracy of 
inventories. Accordingly, we attempted to enhance the accuracy 
and the completeness of the landslide inventory used to train the 
model. A transfer learning approach to perform susceptibility 
analysis where landslide inventories are scarce or unavailable 
is proposed. The aim is in fact to investigate the possibility 
of training a data-driven model on spatially non-continuous 
inventories and predict the probability of occurrence where the 
landslide inventory is missing or limited. Setting the parameters 
and the conditions above discussed, the model provided the 
results shown in Fig. 3a for the Marche site (step 1a and 2a). The 
conventional single-source flow-like landslide susceptibility 
map of the Marche prediction area (M-trans) was trained on 
the Marche slope units excluding the slope units of the M-trans 
area (M-train). Fig. 3b illustrates the multiple-source flow-like 

Fig. 2 - Slope units subdivision and flows density (relative number of flow-like landslides) of Marche and Campania study areas. A) M-train study area; 
B) M-trans study area; C) study area named C-train; D) C-trans study area. (WGS84/UTM 33N)
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landslide susceptibility map of the M-trans area, trained over 
the M-train area plus all the slope units of the Campania site. 

The Fig. 4 shows the results of steps 1b and 2b. In particular, 
the single-source flow-like landslide susceptibility map of the 
Campania prediction area (C-trans) trained on the Campania study 
area, excluding the slope units of the C-trans area (C-train), is 
reported in Fig.4a. The multiple-source susceptibility map trained 
on the Marche slope units (M) plus the C-train area is depicted 
in Fig. 4b. A confusion matrix assigns a True or False status to 
each slope unit based on the presence/absence of a landslide 
event and a Positive or Negative status if the susceptibility value 
of the single slope units is higher or lower than a threshold, that 
we assumed equal to the Youden index. In Fig. 3 and Fig. 4 the 
confusion matrix classification of the slope units for the Marche 
and Campania prediction areas is also visible. The remaining 
metrics used to evaluate the feasibility of the analysis in M- and 
C-trans are reported in Tab. 1. The model output generated the 
spatial distribution of landslide susceptibility in the two case 
studies. The M-trans susceptibility map (Fig. 3a) is characterized 
by a concentration of high susceptibility values in few slope units, 
whereas M-train + C (Fig.3b) shows a wider distribution. The most 
significant differences are visible in the northern part of the study 
area. Overall, the susceptibility in the Campania prediction area 
is generally higher compared to the Marche study area, but the 
spatial behavior is quite similar. Fig. 4a depicts numerous slope 
units with high susceptibility values, whereas the case in Fig. 4b 
shows a concentration of high susceptibility values in the northern 
part of the prediction area. These spatial trends can be described 
by the residuals shown in Fig. 5. The residuals were calculated as 
the difference in susceptibility index between the single-source 
method and the multiple-source approach that we are proposing. 
The density distribution of the residual in Fig. 5 is quite different 
between the two study areas. The Marche area shows a narrow 
distribution characterized by a concentration of density close 
to the zero value, whereas Campania shows negative residuals 
with a wide distribution. Therefore, in the Marche study area the 
multiple-source approach overestimates the susceptibility, whereas 
in Campania the multiple-source approach tends to underestimate 
the susceptibility. Furthermore, both graphs exhibit sign inversions 
in several slope units. These sign inversions suggest a lack of 
coherence in the model prediction. Therefore, we can interpret them 
as the estimates of the uncertainty in the reliability of the approach, 
which is equal to 20% for the M-trans and 3% for the C-trans, 
equivalent to a level of confidence of 80% and 97%, respectively. 

The confusion matrices of Fig. 3 and Fig. 4 were plotted using 
the Youden Index to estimate the optimal probability cutoff. In the 
Marche prediction area, the number of true positive (TP) slope units 
is 33, while in the Campania prediction area, it is 95. No significant 
difference is apparent between the Fig. 3c and 3d, as well as 
between Fig. 4c and 4d. This result confirms that no real evidence 

Fig. 3 - Landslide susceptibility maps and relative confusion matrices of 
Marche prediction area (tp: true positive, fn: false negative, fp: 
false positive). A) susceptibility map trained on M-train area; B) 
susceptibility map trained on M-train + C area; C) confusion 
matrix based on the Youden Index of map A; D) and of map B

Fig. 4 - Landslide susceptibility maps and relative confusion matrices of 
Campania prediction area (tp: true positive, fn: false negative, 
fp: false positive). A) susceptibility map trained on C-train area; 
B) susceptibility map trained on C-train + M area; C) confusion 
matrix based on the Youden Index of map A; D) and of map B
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of variation in the prediction capacity between the two approaches 
is apparent, despite the differences observed in the susceptibility 
maps. The landslide inventories in the prediction areas were used 
for validating the final map since they did not contribute to training 
the model. Therefore, the ratio between the unstable slope units 
and the predicted unstable slope units (true positive plus the false 
positive units) can be used to assess the validity of the result.

We cannot validate the results using the stable units, as their past 
and current stability does not guarantee future stability. Considering 
the confusion matrices calculated with the Youden index, 100% of the 
unstable units are still considered unstable in the prediction maps. The 
maps are deemed valid with an accuracy of 100%. Tab. 1 displays all 
the numerical metrics calculated for the prediction areas.

Overall, the metrics indicate high values of goodness-of-
prediction with minimal differences between the single-source 
approach and the proposed approach. In general, there are minor 
differences in the metrics between the analyses conducted in the 
Campania and Marche regions. These differences can likely be 
attributed to the significantly higher number of landslide data 

collected in the Campania region than in the Marche region 
and to the accuracy in landslide classification and localization 
method used to create the inventories, which is for the Marche 
inventory way lower than the one of Campania.

Moreover, the metrics maybe influenced by the prediction 
area selected. Statistically, the variance of a small population 
is more variable than in a numerous one, thus, the selection of 
the prediction area, which have quite small extension in this 
work, may affect the final result.

CONCLUSIONS
In this study, we introduce a multiple-source approach for 

mapping landslide susceptibility using a Generalized Additive 
Model in the absence of a complete or highly accurate 
landslide inventory. Our proposed method involves training a 
model on a dataset that is non-adjacent to the prediction area, 
still ensuring high spatial accuracy. We tested this approach in 
the Marche and Campania regions by selecting sub-samples 
from their respective datasets to transfer the weighted model. 
The susceptibility maps in the prediction areas produced by 
the proposed approach correctly identified all the unstable 
mapping units as unstable, thereby validating the maps. 
Additionally, the prediction capability of all prediction maps, 
as evaluated by various metrics showed good performance 
without significant differences between the approaches. 

Considering the single-source susceptibility mapping 
method (i.e., training on X-train and predicting on X-trans) as 
the baseline, the sign inversion found in the residual analysis 
could be interpreted as a measure of uncertainty. Overall, the 
proposed approach exhibits a high level of confidence, with 
reliability estimated at 80% and 97% for the Marche and 
Campania prediction areas, respectively. Further analyses will 
be carried out in other site-specific areas where important 
linear infrastructures intersect areas affected by numerous 
landslides phenomena to consolidate the multiple-source 
approach. The approach will also be extended to different 
type of landslide affecting the two area with the final aim to 
produce specific and detailed hazard maps.
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Tab. 1 - Metrics of predicted susceptibility maps with the model trained 
on M-train, C-train, C + M -train, M + C-train areas

Fig. 5 - Frequency distribution of the residuals in the Marche (blue) 
and Campania (red) prediction areas calculated as the differ-
ence between the susceptibility index of the proposed method 
and the conventional ones
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